

Copyright	©	2016	by	McGraw-Hill	Education	(Publisher).	All	rights	reserved.	Except	as
permitted	under	the	United	States	Copyright	Act	of	1976,	no	part	of	this	publication	may
be	reproduced	or	distributed	in	any	form	or	by	any	means,	or	stored	in	a	data	base	or
retrieval	system,	without	the	prior	written	permission	of	the	publisher.

ISBN:	978-0-07-184744-5
MHID:							0-07-184744-8

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:	978-0-07-
184743-8,	MHID:	0-07-184743-X.

eBook	conversion	by	codeMantra
Version	1.0

All	trademarks	are	trademarks	of	their	respective	owners.	Rather	than	put	a	trademark
symbol	after	every	occurrence	of	a	trademarked	name,	we	use	names	in	an	editorial
fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement
of	the	trademark.	Where	such	designations	appear	in	this	book,	they	have	been	printed
with	initial	caps.

McGraw-Hill	Education	eBooks	are	available	at	special	quantity	discounts	to	use	as
premiums	and	sales	promotions	or	for	use	in	corporate	training	programs.	To	contact	a
representative,	please	visit	the	Contact	Us	page	at	www.mhprofessional.com.

Oracle	is	a	registered	trademark	of	Oracle	Corporation	and/or	its	affiliates.	All	other
trademarks	are	the	property	of	their	respective	owners,	and	McGraw-Hill	Education
makes	no	claim	of	ownership	by	the	mention	of	products	that	contain	these	marks.

Screen	displays	of	copyrighted	Oracle	software	programs	have	been	reproduced	herein
with	the	permission	of	Oracle	Corporation	and/or	its	affiliates.

Excerpts	of	copyrighted	Oracle	user	documentation	have	been	reproduced	herein	with	the
permission	of	Oracle	Corporation	and/or	its	affiliates.

Information	has	been	obtained	by	Publisher	from	sources	believed	to	be	reliable.
However,	because	of	the	possibility	of	human	or	mechanical	error	by	our	sources,
Publisher,	or	others,	Publisher	does	not	guarantee	to	the	accuracy,	adequacy,	or
completeness	of	any	information	included	in	this	work	and	is	not	responsible	for	any
errors	or	omissions	or	the	results	obtained	from	the	use	of	such	information.

Oracle	Corporation	does	not	make	any	representations	or	warranties	as	to	the	accuracy,
adequacy,	or	completeness	of	any	information	contained	in	this	Work,	and	is	not
responsible	for	any	errors	or	omissions.

TERMS	OF	USE

This	is	a	copyrighted	work	and	McGraw-Hill	Education	and	its	licensors	reserve	all	rights
in	and	to	the	work.	Use	of	this	work	is	subject	to	these	terms.	Except	as	permitted	under
the	Copyright	Act	of	1976	and	the	right	to	store	and	retrieve	one	copy	of	the	work,	you
may	not	decompile,	disassemble,	reverse	engineer,	reproduce,	modify,	create	derivative
works	based	upon,	transmit,	distribute,	disseminate,	sell,	publish	or	sublicense	the	work	or
any	part	of	it	without	McGraw-Hill	Education’s	prior	consent.	You	may	use	the	work	for
your	own	noncommercial	and	personal	use;	any	other	use	of	the	work	is	strictly

http://www.mhprofessional.com

prohibited.	Your	right	to	use	the	work	may	be	terminated	if	you	fail	to	comply	with	these
terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	EDUCATION	AND	ITS
LICENSORS	MAKE	NO	GUARANTEES	OR	WARRANTIES	AS	TO	THE
ACCURACY,	ADEQUACY	OR	COMPLETENESS	OF	OR	RESULTS	TO	BE
OBTAINED	FROM	USING	THE	WORK,	INCLUDING	ANY	INFORMATION	THAT
CAN	BE	ACCESSED	THROUGH	THE	WORK	VIA	HYPERLINK	OR	OTHERWISE,
AND	EXPRESSLY	DISCLAIM	ANY	WARRANTY,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.	McGraw-Hill
Education	and	its	licensors	do	not	warrant	or	guarantee	that	the	functions	contained	in	the
work	will	meet	your	requirements	or	that	its	operation	will	be	uninterrupted	or	error	free.
Neither	McGraw-Hill	Education	nor	its	licensors	shall	be	liable	to	you	or	anyone	else	for
any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work	or	for	any	damages
resulting	therefrom.	McGraw-Hill	Education	has	no	responsibility	for	the	content	of	any
information	accessed	through	the	work.	Under	no	circumstances	shall	McGraw-Hill
Education	and/or	its	licensors	be	liable	for	any	indirect,	incidental,	special,	punitive,
consequential	or	similar	damages	that	result	from	the	use	of	or	inability	to	use	the	work,
even	if	any	of	them	has	been	advised	of	the	possibility	of	such	damages.	This	limitation	of
liability	shall	apply	to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises
in	contract,	tort	or	otherwise.

For	Carrie	and	all	my	kids,	whom	I	love	more	than	life	itself.

–RF

About	the	Authors
Robert	G.	Freeman	is	the	senior	DBA	at	Businessolver,	Inc.,	in	Des	Moines,	Iowa.
Robert	has	worked	with	Oracle	databases	for	well	over	two	decades,	including	working
for	Oracle	Corporation	for	five	years.	In	this	long	career	Robert	has	worked	in	a	number
of	different	Oracle	environments,	from	the	mini	to	some	of	the	largest	in	the	world,	and
many	in	between.	He	loves	working	with	Oracle	databases	and	playing	with	his	two-year
old,	Amy.

Matthew	Hart	is	the	coauthor	of	six	books	for	Oracle	Press,	most	recently	Oracle	10g
High	Availability	with	RAC,	Flashback,	and	DataGuard;	Oracle	Enterprise	Manager	10g
Grid	Control	Handbook;	and	the	tome	you	now	hold	in	your	hands.	He	has	worked	with
high	availability	technologies	in	Oracle	since	version	7.3,	and	has	worked	with	RMAN
since	its	inception.	Matthew	currently	works	and	lives	in	Kansas	City,	Missouri.

About	the	Contributors
Emre	Baransel	holds	two	master’s	degrees	in	information	systems	and	business
administration,	and	has	worked	in	IT	for	11	years.	He	has	worked	for	the	largest	fixed-
line,	GSM	telco	companies	and	Oracle	Corp.	in	Turkey.	He	was	awarded	as	an	Oracle
ACE	in	2012.	He	authored	Oracle	Data	Guard	11gR2	Administration:	Beginner’s	Guide
and	contributed	to	the	Oracle	RMAN	11g	Backup	and	Recovery	book.	He’s	an	Oracle
Certified	Professional	(OCP),	a	founding	member	of	TROUG	(Turkish	Oracle	User
Group),	and	a	blogger	at	emrebaransel.blogspot.com.	He	has	spoken	at	Oracle	Open
World	in	the	United	States	and	at	user	group	conferences	across	Europe.

E.	Craig	Brown	is	a	Senior	Database	Engineer	for	Commvault,	specializing	in	Oracle
database	solutions.	Mr.	Brown	has	been	a	database	administrator	for	20	years,	primarily
with	Oracle	as	well	as	others.	His	work	with	Commvault	for	the	past	eight	years	consists
of	consulting	multiple	companies	across	many	industries,	including	healthcare,
telecommunications,	public	utilities,	engineering,	and	government,	in	planning	for	backup
and	disaster	recovery.

Scott	Black	has	over	15	years	of	experience	in	the	technology	field,	with	almost	the
past	5	years	at	Oracle	helping	public	sector,	healthcare,	and	higher	education	clients	get
the	most	value	out	of	their	data	and	Oracle	products.

Tim	Chien	is	a	product	manager	with	Oracle’s	High	Availability	and	Storage
Management	Group,	focusing	on	Backup	and	Recovery,	including	Zero	Data	Loss
Recovery	Appliance,	Recovery	Manager	(RMAN),	and	Flashback	technologies.	His
extensive	product	management	and	marketing	experience	includes	both	application	server
and	database	products,	and	he	has	presented	at	numerous	Oracle	and	industry	conferences
around	the	world.	Tim	received	his	bachelor’s	and	master’s	degrees	in	computer	science
from	the	Massachusetts	Institute	of	Technology.

Rao	Chelli	is	a	Senior	Principal	Consultant	at	Oracle	USA.	Rao	has	15+	years	of
experience	in	technology	consulting,	solution	architecture,	and	making	customers
successful	with	their	Oracle	product	investments.	He	is	one	of	the	first-generation	Oracle-
engineered	systems	experts	and	Oracle	MAA	solutions	delivery	leaders	at	Oracle.	Prior	to

http://emrebaransel.blogspot.com

Oracle,	Rao	worked	at	GE	(USA),	GOTEVOT	(Saudi	Arabia),	and	Frontier	(India).	Rao
holds	a	master’s	degree	(M.Sc.Tech)	in	Electronics	Technology	from	Andhra	University,
India,	and	is	currently	enrolled	as	an	Executive	MBA	student	(A16)	at	New	York
University’s	Stern	Business	School.

Marcus	Vinicius	Miguel	Pedro	is	a	Principal	Advanced	Support	Engineer	at	Oracle
ACS	Brazil.	Marcus	Vinicius	has	more	than	10	years	working	with	Oracle	technologies
and	is	a	consultant	focusing	and	specializing	in	high	availability	solutions;	he	is	also
responsible	for	designing	HA	solutions	for	the	most	important	corporations	in	Brazil.	He
was	nominated	as	an	Oracle	ACE	in	2010.	He	also	maintains	his	Oracle-related	blog	and
speaks	at	user	group	events	in	Brazil.

Ramesh	Raghav	is	a	Principal	Sales	Engineer	at	Oracle	Corporation.	He	is	an
accomplished	Oracle	database	professional	with	extensive	expertise	in	implementation
and	administration	of	technologies	spanning	Database	(versions	5–12c),	RMAN,
Recovery	Appliance,	Exadata,	RAC,	and	DataGuard.	Ramesh	has	recovered	many	critical
production	databases	for	various	enterprise	clients	using	RMAN.	He	is	an	Oracle	12c
Certified	Professional	(OCP)	DBA,	a	RAC-certified	expert,	and	author	of	Oracle	10gR2
Recovery	Manager.

Pete	Sharman	is	a	database	architect	in	the	Database	as	a	Service	team	for	Enterprise
Manager	with	Oracle.	He	is	also	a	member	of	the	OakTable	Network	and	has	presented	at
earlier	RMOUG	Training	Days,	Hotsos	Symposia,	Oracle	OpenWorld	conferences,	and
other	user	group	events.	He	has	co-authored	the	Expert	Oracle	Enterprise	Manager	12c
and	Practical	Oracle	Database	Appliance	books	published	by	Apress.

About	the	Technical	Editor
Matthew	Arrocha	has	been	with	Oracle	for	20	years	and	started	working	with	RMAN
when	it	was	released	in	Oracle	Database	8.0.3.	Over	the	years	he	has	provided	support	and
training	to	Oracle	internal	and	external	audiences.	Matthew	is	the	Oracle	RMAN	Global
Technical	Lead	and	Backup	&	Recovery	Lead	for	the	United	States	and	Canada,	and	also
provides	Advanced	Resolution	support	and	BDE	bug	screening	for	development.	This	is
the	fourth	RMAN	Oracle	Press	book	he	has	reviewed.	Matthew	thanks	Robert	Freeman
for	inviting	him	on	the	project,	and	Jennifer	Dittman	for	the	support	in	helping	him
concentrate	on	this	book	review.

Contents	at	a	Glance

PART	I
Getting	Started	with	RMAN	in	Oracle	Database	12c

1			Quick-Start	Guide	for	RMAN	and	Oracle	Database	12c

2			Oracle	Database	12c	Backup	and	Recovery	Architecture	Tour

3			Introduction	to	the	RMAN	Architecture

4			Oracle	Database	12c	Multitenant

PART	II
RMAN	Configuration,	Backup,	and	Recovery	Essentials

5			RMAN	Setup	and	Configuration

6			The	RMAN	Recovery	Catalog

7			RMAN	Backups

8			RMAN	Restore	and	Recovery

9			Advanced	RMAN	Recovery	Topics

10			Duplication:	Cloning	the	Target	Database

PART	III
RMAN	Maintenance	and	Administration

11			Maintaining	RMAN

12			Monitoring	and	Reporting	in	RMAN

13			Performance	Tuning	RMAN	Backup	and	Recovery	Operations

14			Using	Oracle	Cloud	Control	for	Backup	and	Recovery

PART	IV
RMAN	in	a	Highly	Available	Architecture

15			RMAN	Best	Practices

16			Surviving	User	Errors:	Flashback	Technologies

17			RMAN	and	Data	Guard

18			RMAN	and	Real	Application	Clusters

19			Zero	Data	Loss	Recovery	Appliance:	Evolution	of	RMAN	to	Enterprise-wide
Database	Protection	Solution

20			RMAN	in	the	Workplace:	Case	Studies

PART	V
RMAN	Media	Management

21			Media	Management	Considerations

22			Oracle	Secure	Backup

23			Backing	Up	to	Amazon	Web	Services	Using	the	Oracle	Secure	Backup	Cloud
Module

24			Enhancing	RMAN	with	Veritas	NetBackup	for	Oracle

25			Configuring	HP	Data	Protector	for	Oracle

26			RMAN	and	Tivoli	Storage	Manager

27			RMAN	and	CommVault	Simpana

PART	VI
Appendixes

A			RMAN	Scripting	Examples

B			Setting	Up	an	RMAN	Test	Environment

Index

Contents

Acknowledgments

Introduction

PART	I
Getting	Started	with	RMAN	in	Oracle	Database	12c

1			Quick-Start	Guide	for	RMAN	and	Oracle	Database	12c

Preliminary	Steps

Configuring	the	Database	for	RMAN	Operations

Determine	Where	the	FRA	Should	Be	Located	and	Create	It

Log	Into	the	Database	and	Configure	It	to	Use	the	FRA

Put	the	Database	in	ARCHIVELOG	Mode

Backing	Up	the	Database

Restoring	the	Database

Summary

2			Oracle	Database	12c	Backup	and	Recovery	Architecture	Tour

What	This	Book	Is	About

I’m	Already	an	RMAN	Expert—Why	Do	I	Need	This	Book	or	This	Chapter?

Let’s	Kick	Off	the	Tour

Backup	and	Recovery	Essentials

High	Availability

Backup	and	Recovery

A	Few	Oracle	Terms	to	Know

Oracle	Database	Architecture	in	the	Pre-Multitenant	Age

The	Oracle	Processes

Oracle	Memory	and	RMAN

The	Oracle	Database

More	About	the	Oracle	Redo	Logs

ARCHIVELOG	Mode	vs.	NOARCHIVELOG	Mode

Oracle	Logical	Structures

The	Combined	Picture

Startup	and	Shutdown	of	the	Database

More	Oracle	Database	Internals

Controlling	the	Database	Software

Oracle	Backup	and	Recovery	Primer

Logical	Backup	and	Recovery

Oracle	Physical	Backup	and	Recovery

Backing	Up	Other	Oracle	Components

Summary

3			Introduction	to	the	RMAN	Architecture

Server-Managed	Recovery

The	RMAN	Utility

RMAN	and	Database	Privileges

The	Network	Topology	of	RMAN	Backups

RMAN	and	Scale

RMAN	and	Shared	Servers

Running	RMAN	Locally	from	the	Target	Database’s	ORACLE_HOME

The	Database	Control	File

Record	Reuse	in	the	Control	File

The	Snapshot	Control	File

Rebuilding	the	Control	File

The	RMAN	Server	Processes

RMAN	Channel	Processes

The	SYS	Packages	Used	by	RMAN

SYS.DBMS_RCVMAN

SYS.DBMS_BACKUP_RESTORE

Backing	Up	the	Data	Block

The	Data	Block	Backup	Overview

The	Benefits	of	Block-Level	Backups

RMAN	in	Memory

Input	Memory	Buffers

RMAN	Memory	Utilization:	PGA	vs.	SGA

The	Recovery	Catalog

The	Auxiliary	Database

Compatibility	Issues

The	RMAN	General	Compatibility	Rules

The	RMAN	Process:	From	Start	to	Finish

The	Fast	Recovery	Area

Summary

4			Oracle	Database	12c	Multitenant

Introducing	Oracle	Multitenant

The	CDB

Pluggable	Databases

How	Does	Oracle	Multitenant	Impact	RMAN	Backup	and	Recovery?

Administering	Container	Databases

Starting	and	Stopping	the	CDB

Common	Users

The	Pluggable	Database

The	PDB	Name

Creating	a	PDB

PDB	Users

Connecting	to	a	PDB

Asking	for	Directions:	Determining	Which	PDB	You	Are	In

Architecture	of	a	Pluggable	Database

PDB	Constraints

PDB	Performance

PDB	Resource	Management

CDBs	and	PDBs	and	the	Data	Dictionary

The	Multitenant	Database	Data	Dictionary

PDB	Administration

Other	CDB-Related	Topics

Dropping	a	CDB

Dropping	a	PDB

PDB	Cloning	and	Plugging	and	Unplugging	PDBs

Summary

PART	II
RMAN	Configuration,	Backup,	and	Recovery	Essentials

5			RMAN	Setup	and	Configuration

Configuring	Your	Database	to	Run	in	ARCHIVELOG	Mode

ARCHIVELOG	Destination	Directories

The	Fast	Recovery	Area

Should	You	Use	the	FRA?

Switching	Between	ARCHIVELOG	Modes

If	You	Created	Your	Database	with	the	Oracle	Database	Configuration
Assistant

RMAN	Workshop:	Put	the	Database	in	ARCHIVELOG	Mode

The	Oracle	Database	Fault	Diagnosability	Infrastructure

The	ADR	and	Related	Fault	Diagnosability	Infrastructure	Components

Configuring	the	Fault	Diagnosability	Infrastructure

The	RMAN	Command	Line

Connecting	via	the	RMAN	Command	Line

Exiting	the	RMAN	Client

Configuring	the	Database	for	RMAN	Operations

Setting	Up	the	Database	User

RMAN	Workshop:	Create	the	Target	Database	RMAN	Backup	Account

Setting	Up	Database	Security

Setting	the	CONTROL_FILE_RECORD_KEEP_TIME	Parameter

Configuring	RMAN	Default	Settings

Introducing	the	configure	Command

Configuring	Various	RMAN	Default	Settings

Examples	of	Using	the	configure	Command

If	You	Are	Using	Shared	Servers

Summary	of	RMAN	Configuration	Tasks

Other	Backup	and	Recovery	Setup	and	Configuration	Considerations

Summary

6			The	RMAN	Recovery	Catalog

What	Is	the	Recovery	Catalog?

Creating	the	Recovery	Catalog	Owning	Schema	in	a	Nonmultitenant
Database

RMAN	Workshop:	Create	the	Recovery	Catalog	User	Account

Creating	the	Recovery	Catalog–Owning	Schema	in	a	Multitenant
Database

Creating	the	Recovery	Catalog	Schema	Objects

RMAN	Workshop:	Create	the	Recovery	Catalog

RMAN	Workshop:	Register	Your	Database	in	the	Recovery	Catalog

Utilizing	an	RMAN	Virtual	Private	Catalog

RMAN	Workshop:	Create	a	Virtual	Private	Catalog	for	Oracle	12.1.0.1
and	Earlier	Databases

Merging	Multiple	Recovery	Catalogs

RMAN	Workshop:	Merge	Two	Recovery	Catalogs

RMAN	Stored	Scripts

Creating	Stored	Scripts

Querying	the	Recovery	Catalog	for	Stored	Script	Information

Changing	Stored	Scripts

Deleting	Stored	Scripts

Using	Stored	Scripts

Printing	Stored	Scripts

RMAN	Workshop:	Using	RMAN	Stored	Scripts

Recovery	Catalog	Maintenance

Unregistering	a	Database	in	RMAN

Database	Migration/Upgrade	Issues

Manually	Resetting	the	Database	Incarnation	(reset	catalog)

Manually	Resynchronizing	the	Recovery	Catalog	(resync	catalog)

Purging	Recovery	Catalog	Records

Backing	Up	the	Recovery	Catalog

Recovery	Catalog	Views

The	Purpose	of	the	Recovery	Catalog	Views	and	the	Database	Data
Dictionary	Views

The	Recovery	Catalog	Base	Tables,	Views,	and	Database	Data
Dictionary	Views

Examples	of	Using	the	Recovery	Catalog	Base	Tables	and	Views

Catalog	Views	Intended	for	Use	by	Oracle	Enterprise	Manager

Summary

7			RMAN	Backups

Using	the	RMAN	Backup	Command

The	Backup	Command

The	Backup	Command,	Channels,	and	Performance

RMAN	Backup	Command	Options

Backing	Up	to	a	Specific	Device	Type

Controlling	Attributes	of	Backup	Sets	and	Backup	Set	Pieces

Multisection	Backups

RMAN	Compression

Tags

Restore	Points

The	duration	Command:	Putting	Limits	on	Backups

Archival	Backups

Overriding	the	Configure	Exclude	Command

Skipping	Offline,	Inaccessible,	or	Read-Only	Datafiles

Override	Backup	Optimization

Backing	Up	Datafiles	Based	on	Their	Last	Backup	Time

Checking	for	Logical	Corruption	during	a	Backup

Making	Copies	of	Backups	on	Your	RMAN	Copier

Capturing	the	Elusive	Control	File

Using	the	RMAN	Set	Command

Offline	RMAN	Database	Backups

Offline	Backups	Using	Configured	Settings

RMAN	Workshop:	Perform	an	Offline	Backup

Breaking	Down	the	Workshop	Output

Offline	Backups	without	Using	Configured	Defaults

Online	RMAN	Database	Backups

Online	Database	Backups

RMAN	Workshop:	Perform	an	Online	Backup

Variations	on	a	Theme:	Other	Types	of	RMAN	Online	Backups

Tablespace	Backups

Datafile	Backups

Archived	Redo	Log	Backups

Control	File	and	Parameter	File	Backups

Backup	Set	Backups

Fast	Recovery	Area	Backups

Copies

Image	Copies

Database,	Tablespace,	and	Datafile	Image	Copies

Control	File	Copies

ARCHIVELOG	Image	Copies

Incremental	RMAN	Backups

The	Block	Change	Tracking	File

The	Base	Backup

Differential	vs.	Cumulative	Incremental	Backups

Incrementally	Updated	Backups

RMAN	Workshop:	Perform	an	Incremental	Backup

Getting	Started

RMAN	Workshop:	Get	Your	Database	Backed	Up!

RMAN	Best	Practices	Introduced	in	This	Chapter

Summary

8			RMAN	Restore	and	Recovery

RMAN	Restore	and	Recovery	Basics

Types	of	Oracle	Database	Recoveries

About	Restoring	Multitenant	Databases

Preparing	for	an	RMAN	Restore

Staging	RMAN	Backup	Set	Pieces	for	Restores

Restoring	the	SPFILE

RMAN	Workshop:	Recover	Your	SPFILE

Restoring	the	Control	File

RMAN	Workshop:	Recover	Your	Control	File

Restore	and	Recover	the	Database	in	NOARCHIVELOG	Mode

Preparing	for	the	Restore

Restoring	to	a	Different	Location

RMAN	Workshop:	Recover	Your	NOARCHIVELOG	Mode	Database

Database	Recoveries	in	ARCHIVELOG	Mode

Point-of-Failure	Database	Recoveries

RMAN	Workshop:	Complete	Recovery	of	Your	ARCHIVELOG	Mode
Database

Tablespace	Recoveries

Datafile	Recoveries

What	If	I	Use	Incremental	Backups?

Recovering	from	Online	Redo	Log	Loss

Loss	of	an	Inactive	Online	Redo	Log	Group	Member

Loss	of	an	Inactive	Online	Redo	Log	Group

Loss	of	an	Active	but	Not	Current	Online	Redo	Log	Group

Loss	of	the	Current	Online	Redo	Log	Group

The	Data	Recovery	Advisor

Using	the	Data	Recovery	Advisor	Through	RMAN

Data	Recovery	Advisor	Data	Dictionary	Views

Summary

9			Advanced	RMAN	Recovery	Topics

Recovery	of	Pluggable	Databases

Recovering	the	Root	Container

Recovering	the	Seed	Container

Recovering	PDBs

Incomplete	Database	Recoveries	on	Non-CDB	and	Entire	CDB	Databases

What	Is	an	Incomplete	Recovery?

Incomplete	Recovery:	How	Does	It	Work?

Establishing	a	Point	to	Recover	To

Time-Based	Recoveries

SCN-Based	Recoveries

Change-Based	Recoveries

Restore	Point–Based	Recoveries

Performing	Incomplete	Recoveries	of	Pluggable	Databases	(PDB)

About	PDB	Point-in-Time	Recoveries

Restrictions	and	Requirements	Associated	with	PDB	Point-in-time
Recoveries

PDB	Time-Based	Recovery

PDB	SCN-Based	Recovery

PDB	Change-Based	Recovery

Recovering	Based	on	a	Restore	Point

Other	RMAN	Recovery	Topics

Read-Only	Tablespace	Recovery	Considerations

Archived	Redo	Log	Restores

Datafile	Copy	Restores

Recovering	Corrupted	Data	Blocks

Recovering	to	a	Previous	Incarnation

Table	and	Partition	Point-in-Time	Recovery

Prerequisites	for	Restoring	and	Recovering	Database	Tables	and
Partitions

Restrictions	on	Restoring	and	Recovering	Database	Tables	and
Partitions

Options	to	Consider	when	Restoring	Tables	and	Partitions

How	RMAN	Implements	the	Restore	and	Recovery	of	Tables	and
Partitions

Restoring	Tables	and	Partitions	from	PDBs

Using	RMAN	to	Restore	and	Recover	a	Database	Table:	An	Example

Tablespace	Point-in-Time	Recovery

Preparing	for	the	TSPITR

Performing	the	Actual	TSPITR

Customized	Automated	TSPITR	with	an	Automatic	Instance

Summary

10			Duplication:	Cloning	the	Target	Database

RMAN	Duplication:	A	Primer

Why	Use	RMAN	Duplication?

Different	Types	of	RMAN	Duplication

The	Duplication	Architecture

Duplication:	Location	Considerations

Duplication	to	the	Same	Server:	An	Overview

Duplication	to	the	Same	Server,	Different	ORACLE_HOME

Duplication	to	a	Remote	Server:	An	Overview

Duplication	and	the	Network

RMAN	Workshop:	Build	a	Password	File

Duplication	to	the	Same	Server

RMAN	Workshop:	Duplication	to	the	Same	Server	Using	Disk	Backups

Using	Tape	Backups

Duplication	to	a	Remote	Server

RMAN	Workshop:	Duplication	to	a	Remote	Server	Using	Disk	Backups

Using	Tape	Backups	for	Remote	Server	Duplication

Targetless	Duplication	in	12c

Incomplete	Duplication:	Using	the	DBNEWID	Utility

New	RMAN	Cloning	Features	for	12c

Using	Compression

Duplicating	Large	Tablespaces

Summary

PART	III
RMAN	Maintenance	and	Administration

11			Maintaining	RMAN

RMAN	Maintenance

Crosschecking	RMAN	Backups

RMAN	Workshop:	Using	the	Crosscheck	Command

Verifying	Your	Backups

The	Restore…Preview	Command

Using	the	Restore…Validate	and	Check	Logical	Commands

Using	the	validate	Command

Backup	Retention	Policies

Archive	Log	Retention	Policies

The	Change	Command

RMAN	Workshop:	Using	the	Change	Command

The	Delete	Command

RMAN	Workshop:	Using	the	Delete	Command

Cataloging	Other	Backups	in	RMAN

RMAN	Stored	Scripts

Creating	Stored	Scripts

Querying	the	Recovery	Catalog	for	Stored	Script	Information

Changing	Stored	Scripts

Deleting	Stored	Scripts

Using	Stored	Scripts

Printing	Stored	Scripts

RMAN	Workshop:	Using	RMAN	Stored	Scripts

When	You	Just	Can’t	Take	It	Anymore

Summary

12			Monitoring	and	Reporting	in	RMAN

The	RMAN	List	Command

Listing	Incarnations

Listing	Backups

Listing	Image	Copies

Listing	Restore	Points

Listing	the	DB_UNIQUE_NAME

The	RMAN	Report	Command

Reporting	on	Datafiles	that	Have	Not	Been	Backed	Up	Recently

Reporting	on	Backup	Redundancy	or	Recovery	Window

Reporting	on	Unrecoverable	Operations	on	Datafiles

Reporting	on	the	Database	Schema

Reporting	on	Obsolete	Backups

Data	Dictionary	Views	for	Reporting

Summary

13			Performance	Tuning	RMAN	Backup	and	Recovery	Operations

Before	You	Tune	RMAN

RMAN	Performance:	What	Can	Be	Achieved?

Have	the	Right	Hardware	in	Place

Use	the	Correct	Backup	Strategy

Tune	the	Database

Tuning	RMAN

Tuning	RMAN	Settings

Tuning	the	MML	Layer

Identifying	Database-Related	RMAN	Issues

Tracing	RMAN	Sessions

Summary

14			Using	Oracle	Cloud	Control	for	Backup	and	Recovery

EM12c	Architecture

Oracle	Management	Repository

Oracle	Management	Service

Oracle	Management	Agents

The	Cloud	Control	Console

Plug-Ins

Installing	and	Configuring	Enterprise	Manager	Cloud	Control	12c	for	Database
Backups

Installing	an	Enterprise	Manager	Agent

Discovering	Targets

Configuring	Backup	and	Recovery	Settings	with	EM12c

Backing	Up	a	Database	with	EM12c

Schedule	Oracle-Suggested	Backup

Schedule	Customized	Backup

Backing	Up	Multiple	Databases	at	Once

Managing	Backups

Backup	Reports

Using	EM12c	for	Recovery

Restore	Points

Performing	Recovery

Summary

PART	IV
RMAN	in	a	Highly	Available	Architecture

15			RMAN	Best	Practices

Data	Protection

Enterprise	Architecture

Backup	and	Recovery

High	Availability

Disaster	Recovery

Data	Governance	and	Security

Monitoring	and	Scheduling

Best	Practices

Service-Level	Agreements

Standards	and	Processes

RMAN	Best	Practices

Summary

16			Surviving	User	Errors:	Flashback	Technologies

Prepared	for	the	Inevitable:	Flashback	Technology

Flashback	and	the	Undo	Segment:	A	Love	Story

Flashback	Query

Flashback	Versions	Query

Flashback	Table

Performing	the	Flashback	Table	Operation	from	SQL

Flashback	Table	with	Oracle	Enterprise	Manager

Flashback	Transaction

Flashback	Drop

The	Recycle	Bin

Flashback	Database

Flashback	Logs

Flashback	Retention	Target

RMAN	Workshop:	Configure	for	Flashback	Database

Flashback	Database:	Tuning	and	Tweaking

Flashback	Data	Archive	(Total	Recall)

Summary

17			RMAN	and	Data	Guard

Types	of	Standby	Databases

Physical	Standby	Database

Logical	Standby	Database

Using	RMAN	to	Create	Standby	Databases

Preparing	to	Create	a	Standby	Database

Establishing	a	Naming	Convention

Putting	the	Database	in	ARCHIVELOG	Mode	and	Forced	Logging
Mode

Setting	Database	Parameters

Creating	the	Auxiliary	Database	Password	File

Configuring	the	Oracle	Network

Preparing	and	Starting	the	Auxiliary	Instance

Starting	RMAN

Creating	the	Standby	Database

After	the	Standby	Is	Created

RMAN	Workshop:	Create	a	Standby	Database	Using	RMAN

Taking	Backups	from	the	Standby	Database

Other	RMAN	and	Data	Guard	Topics

Restoring	a	Lost	Datafile,	Tablespace,	or	Database	from	a	Standby
Database	with	RMAN

Resynchronizing	the	Standby	Database

Archive	Log	Backups	from	the	Standby	Database

Summary

18			RMAN	and	Real	Application	Clusters

Real	Application	Clusters:	Unique	Backup	Challenges

Datafile	Backups

Archive	Log	Backups

RAC	Recovery	Challenges

Restore	Operations

Media	Management	Considerations	During	a	Restore

Recovery	Considerations	After	a	Restore

Advanced	RMAN/RAC	Topics

Duplication	to	a	Single-Node	System

RMAN	Workshop:	Duplicating	a	RAC	Database	to	a	Single-Node

Database

The	Single-Node	Standby	Database

RMAN	Workshop:	Creating	a	Single-Node	Standby	Database	from	a
RAC	Database

Backing	Up	the	Multinode	RAC	Database

Summary

19			Zero	Data	Loss	Recovery	Appliance:	Evolution	of	RMAN	to	Enterprise-wide
Database	Protection	Solution

The	Zero	Data	Loss	Recovery	Appliance:	An	Overview

Architecture

Protected	Databases

Delta	Push

Delta	Store

Replication

Autonomous	Tape	Archival

Backup	Validation

Protection	Policy

Cooperative	Space	Management

Monitoring	and	Administration

Scale-out	Hardware

Summary

20			RMAN	in	the	Workplace:	Case	Studies

Before	the	Recovery

What	Is	the	Exact	Nature	of	the	Failure?

What	Recovery	Options	Are	Available?

Might	Oracle	Support	Be	Needed?

Who	Can	Act	as	a	Second	Pair	of	Eyes	During	Recovery?

Recovery	Case	Studies

Case	#1:	Recovering	from	Complete	Database	Loss
(NOARCHIVELOG	Mode)	with	a	Recovery	Catalog

Case	#2:	Recovering	from	Complete	Database	Loss
(NOARCHIVELOG	Mode)	Without	a	Recovery	Catalog

Case	#3:	Recovering	from	Complete	Database	Loss	(ARCHIVELOG
Mode)	Without	a	Recovery	Catalog

Case	#4:	Recovering	from	Complete	Database	Loss	(ARCHIVELOG
Mode)	with	a	Recovery	Catalog

Case	#5:	Recovering	from	the	Loss	of	the	SYSTEM	Tablespace

Case	#6:	Recovering	Online	from	the	Loss	of	a	Datafile	or	Tablespace

Case	#7:	Recovering	from	Loss	of	an	Unarchived	Online	Redo	Log

Case	#8:	Recovering	Through	resetlogs

Case	#9:	Completing	a	Failed	Duplication	Manually

Case	#10:	Using	RMAN	Duplication	to	Create	a	Historical	Subset	of
the	Target	Database

Case	#11:	Recovering	from	a	Lost	Datafile	(ARCHIVELOG	Mode)
Using	an	Image	Copy	in	the	Fast	Recovery	Area

Case	#12:	Recovering	from	Running	the	Production	Datafile	Out	of	the
Fast	Recovery	Area

Case	#13:	Using	Flashback	Database	and	Media	Recovery	to	Pinpoint
the	Exact	Moment	to	Open	the	Database	with	resetlogs

Summary

PART	V
RMAN	Media	Management

21			Media	Management	Considerations

Tape	Backups	in	a	Disk	Backup	World

RMAN	and	the	Media	Manager:	An	Overview

The	Media	Manager	Catalog

The	Media	Manager:	Other	Software	Components

Media	Management	Library

RMAN	Workshop:	Test	Tape	Channels	with	the	Oracle	Default	SBT
Interface

Interfacing	with	the	MML

The	SBT	API

Back	Up	to	Tape:	From	Start	to	Finish

Restore	from	Tape:	From	Start	to	Finish

Using	sbttest	and	loadsbt.exe

Media	Management	Errors

Summary

22			Oracle	Secure	Backup

Features	of	Oracle	Secure	Backup

Oracle	Secure	Backup	and	Recovery	Manager

Differences	Between	OSB	and	OSB	Express

Backup	Encryption

Fast	Database	Backup	Compression

Oracle	Secure	Backup	Cloud	Module

Oracle	Secure	Backup	Interfaces

Oracle	Secure	Backup	Components

Oracle	Secure	Backup	Daemons

Host	Access	Modes

Administrative	Data

Oracle	Secure	Backup	Users	and	Classes

Operating	System	Accounts

NDMP	Hosts

Oracle	Secure	Backup	Rights	and	Classes

Installing	and	Configuring	Oracle	Secure	Backup

RMAN	Workshop:	Install	and	Configure	Oracle	Secure	Backup

Oracle	Database	and	File	System	Data	Backup	Using	Oracle	Secure	Backup

RMAN	Workshop:	Schedule	Oracle	Database	and	File	System	Data
Backups

Oracle	Database	Backup	Using	Oracle	Secure	Backup	Cloud	Module

RMAN	Workshop:	Installing	OSB	Cloud	Module	and	Using	It	for	OSB
Backups

Summary

23			Backing	Up	to	Amazon	Web	Services	Using	the	Oracle	Secure	Backup	Cloud
Module

Conventional	Backups:	Assumptions	and	Limitations

The	Oracle	Secure	Backup	Cloud	Module

What	Is	Cloud	Computing?

Oracle	and	the	Amazon	Cloud

Elastic	Compute	Cloud	(EC2)	and	Elastic	Block	Store	(EBS)

Simple	Storage	Service	(S3):	Oracle’s	Cloud	Backup	Solution

RMAN	Backup	to	S3:	The	Oracle	Secure	Backup	Cloud	Module

S3	Backup	over	the	Internet	or	from	Amazon	EC2

Oracle	Cloud	Backup	Advantages

RMAN	Workshop:	Deploying	RMAN	Backups	to	Amazon	S3

Performing	Backups	by	Using	the	OSB	Cloud	Module

To	Persistently	Store	S3	as	the	Default	SBT	Channel

To	Specify	the	OSB	Cloud	Module	Each	Time	You	Allocate	a	Channel

Listing	RMAN	Backups	and	Backup	Sets	Stored	on	S3

Optimizing	Backups	and	Recoveries	over	the	Internet	Using	the	OSB
Cloud	Module	and	Amazon	S3

Example	with	Multiple	Channels	and	Compressed	Backup	Sets

Licensing	Considerations

Summary

24			Enhancing	RMAN	with	Veritas	NetBackup	for	Oracle

Key	Features

Necessary	Components

Storage/Media	Device	Configuration

NetBackup	Installation

Pre-Installation	Tasks	for	NetBackup	for	Oracle	Agent

NetBackup	for	Oracle	Agent	Installation	Steps

How	to	Link	Oracle	to	NetBackup	Media	Manager

Automatic	Link	Method

Manual	Link	Method

Architecture

Configuring	NetBackup	Policies

Adding	New	Policies

Defining	Schedules

Defining	a	Backup	Selection

Defining	Policy	Clients

Managing	Expired	Backup	Images

Delete	Expired	Backups	Using	NetBackup	Repository

Delete	Expired	Backups	Using	RMAN

RMAN	Sample	Scripts

Troubleshooting

Use	NetBackup	Logs

Determine	Which	Library	Is	in	Use

Security	Best	Practices

Cost	Justification

Summary

25			Configuring	HP	Data	Protector	for	Oracle

Integration	of	Oracle	and	Data	Protector

Support	Matrix

Integration	Components

Integration	Restrictions

RMAN	Workshop:	Integration	Configuration

RMAN	Backup	Configuration	on	Data	Protector

RMAN	WORKSHOP:	Backup	Configuration

Editing	the	RMAN	Script

Running	an	RMAN	Backup

Backup	Methods

Backup	Procedure

Restoring	Oracle	Using	the	Data	Protector	GUI

Restoring	the	Control	File

Restoring	Oracle	Database	Objects

Oracle	RMAN	Metadata	and	Data	Protector	Media	Management	Database
Synchronization

Summary

26			RMAN	and	Tivoli	Storage	Manager

Overview	of	Tivoli	Storage	Manager

TSM	Server	System	Objects

TSM	Client

RMAN	Workshop:	Configuring	TDPO	for	Oracle

Performing	an	RMAN	Backup	Using	TDPO

Default	Channels

Deleting	Database	Backups

Troubleshooting	Common	Backup	Scenarios

Additional	Troubleshooting

Summary

27			RMAN	and	CommVault	Simpana

Simpana	Overview

Installation

Data	Retention

Schedule	Policies

CommVault	Oracle	iDA:	What	Is	It?

Configure	an	Oracle	Instance

Configure	the	Subclient

Initiate	a	Backup

Restore

Advanced	Configurations

RMAN	Interface

Troubleshooting

Summary

PART	VI
Appendixes

A					RMAN	Scripting	Examples

RMAN	Scripts	for	Windows

Creating	a	Windows	Script	to	Schedule	Backups

Scheduling	the	Backup

RMAN	Scripts	for	Unix

B					Setting	Up	an	RMAN	Test	Environment

The	Test	Box

Match	Your	Production	Environment

Go	Cheap—At	a	Price

The	Oracle	Configuration

Multiple	Homes

Creating	Databases

The	RMAN	Configuration

Index

A
Acknowledgments

book	of	this	size	is	a	monumental	challenge.	Additionally,	with	each	book	I
write	the	fact	is	that	there	are	so	many	people	to	thank,	I	always	worry	I’ll
forget	someone.	So,	I’m	going	to	keep	this	very	simple.	Thanks	to	my	uber-
supportive	wife,	Carrie,	and	my	entire	family,	who	has	always	been	behind	me.

Thanks	to	those	folks	at	Oracle	I	worked	with	while	I	was	writing	this	book,	and	the	folks
at	Businessolver,	too.	Further,	thanks	also	to	all	the	contributors	and	those	at	Oracle	Press
who	have	contributed	to	the	production	of	this	book.	I	could	not	do	this	without	all	of	you.

W
Introduction

hen	it	comes	to	databases,	there	are	few	things	more	important	than	backup
and	recovery.	Many	times	when	I	speak	publicly,	one	of	the	things	I	say	is
that	if	you	don’t	have	a	database	with	the	data	the	business	needs	in	it,	what
good	are	skillful	tuning,	writing	awesome	SQL,	and	building	out	RAC

clusters	anyway.	It’s	all	about	the	data	and	protecting	it.

As	a	result,	using	RMAN	really	goes	hand	in	hand	with	using	the	Oracle	Database.
While	there	may	be	other	solutions,	these	solutions	are	bereft	of	the	options	that	RMAN
offers.	That’s	why,	in	almost	every	case	I’ve	seen,	RMAN	is	the	tool	that	is	used	to
perform	the	actual	backup	of	the	database	tasked	with	being	the	backup	used	when	the
database	needs	to	be	restored.	It’s	true	that	there	are	cases	where	other	solutions	are	used
to	provide	solutions	for	specific	needs.	For	example,	snapshot	technologies	may	be	used	to
quickly	clone	databases	(something	that	Oracle	Database	12c	Multitenant	may	well	do
away	with).	However,	RMAN	is	always	the	front-line	recovery	tool	for	both	on-site	and
disaster	recovery	situations.

What	This	Book	Covers
This	book	covers	using	both	basic	and	advanced	RMAN	functionality.	It	covers	all	the
information	on	RMAN	you	will	need	to	know	to	use	RMAN	to	provide	a	robust	and
complete	backup	and	recovery	solution	to	your	database.	This	book	is	also	designed	to
help	you	build	your	RMAN	skills	and	apply	them	to	your	databases.

How	This	Book	Is	Organized
In	an	effort	to	give	you	the	RMAN	skills	you	need,	we	first	introduce	you	to	the	basics	of
RMAN.	We	discuss	how	to	set	RMAN	up,	configure	it,	and	use	it	for	backups	and	restores
of	all	kinds.	We	then	discuss	the	management	and	administration	of	RMAN	backups	and
RMAN-related	metadata.	Next,	we	turn	our	attention	to	using	RMAN	to	augment	your
highly	available	(HA)	architecture.	Finally,	we	deal	with	the	question	of	the	various	media
management	layers	available	for	you	to	use	with	RMAN.	These	are	the	vendors	that
provide	the	media	you	can	put	your	backups	on	and,	later,	use	those	backups	to	restore
your	databases.

This	is	a	big	book,	and	it	was	a	big	project.	We	have	updated	the	book	for	the	new
functionality	in	Oracle	Database	12c,	and	at	the	same	time	reviewed	the	content	in
previous	versions	of	this	book	and	modified	it	as	required.	In	some	cases,	we	decided	to
remove	some	content	as	well—we	felt	like	this	book	really	shouldn’t	cause	your	bookshelf
to	inadvertently	exceed	its	weight	design	limitations.

Who	Should	Read	This	Book
This	book	is	designed	to	be	read	by	every	Oracle	DBA	who	is	responsible	for	the	backup
and	recovery	of	an	Oracle	database.	In	this	book,	we	will	take	the	beginner,	hold	their
hand,	and	help	them	learn	about	backup	and	recovery	of	Oracle	databases.	For	the	more
advanced	DBA,	this	book	is	designed	to	help	them	develop	more	advanced	skills,	and	it
also	provides	a	helpful	reference	during	their	DBA	work.

PART
I

Getting	Started	with	RMAN	in	Oracle
Database	12c

CHAPTER
1

Quick-Start	Guide	for	RMAN	and	Oracle
Database	12c

W
elcome	to	Oracle	Database	12c	Oracle	RMAN	Backup	and	Recovery.	If	you	purchased
our	previous	RMAN	books,	you	have	an	idea	of	what	to	expect	from	this
text.	However,	we	have	added	a	number	of	things,	changed	a	number	of
things,	and	updated	a	great	deal	to	help	you	use	RMAN	12c.

Many	people	we’ve	talked	to	wished	that	this	book	came	with	a	quick-start	guide.	We
really	debated	how	good	of	an	idea	adding	such	a	chapter	to	the	book	would	be.	Our
concern	is	that	you	will	use	the	quick-start	chapter	and	simply	stop	there	and	assume	that
we	have	covered	all	of	the	features,	best	practices,	and	all	of	the	knowledge	you	really
need	to	use	RMAN	in	the	most	efficient	way.

At	the	same	time,	we	want	you	to	get	your	feet	wet	with	RMAN	so	you	can	see	some
indication	of	how	useful	the	tool	really	is.	Also,	when	you	use	something,	it	makes	it
easier	to	follow	what	you’re	reading	and	reduces	the	learning	curve	a	bit.	With	that	in
mind,	we	have	added	this	chapter,	which	is	a	quick	RMAN	primer.

In	this	chapter	we	show	you	how	to	quickly	set	up	your	database	and	then	back	it	up
using	RMAN.	We	then	quickly	demonstrate	a	full	recovery.	We	will	not	be	using	all	the
bells	and	whistles	of	RMAN;	instead,	this	is	a	basic,	quick	“how	do	I	back	up	my	database
safely”	demonstration	of	RMAN.

This	chapter	covers	the	following	topics:

			Preliminary	steps

			Configuring	the	database	for	RMAN	operations

			Backing	up	the	database

			Restoring	the	database

Also,	in	this	chapter	we	are	going	to	limit	the	output	of	the	various	commands.	This
will	help	keep	the	chapter	clean	and	really	highlight	the	format	of	the	commands
themselves.	As	we	progress	through	the	remaining	chapters	of	the	book,	you	will	see	more
and	more	detailed	output	and	learn	what	it	means.	So,	let’s	get	down	to	using	RMAN	for
the	first	time.

Preliminary	Steps
Before	we	can	do	anything,	you	have	to	understand	where	we	are	starting	from.	In	this
quick-start	guide	we	expect	the	following:

			That	you	have	installed	the	Oracle	database	software

			That	you	have	created	an	Oracle	database.	We	assume	its	name	is	orcl
throughout	this	quick-start	chapter

			That	the	database	is	currently	in	NOARCHIVELOG	mode

			That	you	have	sufficient	disk	space	to	create	backups	of	the	database

All	of	these	are	basic	DBA	tasks,	and,	as	such,	are	not	covered	in	this	book.	Once	you
have	met	these	prerequisites,	we	are	ready	to	move	on	to	the	next	steps.

Configuring	the	Database	for	RMAN	Operations
Before	you	can	use	RMAN,	you	need	to	do	a	few	things	to	configure	the	database	for
RMAN	operations.	The	tasks	you	need	to	complete	are	listed	next.	We	have	also	listed
what	chapter	these	tasks	are	in	so	you	can	go	look	in	that	chapter	for	additional
information.

1.			Put	the	database	in	ARCHIVELOG	mode	(more	detail	in	Chapter	5).

2.			Configure	RMAN	parameters	from	the	RMAN	command	line	(more	detail	in
Chapter	5).

Note	that	although	RMAN	can	run	in	NOARCHIVELOG	mode,	we	feel	this	quick-
start	guide	would	better	serve	you	if	your	database	was	in	ARCHIVELOG	mode.	So,
here’s	what	you	need	to	do:

1.			Determine	where	the	FRA	should	be	located	and	create	it.

2.			Log	into	the	database	and	configure	it	to	use	the	FRA.

3.			Put	the	database	in	ARCHIVELOG	mode.

Determine	Where	the	FRA	Should	Be	Located	and	Create	It
You	need	to	decide	where	the	database	backups	are	going	to	be	located.	To	do	this,	we	use
a	feature	of	RMAN	called	the	Fast	Recovery	Area	(FRA)	to	simplify	the	backup	process.
We	discuss	the	FRA	in	great	detail	in	Chapter	5.	So,	let’s	say	that	you	decide	to	put	all
backups	in	a	directory	called	/u01/FRA.	Make	sure	you	check	file	system	permissions.	For
example,	you	would	need	to	make	sure	that	the	/u01/FRA	directories	you	create	are	owned
by	the	Oracle	software–owning	account	(called	oracle	in	our	example),	as	seen	here:

Note	that	you	only	need	to	create	the	directory	FRA.	Oracle	will	manage	all	the	other
directories	under	FRA	for	you.	You	will	be	able	to	see	this	in	greater	detail	after	you	have
performed	your	first	backup!

Log	Into	the	Database	and	Configure	It	to	Use	the	FRA
Next,	you	need	to	log	into	the	database	and	configure	two	database	parameters	so	that	the
database	will	use	the	newly	created	FRA:

Now	that	you	have	logged	into	the	database,	you	need	to	configure	the	database	to	use
the	FRA	directory	in	/u01/FRA	created	earlier.	This	requires	two	commands:

You	have	now	configured	the	database	to	write	its	backups	to	the	FRA	(/u01/FRA)	by
default.	This	is	the	location	of	the	FRA	we	mentioned	earlier.	You	have	also	allocated	2GB
of	logical	space	within	the	FRA	to	this	database	for	use.	Now	it’s	time	to	put	the	database
in	ARCHIVELOG	mode	so	you	can	perform	inconsistent	backups.

Put	the	Database	in	ARCHIVELOG	Mode
Putting	the	database	in	ARCHIVELOG	mode	(assuming	that	it	is	not	already)	is	a	simple
process,	but	it	does	require	shutting	down	the	database	and	then	restarting	it.	Here	are	the
steps	for	putting	the	database	in	ARCHIVELOG	mode:

1.			Shut	down	the	database:

2.			Mount	the	database:

3.			Put	the	database	in	ARCHIVELOG	mode:

4.			Open	the	database:

You	are	now	ready	to	start	doing	backups	of	your	database.	Exit	SQL*Plus	at	this	time
to	get	back	to	the	command	prompt.

Backing	Up	the	Database
Backing	up	the	database	with	RMAN	is	now	quite	easy.	You	simply	start	the	RMAN	tool
and	execute	the	backup.	First,	however,	you	need	to	make	sure	that	the	environment	is	set
correctly	for	the	database	you	want	to	back	up:

Now	start	RMAN.	RMAN	should	be	in	the	path	already,	so	it’s	easy	to	start:

Note	that	you	have	invoked	the	RMAN	command	using	the	target	parameter.	This
indicates	the	user	and	password	you	will	use	to	connect	to	the	database	you	are	backing
up,	which	is	called	the	target	database.	In	this	case,	the	target	database	is	the	database	the
ORACLE_SID	environment	variable	is	set	for	(which	is	database	orcl).	You	will	now	see
the	RMAN	banner	and	the	RMAN	prompt,	which	looks	like	this:

You	are	now	ready	to	back	up	your	database	for	the	first	time.	Here	is	the	command
you	need	to	run	to	back	up	your	database:

In	this	case,	you	will	be	backing	up	the	entire	database,	including	all	of	the	archived
redo	logs.	The	backup	files	will	be	created	in	the	Fast	Recovery	Area	and	will	contain	all
the	database	datafiles	and	the	archived	redo	logs.

From	the	RMAN	prompt,	you	can	now	create	a	report	that	provides	information	on	the
backup	you	have	just	taken.	Use	the	list	command	to	look	at	both	the	database	backups
and	the	archivelog	backups:

Note	that	the	information	output	from	these	commands	is	coming	from	the	control	file	of
the	database	to	which	you	are	connected.	Most	RMAN-related	metadata	is	stored	in	the
database	control	file.	A	number	of	database	views	and	RMAN	commands	are	available
that	provide	access	to	that	metadata,	just	as	the	list	command	has	done	in	the	preceding
example.

Now	that	you	have	confirmed	that	the	backups	are	actually	listed	in	the	RMAN
metadata,	let’s	go	to	the	FRA	directory	and	look	at	the	files	and	directories	that	have	been
added:

You	will	see	a	number	of	files	that	were	created	by	the	backup	process.	The	files	that
RMAN	created	in	this	case	are	called	backup	set	pieces.	We	discuss	the	backup	set	pieces
in	Chapter	3.

Restoring	the	Database
Now	that	you	have	backed	up	the	database,	you	can	restore	it	if	need	be.	A	number	of
kinds	of	restores	can	be	performed,	and	we	will	discuss	them	throughout	the	book.	One
example	is	a	complete	restore	of	the	database,	including	a	recovery	of	the	database	using
the	archived	redo	logs.	Here	is	an	example	of	this	kind	of	recovery:

When	running	the	restore	database	command,	RMAN	will	restore	the	datafiles	from
the	backups	and	put	them	into	their	correct	place.	The	recover	database	command	then
extracts	the	archived	redo	logs	and	applies	them	to	the	database.	Finally,	the	alter
database	open	command	will	open	the	database,	which	applies	any	redo	in	the	online
redo	log	files.	After	the	final	command,	the	database	will	be	open	and	ready	for
operations.	We	discuss	restore-	and	recovery-related	topics	and	options	throughout	this
book.

Summary
In	this	chapter	we	have	quickly	run	through	a	basic	setup	of	RMAN	and	showed	you	how
to	back	up	and	then	restore	your	database.	This	is	just	a	quick-and-dirty	basic	introduction
to	RMAN	and	really	does	not	begin	to	show	you	the	power	that	is	in	your	backup-hungry
hands.	Please	don’t	look	at	this	chapter	as	an	example	of	how	to	configure	your
production	backups,	because	that	is	not	what	this	chapter	is	meant	for.	This	chapter	simply
lets	you	get	your	hands	a	little	bit	dirty	with	RMAN.	As	you	move	through	the	next	few
chapters	of	the	book,	we	will	dig	into	a	number	of	RMAN	features	and	settings	that	you
will	want	to	be	aware	of	before	you	truly	implement	a	production	version	of	your	RMAN
backup	and	recovery	solution.

CHAPTER
2

Oracle	Database	12c	Backup	and
Recovery	Architecture	Tour

N
ow	that	you	have	a	taste	for	how	RMAN	works,	it’s	time	to	start	moving	into	the	engine
room	of	RMAN	and	see	what	really	makes	it	tick.	We	want	to	take	you	through
the	RMAN	landscape	from	the	bottom	up	because	we	believe	it’s	not	enough	to
just	know,	generally,	how	something	as	important	as	backup	and	recovery
works.	In	this	chapter	we	introduce	you	to	the	basic	backup	and	recovery

concepts	of	Oracle	that	RMAN	is	built	around.

Before	we	do	that,	though,	we	want	to	take	a	moment	to	tell	you	what	we	really	think
this	book	is	about	and	explain	the	approach	we	are	taking.	In	previous	editions,	we
suggested	that	if	you	considered	yourself	to	be	an	Oracle	backup	and	recovery	architecture
expert,	then	maybe	you	could	skip	this	chapter.	We	have	changed	our	minds	about	this,
and	we	will	take	a	few	paragraphs	to	tell	you	why	we	think	it’s	important	that	you	read
this	chapter,	even	if	you	are	an	expert.

NOTE

You	may	be	aware	of	the	Multitenant	option	for	the	Oracle	Database.	This
chapter	does	not	cover	Oracle	Multitenant—we	have	saved	that	for	Chapter	4.
However,	most	of	the	concepts	presented	in	this	chapter	do	apply	to	Oracle
Multitenant.

Then,	after	that,	it’s	time	to	kick	off	our	tour	of	the	Oracle	Database	Backup	and
Recovery	architecture.	We	hope	you	find	this	tour	useful	and	educational.	We	also	hope
you	find	it	fun.	Don’t	worry,	there	are	little	surprises	around	every	corner,	but	nothing	that
can	hurt	you.

So,	please	line	up	and	watch	the	screen	as	some	previously	famous	and	now	washed-
up,	semi-well-known	actor	or	actress	gives	you	our	pre-tour	briefing.	Your	ride	will	begin
shortly	afterward.

What	This	Book	Is	About
Greetings!	Backup	and	recovery	is	at	the	heart	of	an	enterprise’s	strategy	for	business
continuity.	That	is	to	say,	without	the	data	that	enables	enterprise	operations	and	decision
making,	what	is	left	to	make	the	enterprise	go?	Therefore,	one	of	the	most	important	jobs,
if	not	the	most	important	job,	of	the	DBA	is	to	provide	expertise	with	respect	to	backup
and	recovery.

Now,	a	particular	dictionary	describes	“expertise”	this	way:

Expert	skill	or	knowledge;	expertness;	know-how:	business	expertise.

What	does	it	mean	then	to	be	an	expert	at	backup	and	recovery?	Well,	we	can	tell	you	that
it’s	more	than	knowing	a	few	“recipes”	on	how	to	do	this	or	that.	Granted,	having	a
formalized	process	(or	checklist)	is	important,	but	with	backup	and	recovery	of	an	Oracle
database,	your	knowledge	has	to	go	way	beyond	a	set	of	formulistic	approaches	to	things.

Why	is	this?

First,	Oracle	database	backups	provide	a	multitude	of	options	when	it	comes	to
formulating	a	solution	to	meet	your	needs.	It	might	be	that	in	your	case	a	weekly	full
offline	consistent	backup	will	meet	your	needs.	It	might	be	that	your	needs	require	a	much
more	complex	set	of	solutions,	such	as	incremental	backups.	If	you	are	versed	in	recipes,
then	you	might	not	be	versed	in	all	of	the	options	available	to	you	beyond	just	the	basic
backup	methodologies.	If	you	don’t	know	the	product	and	its	features	well,	how	can	you
hope	to	really	craft	the	backup	strategy	that	is	right	for	your	organization?

This	is	even	more	critical	when	it	comes	to	recovering	a	database	after	a	failure.	The
different	permutations	of	things	that	can	go	wrong	at	one	time	can	be	astounding.	These
permutations	lead	to	different	kinds	of	restore	and	recovery	situations	that	no	set	of	recipes
can	begin	to	cover.	Recipes	can	prepare	you	for	the	expected,	but	if	you	don’t	understand
how	things	work,	you	will	find	recipes	sorely	lacking	when	the	problem	is	of	the
unexpected	variety.

So,	the	difference	between	the	recipe	approach	and	ours	is	a	bit	like	the	difference
between	putting	monkeys	into	space	and	sending	astronauts.	Monkeys	could	go	through
the	motions	and	follow	a	basic	set	of	tricks,	encoded	in	response	to	stimuli.	However,
when	things	go	wrong,	no	monkey	is	able	to	reason	the	problem	out	and	craft	a	solution
knowing	what	was	available	to	them.	If	monkeys	had	been	on	Apollo	13	instead	of	men,
there	is	no	way	they	would	have	made	it	back	to	Earth.	The	reason	Apollo	13	made	it
home	safely	is	that	engineers	on	the	ground	and	astronauts	in	space	all	understood	the
hardware	and	software	they	had	to	deal	with,	how	it	worked,	and	its	limitations.
Understanding	this	key	bit	of	information,	they	crafted	solutions	that	no	monkey	could
ever	have	completed.

A	DBA	who	is	prepared	to	build	a	database	“carbon	dioxide	scrubber”	on	the	fly	from	a
piece	of	this	and	a	piece	of	that	is	truly	one	in	whom	you	can	put	your	faith.	One	who	is
versed	only	in	recipes,	checklists,	and	responses	to	a	static	set	of	problems	is	a	dangerous
DBA	indeed	in	our	opinion.

As	a	result	of	this	philosophy,	our	approach	in	this	book	is	to	make	you	an	expert	on
Oracle	Backup	and	Recovery	with	an	emphasis	on	RMAN.	In	this	book	we	approach
RMAN	from	the	bottom	up.	This	chapter,	as	a	result,	is	more	about	the	foundations	of
core	Oracle	backup	and	restore	functionality,	and	little	of	RMAN	is	introduced	at	this
point.	Why	is	that?	After	all,	this	is	a	book	about	RMAN,	isn’t	it?

Well,	the	fact	is	that	RMAN	is	dependent	on	the	database	architecture	designed	to
ensure	that	a	database	is	recoverable.	RMAN	uses	the	mechanisms	built	into	the	database
to	ensure	your	transactions	are	recoverable	to	also	make	sure	you	can	restore	and	recover	a
database	and	those	transactions.

So,	to	truly	understand	RMAN	and,	more	importantly	perhaps,	to	understand	Oracle
Database	Backup	and	Recovery,	you	must	understand	the	Oracle	database.	That	is	what
this	chapter	is	about	then—understanding	the	Oracle	database	with	a	particular	emphasis
on	the	architecture	and	processes	that	make	the	backup	and	recovery	of	an	Oracle	database
possible.	Without	knowing	this	stuff,	you	cannot	really	understand	Oracle	Backup	and
Recovery	or	RMAN.	You	can	go	through	the	basic	motions,	but	when	the	real	challenge

presents	itself,	you	will	be	lost—without	a	recipe.

I’m	Already	an	RMAN	Expert—Why	Do	I	Need
This	Book	or	This	Chapter?
This	is	a	fair	question	if	you	have	been	working	with	RMAN	for	some	time.	You	might
have	read	an	earlier	copy	of	this	book	and,	as	a	result,	you	feel	comfortable	with	RMAN
and	database	backup	and	recovery.	This	might	make	you	wonder	what	more	you	might
glean	from	this	updated	book.	We	can	tell	you	when	it	comes	to	Oracle	Database	12c	and
RMAN,	there	is	a	lot	to	gain	from	reading	this	book,	and	the	content	of	this	chapter	in
particular.	First,	Oracle	Database	12c	has	changed	a	lot.

The	introduction	of	Oracle	Multitenant	Database	itself	justifies	reading	this	chapter	and
also	the	next,	where	we	present	Oracle	Multitenant	Database.	Oracle	Multitenant	is
probably	one	of	the	single	biggest	changes	to	the	Oracle	architecture,	and	how	that
impacts	RMAN	is	important.	Yet,	a	lot	of	the	basic	architectural	concepts	remain	the
same.	So	although	the	chapter	on	Oracle	Multitenant	is	important,	this	chapter	is	just	as
important.	Think	you	won’t	be	working	with	Oracle	Multitenant?	Think	again.	Sometime
in	the	future	Oracle	will	only	support	the	Multitenant	architecture,	so	if	you	are	truly
going	to	be	an	Oracle	DBA	of	the	future,	now	is	the	time	to	start	understanding	just	what
Oracle	Multitenant	is	all	about.

Beyond	Oracle	Multitenant,	there	are	a	number	of	new	Oracle	Database	12c	features
that	might	well	impact	how	you	use	RMAN.	We	discuss	all	of	these	new	features	in	this
book,	which	has	been	completely	revised	for	Oracle	Database	12c–related	features.	If
you’re	an	old-timer,	re-reading	this	book	might	well	show	you	something	new	that	will
change	how	you	want	to	perform	backups	of	your	Oracle	database,	or	we	might	clue	you
into	new	restore	and	recovery	techniques	that	will	help	you	to	look	at	your	recovery	plans
in	the	future.

If	you	are	already	using	RMAN	and	are	concerned	that	the	changes	in	Oracle	Database
12c	will	adversely	affect	your	backup	and	recovery	strategies,	don’t	worry.	RMAN	is	fully
backward	compatible,	so	your	existing	backup	and	recovery	strategies	will	not	have	to
change	when	you	move	to	Oracle	Database	12c.	That	being	said,	as	you	read	this	book
you	might	well	find	some	good	reasons	to	change	your	backup	or	restore	strategy	to	take
advantage	of	a	new	feature,	or	a	feature	you	didn’t	know	existed	(which	happens
sometimes	when	you	just	use	someone	else’s	recipes).

Let’s	Kick	Off	the	Tour
Okay,	now	that	we	have	provided	you	with	the	Disneyesque	pre-ride	briefing,	it’s	about
time	to	load	up	on	our	tour	bus,	which	is	pulling	up.	Quickly,	let’s	review	what	you	are
going	to	see	on	the	tour.	In	this	chapter	a	number	of	great	stops	are	in	store	for	you.	You
will	encounter	the	following:

			Backup	and	recovery	essentials

			A	few	Oracle	terms	to	know

			Oracle	database	architecture	in	the	pre-Multitenant	era

			The	combined	picture

			More	Oracle	Database	internals

			ARCHIVELOG	versus	NOARCHIVELOG	mode	operation

			Entering	the	Oracle	Multitenant	era

			Controlling	the	database	software

			Oracle	Backup	and	Recovery	primer

As	we	proceed,	you	will	learn	the	importance	of	understanding	how	the	Oracle	product
works	so	that	you	can	properly	apply	the	techniques	documented	in	this	book	to	bring
your	wayward	database	back	to	life.	You	will	also	see	that	there	is	more	to	backing	up	and
recovering	a	database	than	just	entering	a	few	commands	and	putting	tapes	in	the	tape
drive.

The	direct	results	of	misapplying	a	technique	or	not	understanding	a	principle	of	the
architecture	may	be	an	extended	outage	or	even	loss	of	data.

Each	of	the	authors	has	seen	a	number	of	cases	where	serious	mistakes	in	planning	and
understanding	have	led	to	serious	problems	in	recovering	databases.	We	have	each	seen
cases	where	databases	were	not	fully	recoverable	because	of	simple	mistakes	that	could
have	been	avoided	if	best	practices	had	been	followed.	So,	in	this	book	we	talk	about	best
practices	a	lot.

Finally,	in	this	chapter	and	the	next,	we	are	going	to	cover	only	database	internals	and
any	additional	information	that	you	need	to	know	with	regard	to	backup,	recovery,	and
RMAN.	If	you	need	more	information	on	other	subject	areas,	such	as	performance	tuning,
database	modeling,	or	connecting	your	database	to	your	favorite	gaming	platform,	you
might	want	to	look	elsewhere.	Many	books	on	these	subject	areas	are	available	from
Oracle	Press,	and	you	can	find	these	titles	at	www.oraclepressbooks.com.	(We’re	not	sure
they	have	anything	on	connecting	gaming	platforms	to	Oracle	databases,	though.)

Ah,	the	tour	bus	has	arrived.	Please	get	in,	move	all	the	way	to	the	end	of	the	row	you
are	in,	and	then	have	a	seat.	Buckle	yourself	in	and	make	sure	you	keep	your	hands	and
legs	in	the	vehicle	at	all	times.	Have	a	great	tour	of	the	Oracle	Database	Backup	and
Recovery	landscape!

Backup	and	Recovery	Essentials
Our	first	stop	is	backup	and	recovery	essentials.	Two	different	areas	need	to	be	dealt	with
when	crafting	a	plan	to	execute	in	the	event	your	database	goes	bottom	up.	The	first
architectural	question	is	one	of	high	availability,	which	is	loosely	coupled	with	the	second
question,	which	is	one	of	backup	and	recovery.	Let’s	look	at	these	questions	of	high
availability	and	backup	and	recovery	in	more	detail.

http://www.oraclepressbooks.com

High	Availability
High	availability	(HA)	implies	an	architecture	that	attempts	to	remove	single	points	of
failure	that	can	cause	systems	to	experience	outages.	In	our	opinion,	HA	solutions	are
sometimes	incorrectly	lumped	in	with	disaster	recovery	(DR)	solutions.	This	seems
natural	because	they	provide	similar	services,	but	they	are	two	completely	different
animals	and,	as	such,	should	be	treated	differently.

HA	solutions	are	local	solutions	implemented	to	provide	redundancy	for	local
resources	that	are	identified	as	potential	single	points	of	failure.	This	might	include	a	RAC
cluster	to	protect	the	system	from	the	loss	of	a	compute	node,	or	it	might	include
redundant	disk	controllers	or	power	supplies.	HA	solutions	can	also	include	such	elements
as	mirrored	drives,	RAID	architectures,	database	clustering,	database	failover	schemes,
and,	of	course,	backup	and	recovery.	HA	adds	costs	to	the	overall	database	architectural
solution.

The	main	idea	with	HA	solutions	is	that	the	application	and/or	user	is	as	unaware	of
local	failures	as	possible.	Generally	this	means	that	if	a	single	resource	fails,	the	user	or
application	simply	fails	over	to	an	active	and	redundant	resource	and	uses	it.	In	our	mind,
in	a	true	HA	solution,	the	user	should	never	know	that	the	resource	they	are	using	has	had
an	outage.	At	most,	they	might	experience	some	delay	in	the	processing	of	their	query,	but
they	should	never	see	an	error,	have	to	re-execute	a	query,	or	be	denied	access	to	the
system.	Most	HA	solutions	we	have	seen	do	not	provide	this	level	of	redundancy	for	many
reasons.

HA	solutions	are	not	just	about	providing	redundancy	from	failure	of	a	given	resource
(such	as	a	database).	HA	solutions	usually	provide	a	given	resource	the	ability	to	scale	up
or	down	as	demand	requires.	That	is,	HA	solutions	should	prevent	users	from	seeing	any
system	slowdowns	because	those	solutions	should	enact	rules	that	provide	for	scalability
of	those	resources.	Given	these	definitions	of	HA,	it’s	clear	that	RMAN	is	not	a	high
availability	solution,	though	sometimes	it	is	mistakenly	clumped	into	the	family	of	HA
solutions.

Because	HA	options	are	really	a	separate	topic	from	RMAN,	we	do	not	cover	them	in
great	detail	in	this	book	unless	they	are	related	to	RMAN	(for	example,	we	do	cover
RMAN	backups	on	Oracle	RAC	databases).	Oracle	Press	does	offer	a	book	that	includes
coverage	of	HA	solutions:	Oracle	12c	Oracle	Real	Application	Clusters	Handbook
(McGraw-Hill	Professional,	2011),	by	my	friend	K.	Gopalakrishnan.	This	is	a	great	book!
Also,	Oracle	Data	Guard	12c	Handbook	(McGraw-Hill	Professional,	2009),	by	Larry
Carpenter	and	Joseph	Meeks,	provides	information	on	Oracle	Data	Guard	as	part	of	an
overall	HA	solution.

When	HA	solutions	fail,	the	family	of	disaster	recovery	(DR)	solutions	comes	into	play.
The	term	disaster	recovery	is	usually	associated	with	catastrophic	loss,	and	so	we
sometimes	do	not	see	RMAN	as	a	DR	solution,	but	that	is	exactly	what	RMAN	is.	Loss	of
any	data	is	a	disaster	of	the	highest	order,	and	when	you	have	to	pull	out	RMAN	to
recover	lost	data,	you	should	treat	that	incident	as	a	disaster.	Any	unexpected	database
restore	should	always	be	followed	by	a	post-mortem	to	figure	out	what	happened,	what	the
impact	was,	and	how	the	problem	can	be	avoided	in	the	future.	Beyond	RMAN,	the	most

common	DR	solutions	include	Oracle	Data	Guard	and	Oracle	GoldenGate.	Each	of	these
has	its	place	in	the	enterprise.

As	with	HA	solutions,	we	don’t	really	touch	on	DR	solutions	a	great	deal	in	this	book,
except	for	those	solutions	that	have	an	RMAN	hook	into	them.	For	example,	you	can
create	an	Oracle	Data	Guard	database	using	RMAN.	As	a	result,	we	provide	pretty	good
coverage	of	that	kind	of	operation.	However,	we	don’t	get	into	the	nitty-gritty	of	Oracle
Data	Guard	in	this	book.

Backup	and	Recovery
As	we	continue	our	tour,	we	move	to	backup	and	recovery,	which	is	getting	us	close	to	the
main	topic	of	this	book,	RMAN.	We	will	talk	in	detail	throughout	this	chapter	about	the
different	kinds	of	backups	that	can	be	done	in	Oracle,	but	for	now,	let’s	talk	about	the
primary	types	of	backups:	offline	(cold)	and	online	(hot).	We	also	sometimes	talk	about
backups	as	being	consistent	or	inconsistent.	Let’s	define	each	of	these	terms	a	bit	more
before	we	proceed.

Offline	backups	are	done	with	the	database	down,	which	means	that	it	is	also
unavailable	to	users.	Online	backups,	on	the	other	hand,	are	done	with	the	database	up	and
running,	so	users	can	continue	with	their	business.	Online	backups	require	the	database	to
be	properly	configured	so	that	recovery	information	can	be	properly	applied	(we	will
discuss	this	concept	as	we	progress	through	this	chapter).

RMAN	supports	both	online	and	offline	backups.	In	fact,	as	you	will	see	in	later
chapters,	some	of	the	features	of	RMAN	make	it	the	preferable	method	for	performing
online	database	backups.

Beyond	online	and	offline	backups,	you	need	to	be	aware	that	database	backups	can
occur	while	the	database	is	in	one	of	two	different	states:	consistent	or	inconsistent.	When
backups	are	made	in	one	of	these	two	states,	they	are	known	as	either	consistent	backups
or	inconsistent	backups,	respectively.	The	state	the	database	is	in	when	the	backup	was
taken	is	critical	to	understand	because	it	impacts	your	recovery	options.

How	can	a	database	be	inconsistent?	That	seems	worrying.	We	discuss	the	particulars
in	greater	detail	later	in	this	chapter,	but	for	now	you	should	know	that	when	a	database	is
running	normally	there	are	two	different	kinds	of	storage:	persistent	and	transient.	The
persistent	storage	would	be	the	information	stored	on	disk	because	it	persists	through
shutdowns	of	the	database.	Information	that	is	persistent	is	information	in	the	database
datafiles	and	in	the	online	redo	logs	(and	archived	redo	logs).

Transient	storage,	on	the	other	hand,	is	the	memory	that	is	allocated	to	the	SGA	(the
PGA	too,	but	for	our	purposes	the	SGA	is	sufficient).	The	SGA	resides	in	memory	areas
that	no	longer	exist	after	the	database	is	shut	down,	and	once	that	memory	is	gone,
anything	that	was	in	it	is	gone	as	well.

Oracle	uses	a	combination	of	transient	and	persistent	storage	to	store	database	data.
When	the	database	is	shut	down	using	the	shutdown,	shutdown	immediate,	or	shutdown
transactional	command,	Oracle	will	update	the	persistent	storage	with	the	information
from	the	transient	storage.	Thus,	the	two	storage	areas	are	consistent	with	each	other

before	the	SGA	is	deallocated.	Additionally,	the	data	and	synch	points	within	the	datafiles,
control	files,	and	online	redo	logs	are	all	aligned,	so	those	persistent	storage	mechanisms
are	all	consistent.	Any	backup	that	is	made	under	these	specific	conditions	would	be
considered	a	consistent	backup.

If	the	shutdown	abort	command	was	used	to	shut	down	the	database,	then	the
database	datafiles,	control	files,	and	online	redo	logs	will	all	be	inconsistent	with	each
other.	Thus,	a	database	backup	in	this	state	would	be	considered	an	inconsistent	backup.
Also,	if	the	database	just	crashed	due	to	a	bug	or	someone	pulling	the	power	on	that
database,	it	would	also	be	in	an	inconsistent	state.

In	fact,	the	database	when	it’s	running	normally	is	always	in	an	inconsistent	state.	This
is	because	Oracle	does	not	update	the	database	datafiles	every	time	data	is	changed.	Thus,
any	database	backup	taken	during	the	time	that	the	database	is	running	would	be	an
inconsistent	backup.

Throughout	this	book	we	will	discuss	inconsistent	and	consistent	backups.	There	are
rules	that	need	to	be	followed	when	making	each	kind	of	backup	to	ensure	that	it	can	be
recovered	successfully.	You	need	to	make	sure	you	understand	those	rules	when	you
design	your	backup	and	recovery	strategy.

Now	that	we	have	given	you	a	quick	introduction	to	the	notion	of	offline,	online,
consistent,	and	inconsistent	backups,	it’s	time	to	start	looking	at	the	things	that	need	to	be
considered	when	designing	a	backup	strategy.	Users	(and	the	owners	of	corporate	policy,
systems,	data,	and	applications,	who	we	often	call	stakeholders)	have	certain	levels	of
expectations	for	the	protection	of	their	data.	Before	you	decide	when	and	how	to	back	up
your	database,	you	should	gather	some	of	the	requirements	that	these	folks	have	and	make
sure	that	your	backup	plans	mesh	with	their	needs.	Only	after	you	have	gathered	those
requirements	can	you	craft	that	backup	plan,	and	perhaps	justify	the	cost	of	that	plan.	Let’s
look	in	more	detail	at	how	you	gather	those	requirements.

Backup	and	Recovery	Strategy	Requirements	Gathering
In	gathering	user	requirements,	you	really	want	to	find	out	from	them	what	their	needs	are.
Users	need	to	be	asked	a	number	of	questions,	and	as	the	database	administrator	(DBA),
you	should	take	the	lead	in	asking	them.	To	collect	backup	and	recovery	requirements,
you	should	ask	your	customers	questions	like	the	following:

			How	much	data	loss	can	you	afford	in	the	event	of	a	database	failure?	This	is
called	the	recovery	point	objective	(RPO).

			What	is	the	maximum	length	of	time	you	are	able	to	allow	for	recovery	of	your
database?	This	is	called	the	recovery	time	objective	(RTO).

			How	much	are	you	willing	to	spend	to	ensure	that	your	data	is	recoverable?

			Can	the	system	be	down	during	the	backup?

			How	much	time	will	it	take	to	get	damaged	hardware	replaced?

Let’s	quickly	look	at	each	of	these	questions	in	more	detail.

How	Much	Data	Loss	Can	You	Afford?			This	is	probably	the	most	important	question

of	all.	All	backup	and	recovery	plans	have	some	risk	of	data	loss	associated	with	them,
and	as	you	move	closer	to	a	zero	data	loss	solution,	the	costs	of	the	backup	and	recovery
plan	can	skyrocket.	Therefore,	it’s	important	to	clearly	define	the	recovery	point
objectives	with	your	customers.

As	was	the	case	with	HA,	the	organization	needs	to	quantify	the	cost	of	data	loss	and,
based	on	that	cost,	craft	a	cost-effective	backup	and	recovery	plan	in	light	of	the	RPO	they
have	selected.	It	is	critical	that	the	customer	understand	how	much	data	loss	risk	they	are
taking	with	the	chosen	backup	and	recovery	plan.	Of	course,	each	database	has	an
allowable	amount	of	loss,	too,	and	one	database	may	be	much	more	tolerant	of	data	loss
than	another.

What	Is	the	Maximum	Length	of	Time	You	Are	Able	to	Allow	for
Recovery?			Stakeholders	can	be	very	concerned	about	how	long	the	recovery	of	their
database	will	take.	It’s	important	to	define	the	restore	point	objective	with	the	customer
because,	again,	this	makes	it	easier	to	translate	the	customers’	expectations	into	the	cost	of
meeting	those	expectations.	Different	technologies	perform	in	different	ways	and	vary
widely	in	price.	Generally,	the	faster	you	wish	your	recovery	to	go,	the	more	expensive	the
technology	ends	up	being.	For	example,	recoveries	directly	from	disk	tend	to	be	a	bit	more
expensive	than	recoveries	from	tape,	but	also	tend	to	be	faster.	It	is	important	that	the
customer	understand	how	long	recovery	of	the	database	will	take	in	the	event	of	a
complete	outage.

As	these	discussions	ensure,	it	may	become	clear	that	the	stakeholders’	objectives	are
not	feasible,	or	that	they	will	require	more	infrastructure	and	architecture	work	than	was
originally	believed	to	be	the	case.	It	may	well	be	that	the	stakeholders’	requirements	will
lead	to	a	discussion	of	HA	or	DR	requirements	in	association	with	backup	and	recovery
requirements.	You	should	be	able	to	address	and	articulate	all	of	these	possibilities	in	your
planning	meetings	with	the	stakeholders.

How	Much	Can	You	Spend	on	Recovery?			There	is	a	direct	relationship	between	RPO
and	RTO	and	how	much	it	will	cost	to	provide	a	specific	service	level.	It	is	important	early
on	to	understand	just	how	much	the	customer	is	willing	to	spend	on	architecture	to	support
your	proposed	backup	and	recovery	plan.	Nothing	is	more	embarrassing	than	proposing	a
massive	architecture	with	a	high	dollar	cost	and	then	having	the	customer	look	at	you	and
laugh	at	the	projected	expense.

Can	the	System	Be	Down	During	the	Backup?			Another	key	piece	of	information	to
determine	is	what	the	state	of	the	database	needs	to	be	during	the	backup.	Can	an	outage
be	afforded	when	performing	the	backups,	or	do	those	backups	need	to	be	done	online?
The	answer	to	this	question	impacts	your	total	overall	cost	and	your	decisions	in	choosing
a	backup	strategy.

How	Much	Time	Will	It	Take	to	Get	Damaged	Hardware	Replaced?			This	is	a	key
consideration.	Often	it’s	not	the	database	that	fails,	but	some	piece	of	hardware.	Hardware
failure	can	considerably	impact	the	time	it	takes	to	get	your	database	running	again.	You
need	to	make	sure	the	system	stakeholders	understand	the	impact	of	hardware	failures	and
consider	architectures	that	can	help	protect	them	from	hardware	failures,	such	as	Oracle
Real	Application	Clusters.

Growth	and	Scale	Considerations			Sure,	the	development	database	is	only	20GB	in
size,	or	the	production	database	is	only	40GB	in	size	now,	but	what	about	six	months	from
now,	a	year	from	now,	or	five	years	from	now?	The	solution	you	craft	for	a	40GB	database
with	a	steady	state	of	growth	will	be	very	different	from	a	solution	you	will	craft	for	a
database	that	is	going	to	grow,	very	quickly,	to	terabytes	in	size,	or	even	larger.

Additionally,	external	factors	can	impact	your	backups,	such	as	increases	in	concurrent
usage	of	the	database.	Oftentimes	database	usage	grows	over	time	as	new	releases	of
existing	applications	are	rolled	out,	new	functionality	is	added,	or	groups	of	users	are
added	during	a	long	rollout.	Therefore,	you	need	to	look	toward	the	future,	not	the	now,
when	planning	your	backup	strategy	and	infrastructure.

Backup	and	Recovery:	Crafting	the	Plan
Now	that	you	have	gathered	your	requirements,	you	can	begin	to	craft	your	backup	and
recovery	plan.	You	need	to	make	a	number	of	decisions:

			Based	on	the	user	(and	business)	requirements,	do	you	need	to	perform	offline
or	online	backups	of	the	database?

			If	you	are	going	to	use	online	backups,	how	often	do	you	need	to	back	up
archived	redo	logs?	How	will	you	protect	the	archived	redo	logs	from	loss	between
backup	sessions?

			What	are	the	company	policies	and	standards	with	regard	to	recoverability?

			How	are	you	going	to	ensure	that	your	system	is	recoverable	in	the	event	of	a
disaster?

			Are	there	any	architectural	decisions	that	need	to	be	made?

Each	of	these	questions	is	important.	Disasters	need	to	be	planned	for	because	they	do
happen.	Company	policies	may	well	supersede	the	needs	of	the	users.	Backup	policies	and
standards	are	important	to	implement	and	enforce.	Managing	one	database	backup	and
recovery	policy	is	easy.	Managing	many	different	databases	with	different	methods	of
doing	backup	and	recovery	becomes	cumbersome	and	dangerous.

Managing	archived	redo	logs	is	important	because	they	are	critical	to	recovery,	and	you
want	to	be	able	to	support	your	users	as	much	as	you	can.	After	all,	the	users	are	the
reason	you	are	there!	To	really	determine	how	to	craft	your	backup	strategy,	you	need	to
understand	how	Oracle	works	and	how	Oracle	backup	and	recovery	works;	we	will	talk
about	that	shortly.	First,	just	to	make	sure	we	are	all	on	the	same	page,	let’s	discuss	some
basic	Oracle	terms.

A	Few	Oracle	Terms	to	Know
It	is	always	a	bit	hard	to	decide	where	to	start	when	discussing	the	Oracle	architecture,
because	so	many	of	the	different	components	are	interrelated.	This	makes	it	hard	to	talk
about	one	without	referring	to	the	other.	So	that	we	can	have	a	common	point	of	reference
for	some	basic	terms,	in	this	section	we	quickly	define	those	terms.	We	will	be	using	these

terms	throughout	the	rest	of	this	book,	so	it	is	really	important	that	you	clearly	understand
them	(we	also	define	them	in	more	depth	as	this	chapter	progresses).	So,	if	you	are	a	bit
hazy	on	Oracle	internal	terms,	please	review	the	following	list	until	you	know	without
hesitation	what	they	are:

			Alert	log			A	text	log	file	in	which	the	database	maintains	error	and	status
messages.	The	alert	log	can	be	a	critical	structure	when	trying	to	determine	the
nature	of	a	database	failure.	Typically,	the	alert	log	is	in	the	background	dump
destination	directory,	as	defined	by	the	database	parameter	DIAGNOSTIC_DEST,
and	is	called	alert<sid>.log.

			Archived	redo	logs			When	the	database	is	in	ARCHIVELOG	mode,	archived
redo	logs	are	generated	each	time	Oracle	switches	online	redo	logs	by	the	LGWR
process.	Archived	redo	logs	are	used	during	database	recovery.	Copies	of	the
archived	redo	logs	can	be	written	to	as	many	as	ten	different	directories,	defined	by
the	Oracle	parameter	LOG_ARCHIVE_DEST_n	in	the	database	parameter	file.
Also,	Oracle	Database	12c	allows	you	to	store	archived	redo	logs	in	a	new	location
called	the	Fast	Recovery	Area,	which	we	discuss	in	more	detail	in	Chapter	5.

			Backup	control	file			A	backup	of	the	control	file	generated	as	the	result	of
using	the	alter	database	backup	controlfile	to	‘file_name’	command	or	the	alter
database	backup	control	file	to	trace	command.

			Block			The	most	atomic	unit	of	storage	in	Oracle.	The	default	block	size	is
determined	by	the	parameter	DB_BLOCK_SIZE	in	the	database	parameter	file,	and
it	is	set	permanently	when	a	database	is	created.	Oracle	Database	12c	allows
tablespaces	to	be	different	block	sizes	than	the	default.

			Checkpoint			A	database	event	that	causes	the	database	to	flush	dirty	(used)
blocks	from	memory	and	write	them	to	disk.

			Database			Consists	of	the	different	components	that	make	up	an	Oracle
database	(tablespaces,	redo	logs,	and	so	forth).	A	database	is	much	different	from	an
instance.	A	database	is	where	the	data	lives,	and	it’s	what	you	will	be	backing	up
and	recovering	with	RMAN.

			Database	consistency			Implies	that	each	object	in	the	database	is	consistent	to
the	same	point	in	time.	This	means	that	the	data	in	the	database	datafiles	is
consistent	to	the	same	point	in	time.	This	also	means	that	the	database	control	files
are	synchronized	with	the	database	datafile	headers.

			Database	control	file			A	database	control	file	stores	several	kinds	of	metadata
related	to	the	database.	This	includes	information	on	the	database	datafiles,	archived
redo	logs,	RMAN	backups,	and	other	internal	database	information.

			Database	datafile			A	physical	entity	that	is	related	to	a	tablespace.	A	database
consists	of	at	least	one	database	datafile	(which	would	be	assigned	to	the	SYSTEM
tablespace),	and	most	databases	consist	of	many	different	database	datafiles.
Whereas	a	tablespace	can	have	many	different	database	datafiles	associated	with	it,
a	given	database	datafile	can	have	only	one	tablespace	associated	with	it.

			Database	parameter	file			Contains	instance	and	database	configuration

information	and	comes	in	two	mutually	exclusive	flavors:	init.ora,	which	is	a	text
file,	and	spfile.ora,	which	allows	for	persistent	settings	of	database	parameters	via
the	alter	system	command.

			Fast	Recovery	Area	(FRA)			An	optionally	configured	area	of	disk	that	is
used	to	store	various	recovery-related	files.	RMAN	backup	files,	archived	redo	logs,
online	redo	logs,	and	control	files	can	be	stored	in	this	area.	We	will	cover	the	FRA
in	great	detail	in	later	chapters	of	this	book.	Most	examples	that	you	will	see	in	this
book	assume	the	configuration	and	use	of	the	FRA.

			Granule			A	unit	of	Oracle	contiguous	memory.	All	System	Global	Area
(SGA)	memory	allocations	are	rounded	to	the	nearest	granule	units.	The	size	of	a
granule	depends	on	the	overall	expected	size	of	the	SGA,	and	it	may	be	4MB	or
16MB.	An	SGA	size	of	greater	than	128MB	tends	to	be	the	break	point	when	Oracle
uses	the	larger	granule	sizes.	The	number	of	granules	allocated	to	the	database	is
determined	at	database	startup.

			Instance			The	collection	of	Oracle	memory	and	processes.	When	the	SGA
(memory)	is	allocated	and	each	of	the	required	Oracle	processes	is	up	and	running
successfully,	then	the	Oracle	instance	is	considered	started.	Note	that	just	because
the	Oracle	instance	is	running,	this	does	not	mean	that	the	database	itself	is	open.	An
instance	is	associated	with	one,	and	only	one,	database	at	any	given	time.

			Online	redo	logs			When	redo	is	generated,	it	is	physically	stored	in	the	online
redo	logs	of	the	database.	Oracle	requires	that	at	least	two	online	redo	logs	be
created	for	a	database	to	operate.	These	online	redo	logs	can	have	multiple	mirrored
copies	for	protection	of	the	redo.	This	is	known	as	multiplexing	the	redo	log.	As	an
online	redo	log	fills	with	redo,	Oracle	switches	to	the	next	online	redo	log,	which	is
known	as	a	log	switch	operation.

Each	online	redo	log	file	has	a	log	sequence	number	associated	with	it	that
uniquely	identifies	it	and,	if	it’s	archived,	its	associated	archived	redo	log	file.	You
can	find	the	log	sequence	number	of	the	online	redo	logs	by	querying	the	V$LOG
view.	The	sequence	number	of	a	given	archived	redo	log	can	be	found	in	the
V$ARCHIVED_LOG	view	or	the	V$LOG_HISTORY	view.

Additionally,	an	online	redo	log	(and	an	archived	redo	log)	contains	a	range	of
database	System	Change	Numbers	(SCNs)	that	is	unique	to	that	redo	log.	During
recovery,	Oracle	applies	the	undo	in	the	archived/online	redo	logs	in	order	of	log
sequence	number.

			Processes			The	programs	that	do	the	actual	work	of	the	Oracle	database.
Oracle	Database	12c	has	five	required	processes,	among	others.

			Redo			A	record	of	all	changes	made	to	a	given	database.	For	almost	any
change	in	the	database,	an	associated	redo	record	is	generated.

			Schema			Owns	the	various	logical	objects	in	Oracle,	such	as	tables	and
indexes,	and	is	synonymous	with	the	user.

			SGA	(System	Global	Area)			An	area	of	shared	memory	that	is	allocated	by
Oracle	as	it	is	started.	Memory	in	the	SGA	can	be	shared	by	all	Oracle	processes.

			System	Change	Number	(SCN)			A	counter	that	represents	the	current	state
of	the	database	at	a	given	time.	As	with	the	counter	on	a	VCR,	as	time	progresses,
the	SCN	increases.	Each	SCN	atomically	represents	a	point	in	the	life	of	the
database.	Thus,	at	11	A.M.,	the	database	SCN	might	be	10ffx0	(4351	decimal),	and	at
12	P.M.,	it	might	be	11f0x0	(4592	decimal).

			Tablespace			A	physi-logical	entity.	It	is	a	logical	entity	because	it	is	the	place
that	Oracle	logical	objects	(such	as	tables	and	indexes)	are	stored.	It	is	a	physical
entity	because	it	is	made	up	of	one	or	more	database	datafiles.	A	database	must
contain	at	least	one	tablespace,	the	SYSTEM	tablespace,	but	most	databases	consist
of	many	different	tablespaces.

			Trace	files			Generated	by	the	database	in	a	number	of	different	situations,
including	process	errors.	Each	database	process	also	generates	its	own	trace	file.
Trace	files	can	be	important	when	you’re	trying	to	resolve	the	nature	of	a	database
failure.

Oracle	Database	Architecture	in	the	Pre-
Multitenant	Age
Our	tour	continues	as	we	begin	looking	at	the	physical	components	of	Oracle.	First,	we
take	a	look	at	the	processes	that	make	up	an	Oracle	database.	Then,	we	look	at	Oracle
memory	structures	and	the	different	logical,	physical,	and	physi-logical	structures	that
make	up	an	Oracle	database.	Finally,	we	discuss	the	differences	between	an	instance	and
an	Oracle	database.

The	Oracle	Processes
When	the	startup	nomount			command	is	issued,	Oracle	attempts	to	start	an	Oracle
instance.	An	Oracle	instance	is	started	after	several	required	operating	system	processes
(programs)	are	started	and	the	SGA	memory	area	is	allocated.	In	this	section,	we	are	going
to	look	at	the	processes	that	get	Oracle	started.	First,	we	look	at	the	basic	Oracle	processes
required	for	any	Oracle	database	to	be	functional.	Next,	we	look	at	user	and	server
processes.	Finally,	we	look	at	other,	optional	Oracle	processes	that	you	might	see	from
time	to	time.

NOTE

This	is	just	a	basic	introduction	to	the	Oracle	processes.	If	you	want	more	in-
depth	detail	on	them,	please	refer	to	the	Oracle	documentation.

Background	Oracle	Processes
The	first	kind	of	processes	that	run	in	an	Oracle	database	are	the	background	processes.

These	are	processes	that	are	started	when	an	Oracle	Database	12c	instance	has
successfully	started.	The	background	processes	are	critical	to	database	functionality
because	they	provide	the	various	tasks	required	for	the	database	to	operate,	such	as
maintenance	tasks,	writing	to	database	datafiles,	writing	to	the	online	redo	logs,	and
providing	crash	recovery	services.	So,	you	can	see,	in	the	context	of	backup	and	recovery,
how	understanding	these	processes	and	how	they	work	might	be	important.

There	can	be	any	number	of	processes	started	for	a	given	database	(my	Oracle	12c
Database	is	running	some	49	right	now).	Often,	as	a	place	to	discuss	the	various	processes
in	Oracle	we	start	with	what	might	be	considered	the	mandatory	background	database
processes.	These	are	the	processes	that	are	automatically	started	and	run	for	almost	any
Oracle	database.	There	used	to	be	five	processes	on	this	list	in	the	beginning,	but	now	the
list	has	grown	to	nine	processes.

Most	of	these	processes	are	required	by	the	Oracle	database	for	it	to	function	at	all,	and
the	instances	will	terminate	if	they	fail	for	any	reason.	Some	processes	will	be	restarted	if
the	database	fails.	In	this	section	we	introduce	you	to	these	important	Oracle	database
processes.

PMON			Also	known	as	the	Process	Monitor	process	(and	one	of	what	some	call	the
“Jamaican	processes”),	the	PMON	process	monitors	the	other	background	processes	and
is	responsible	for	process	recovery	for	parallel	processes	(server	and	dispatcher	processes)
that	might	fail.	PMON	manages	the	cleanup	of	the	database	buffer	cache	and	other
resources	after	user	processes	are	exited	normally	or	terminated	abnormally.	The	database
will	crash	and	burn	should	the	PMON	process	die	an	unexpected	death.	Mourning	will
ensue,	and	you	will	need	to	start	the	database	backup	and	figure	out	why	PMON	failed.
Note	that	while	PMON	might	fail,	the	remaining	database	processes	might	still	stay	up	for
some	time.	However,	the	database	will	still	not	be	accessible,	and	the	processes	will
eventually	shut	down.

SMON			Also	known	as	the	System	Monitor	process	(and	the	other	“Jamaican	process”),
SMON	has	a	lot	of	jobs	to	do,	including	performing	instance	recovery,	crash	recovery,
recovery	of	terminated	transactions	on	read-only	or	missing	tablespaces	during	recovery,
cleaning	up	unused	temporary	segments,	and	managing	free	extents	on	dictionary-
managed	tablespaces.	Loss	of	the	SMON	process	tends	to	cause	all	of	the	processes
related	to	the	database	to	shut	down	without	delay.

LREG			This	process	is	known	as	the	Listener	Registration	(LREG)	process	and	is	new	in
Oracle	Database	12c	(the	tasks	LREG	is	responsible	for	used	to	be	performed	by	PMON).
This	process	is	responsible	for	registering	information	about	the	database	instance	with	the
Oracle	listener	process(es).	If	the	listener	is	running,	then	LREG	will	communicate	the
needed	information	to	the	listener	so	that	the	database	will	be	registered	for	network
connectivity.	If	the	listener	is	not	running,	the	LREG	process	will	re-poll	the	listener	on	a
regular	basis	to	determine	when	it	is	running.	Once	the	listener	can	be	communicated
with,	LREG	will	register	the	database.	If	the	LREG	process	is	terminated,	the	entire
database	instance	will	be	terminated.

DBW	(or	DBWn,	Since	There	Can	Be	More	Than	One	of	These	Processes)			The
Database	Writer	(DBW)	process	is	responsible	for	writing	the	contents	of	the	data	buffers

from	the	SGA	(volatile	storage)	to	the	database	data	files	(persistent	storage).	Once	the
database	blocks	have	been	written	to	persistent	storage,	then	the	dirty	blocks	in	the	SGA
can	be	used	for	other	purposes.

Because	the	writing	of	database	blocks	can	be	I/O	intensive,	the	DBW	process	does	not
immediately	write	the	blocks	after	a	transaction	is	committed.	Instead,	the	persistence
mechanism	used	by	the	database	is	the	online	redo	logs,	which	are	written	to	by	the
LGWR	process.	As	a	result,	the	version	of	the	database	in	the	database	datafiles,	and	the
version	that	is	current	to	the	most	recent	point	in	time,	are	often	very	different.	You	need
to	clearly	understand	this	if	you	are	to	understand	Oracle	Backup	and	Recovery.

Even	more	interesting	is	that	DBW	can,	in	certain	circumstances,	write	blocks	that	are
part	of	uncommitted	transactions	to	the	database	datafiles.	If	you	think	about	this,	it	makes
sense	because	a	long-running	DML	transaction	could	easily	require	more	SGA	memory
than	is	available.	Once	the	dirty	SGA	blocks	start	piling	up,	they	have	to	go	somewhere,
and	it’s	the	DBW	process	that	moves	them	to	disk.	You	might	be	asking,	“What	is	it	that
indicates	to	Oracle	if	the	database	block	is	valid	then?”	The	answer	is	in	the	online	redo
stream	that	gets	created.

Once	the	transaction	is	committed,	a	commit	vector	is	created	in	the	redo	log	stream.
The	commit	vector	is	associated	with	the	specific	point	in	time	that	the	commit	was
executed.	Once	the	commit	is	completed,	the	blocks	associated	with	that	transaction	will
be	considered	valid	blocks.	Thus,	read	consistency	is	assured.	Until	the	commit	vector	is
issued,	Oracle	will	use	the	read-consistent	mechanism	of	the	database	(in	the	form	of	the
undo	records)	to	reconstruct	the	blocks	for	queries	that	are	executed	prior	to	the	commit.

This	also	explains	another	DBW	rule	that	is	little	known.	That	is,	before	the	database
can	reuse	an	online	redo	log,	the	blocks	that	were	dirtied	as	a	part	of	any	transaction	in
that	redo	log	have	to	have	been	written	to	the	persistent	media	before	a	log	switch	can
occur	(note	that	this	is	different	from	the	more	common	cause	of	being	unable	to	write	to
an	archived	redo	log).	If	you	see	waits	for	log	file	switches,	this	might	indicate	that	the
DBW	process	is	not	writing	to	the	database	datafiles	quickly	enough,	thus	freeing	up	an
online	redo	log.	For	more	on	the	online	redo	logs,	see	information	on	the	LGWR	process.

When	the	DBW	needs	to	flush	dirty	blocks	in	the	SGA	to	persistent	storage,	it	has
some	options	available	to	it	on	how	it	can	do	that	operation.	The	DBW	process	can	use	a
“lazy”	checkpoint	method,	it	can	use	a	more	prioritized	method	(with	less	consideration
given	to	performance),	or	it	can	use	a	panic	type	of	operation	where	it	writes	to	the
datafiles	as	quickly	as	it	can	(this	panic	mode	is	used,	for	example,	when	you	issue	the
shutdown	abort	command).

Normally	DBW	will	write	dirty	buffers	in	a	“lazy”	manner,	such	that	it	will	not	impact
the	overall	performance	of	the	system.	It	will	continue	to	try	to	advance	the	checkpoint
over	time	to	reduce	the	time	that	crash	recovery	might	require.	The	parameter
FAST_START_MTTR_TARGET	controls	the	manner	in	which	the	DBW	process	writes
to	a	degree	in	that	it	provides	a	target	for	the	DBW	to	meet	with	respect	to	divergence
between	the	copy	of	the	data	in	the	buffer	cache	and	the	data	on	physical	disk.

FAST_START_MTTR_TARGET	defaults	to	a	setting	of	0,	which	means	that	the	DBW
process	tries	to	reduce	the	divergence	between	the	data	in	memory	and	on	disk	to	a

minimum.	This	might	not	be	the	most	efficient	thing	if	you	are	concerned	about	database
performance	or	the	performance	of	RMAN.	As	a	result,	you	might	want	to	explore	various
settings	for	the	parameter.	Another	consideration	to	setting	this	parameter	is	one	of
instance	recovery.	This	parameter	is	designed	to	balance	performance	against	availability
—the	lower	it’s	set,	the	faster	your	database	should	come	up	after	a	crash.	However,	the
lower	it’s	set,	the	more	likely	it	is	to	cause	database	performance	issues.	Therefore,	it’s
important	to	define	which	is	more	important:	performance	or	recovery	time.

Other	tasks	include	the	DBW	process	handling	its	checkpoint-related	operations	(such
as	updating	datafile	headers),	synchronization	of	the	opening	of	data	files,	and	logging	of
blog-written	records.

In	Oracle	Database	12c,	there	can	be	up	to	100	DBW	processes	running	at	any	one	time
(this	number	varies	by	Oracle	Database	version).	The	number	of	DBW	processes	that
should	be	running	is	configured	using	the	parameter	DB_WRITER_PROCESSES.	In
Oracle	Database	12c,	the	default	is	either	1	or	CPU_COUNT/8,	whichever	is	higher	(there
are	some	other	outlier	conditions	that	we	won’t	consider	here).	Usually	the	default	value	is
more	than	sufficient.

LGWR			The	Log	Writer	(LGWR)	process	is	responsible	for	writing	generated	redo	to	the
database	online	redo	logs	from	the	log	buffer.	LGWR	is	signaled	to	do	these	writes	during
a	number	of	different	conditions,	including	the	following:

			A	user	commit	is	issued.

			An	online	redo	log	switch	occurs.

			Three	seconds	have	passed	since	LGWR	last	wrote	redo	data.

			The	redo	log	buffer	is	one-third	full	or	contains	1MB	of	data.

			DBW	must	write	modified	buffers	to	disk.

As	with	the	DBW	process,	note	that	it	is	very	possible	for	uncommitted	data	to	be	written
to	the	online	redo	logs	(and	also	the	archived	redo	logs).	Again,	it	is	the	presence	of	the
commit	vector	that	will	indicate	whether	or	not	that	data	should	eventually	be	committed.

Note	that	LGWR	writes	redo	records	to	the	online	redo	logs.	Redo	records	are	much
smaller	and	at	a	much	finer	grain	with	respect	to	the	transaction.	Thus,	the	online	redo
writes	are	much	quicker	in	nature	than	the	DBW	writes	are.	For	this	reason,	it	is	the	online
redo	logs	that	provide	the	persistent	record	of	transactional	activity	that	is	required	to
ensure	a	database	recovery.	This	means	that	the	LGWR	process	can,	at	times,	be	a	single
point	of	serialization	with	respect	to	overall	database	operations.	This	being	the	case,	you
can	see	why	it’s	important	that	the	online	redo	logs	be	put	on	the	fastest	media	possible.
This	also	has	implications	for	restoring	databases,	which	we	will	discuss	in	later	chapters
of	this	book.

There	is	a	symbiotic	relationship	between	the	LGWR	and	DBW	processes.	Before	the
DBW	process	can	write	a	dirty	buffer	to	disk,	the	redo	data	must	have	been	flushed	to	the
online	redo	logs	first.	If	this	has	not	happened,	the	DBW	process	will	signal	LGWR	to
flush	these	buffers,	and	DBW	will	wait	for	LGWR	to	complete	the	flush	before	it	will
write	its	blocks	to	disk.	There	can	be	significant	performance	issues	if	this	kind	of

situation	occurs.	We	will	discuss	properly	configuring	online	redo	logs	in	an	effort	to
reduce	this	kind	of	contention	in	later	chapters	of	this	book.

The	System	Change	Number	(SCN)	is	also	very	interconnected	between	the	DBW
process,	the	LGWR	process,	and	the	database	itself.	The	SCN	figures	importantly	into
backup,	restore,	and	recovery	of	the	Oracle	database	because	it	is	the	means	by	which	all
database	operations	are	properly	ordered,	and	thus	recovered.	We	will	address	the	SCN
later	in	this	chapter,	but	we	wanted	to	give	you	a	quick	heads-up	that	it’s	coming.

Finally,	it	probably	seems	obvious,	but	if	the	LGWR	process	fails	then	the	database
will	crash	as	well.	That’s	what	we	call	a	bad	day	in	the	Oracle	world.	A	really	bad	day.

CKPT			During	a	checkpoint	operation,	the	CKPT	process	will	update	datafile	headers
and	the	control	file	with	checkpoint	information.	The	CKPT	process	also	notifies	DBW	of
the	checkpoint,	signaling	that	DBW	should	start	writing	blocks	to	disk.	Note,	though,	that
the	CKPT	process	does	not	actually	write	any	database	data	blocks	or	redo	records.

In	earlier	versions	of	Oracle	the	job	of	the	CKPT	process	was	allocated	to	the	DBWR
process,	and	the	CKPT	process	was	optional.	In	those	days	if	the	CKPT	process	died,	the
database	would	survive	without	it.	In	Oracle	Database	12c,	if	the	CKPT	process	dies,	then
the	rest	of	the	database	will	die	as	well.

RECO			The	Recoverer	(RECO)	process	comes	into	play	if	your	database	is	involved	in
any	kind	of	distributed	transactions.	RECO	is	responsible	for	resolving	in-doubt
distributed	transactions.	If	the	RECO	process	should	fail,	it	will	usually	not	result	in	the
entire	database	shutting	itself	down.	The	RECO	process	will	usually	restart	itself	if	it
crashes	or	is	killed	inadvertently.	(No	one	kills	RECO	on	purpose,	surely!)

MMON			The	Manageability	Monitor	(MMON)	process	is	responsible	for	managing	tasks
related	to	the	Active	Workload	Repository	(AWR)	of	the	Oracle	Database.	This	includes
such	things	as	taking	snapshots	and	monitoring	various	database-related	thresholds.	It	has
a	first	cousin	(who	has	been	known	to	get	out	of	hand	at	times)	called	the	MMNL	process,
which	maintains	Active	Session	History	(ASH)–related	Oracle	data.	The	death	of	the
MML	process	is	not	a	harbinger	of	the	death	of	the	database.	In	fact,	the	process	will
usually	restart	if	it	crashes	(or	is	killed).

MMNL			As	just	stated,	the	first	cousin	to	the	MML	process,	the	Manageability	Monitor
Lite	(MMNL)	process,	maintains	Active	Session	History	(ASH)–related	Oracle	data.
Items	such	as	the	capture	of	session	history	information	and	the	metrics	computation	of
that	information	are	done	by	the	MMNL	process.	MMNL	is	a	process	that	can	die	or	be
killed	but	will	not	cause	the	database	to	crash;	in	fact,	the	process	will	restart	should	it	be
killed	or	crash	for	some	reason.

Other	Optional	Oracle	Processes
A	number	of	other	Oracle	processes	may	also	be	launched	when	the	Oracle	instance	is
started	(and	in	some	cases,	optional	processes	may	actually	be	started	much	later	on
demand),	depending	on	the	configuration	of	the	Oracle	database	parameter	file.	Most	of
these	processes	have	little	bearing	on	RMAN	and	database	backup	and	recovery	(unless
the	failure	of	one	of	the	processes	causes	the	database	to	crash,	which	is	rare),	and	there

are	a	large	number	of	them.	As	a	result,	we	won’t	spend	much	time	on	them.	All	of	the
optional	processes	are	described	in	the	Oracle	documentation,	online	at	docs.oracle.com,
as	well	as	in	several	Oracle	Press	books.	Perhaps	the	best	description	of	them	is	in
Appendix	F	of	the	Oracle	Database	Reference	manual.

One	set	of	optional	processes	that	does	have	some	bearing	on	RMAN	and	backup	and
recovery	are	the	ARCHn	processes.	These	processes	(one	or	many	of	them)	are	critical	to
the	backup	and	recovery	process	if	you	are	doing	online	backups.	See	the	section	titled
“ARCHIVELOG	Mode	vs.	NOARCHIVELOG	Mode,”	later	in	the	chapter,	for	more	on
the	ARCHn	process(es).

There	may	be	other	processes	to	contend	with.	For	example,	if	you	are	restoring	a
database	to	an	ASM	managed	disk	group,	it’s	possible	that	the	ASM	rebalance	process
might	kick	in	and	start	rebalancing	your	ASM	disk	group.	This	could	cause	performance
problems	that	you	might	want	to	address.	We	will	discuss	performance	considerations	like
this	throughout	the	book.

The	User	and	Server	Processes
When	a	user	connects	to	the	database,	a	user	process	is	spawned	(or	a	new	thread	is	started
on	Windows	NT)	that	connects	to	a	separately	spawned	server	process.	These	processes
communicate	with	each	other	using	various	protocols,	such	as	Bequeath	or	TCP/IP.	Note
that	these	processes	all	have	their	own	memory	area	called	the	PGA.	The	PGA	typically	is
fairly	small	for	a	given	process,	but	it	can	also	grow	quite	large.	SQL	statements	that
include	operations	such	as	order	by	and	group	by	may	well	use	a	lot	of	PGA.	Therefore,
when	considering	how	much	memory	your	database	server	has,	you	need	to	include	the
fixed	components	(for	example,	the	SGA,	which	we	will	consider	to	be	a	fixed	memory
area	for	the	sake	of	this	discussion)	and	also	the	variable	components	(the	PGA).

We	often	find	that	SGA	memory	tends	to	be	overallocated	on	a	given	database	server.
Often,	when	we	put	a	database	into	production	we	don’t	know	how	much	memory	it’s
really	going	to	need,	so	we	throw	a	lot	of	memory	at	the	instance,	with	the	rationale	that
we	will	come	back	later	and	justify	that	instance’s	memory	allocations	later.
Unfortunately,	later	never	comes.	Then,	more	databases	get	added	and	memory	becomes	a
scarce	commodity.	Therefore,	carefully	manage	memory	because	it	can	impact	RMAN
performance	over	time.

Finally,	with	respect	to	processes,	RMAN	backup	and	recovery	operations	can	be	done
in	parallel,	using	more	than	one	process.	We	often	find	that	RMAN	backup	operations	are
based	on	using	a	single	processor.	Often	this	is	a	great	waste	of	resources	when	a	database
server	has	lots	of	memory	and	available	CPU	as	well	as	the	network	and/or	I/O	bandwidth
to	handle	the	additional	load.	Particularly	with	RAC	configurations,	we	rarely	see	anyone
taking	advantage	of	more	than	one	node	in	a	cluster	to	facilitate	backup	operations.	We
will	discuss	these	issues	further	throughout	this	book.

Oracle	Database	12c—Processes	or	Threads
We	have	mentioned	Oracle	processes,	which	are	essentially	individual	programs	that	run
independently	of	each	other.	They	communicate	with	each	other,	this	is	true;	however,

http://docs.oracle.com

they	are	all	in	their	own	unique	run	space,	memory	space	(excepting	shared	memory
access,	of	course),	and	so	on.

In	an	effort	to	gain	additional	performance	benefits,	Oracle	Database	12c	now	offers	a
multithreaded	option	to	the	database.	Some	operating	systems	such	as	Windows	already
run	Oracle	using	multithreading.	Others,	such	as	various	versions	of	Unix,	run	each	Oracle
process	as	just	that,	an	OS	process	on	the	system.	Thus,	the	common	processes	we	talk
about,	DBWR,	LGWR,	and	so	on,	are	individual	programs	assigned	a	process	ID	running
in	their	own	space.

By	default,	operating	systems	that	ran	Oracle	using	a	process	model	in	previous
releases	will	see	no	change	in	how	the	processes	run.	They	will	use	the	process	model	by
default.	To	use	the	multithreaded	model,	set	the	THREADED_EXECUTION	to	TRUE.
This	parameter	is	not	a	dynamic	parameter,	so	you	must	adjust	the	value	in	the	SPFILE
first	and	then	restart	the	database.

When	you	restart	the	database,	you	will	see	that	the	number	of	processes	now	running
is	significantly	less.	(In	our	case,	we	went	from	some	50	processes	down	to	7.)	When
running	in	the	multithreaded	Oracle	model,	the	DBW,	PMON,	PSP,	Un,	and	VKTM
background	processes	will	run	as	operating	system	processes.	We	have	described	a	couple
of	these	processes	already.	Here	are	the	ones	we	have	not:

			PSP			This	is	the	Process	Spawner	Process	(PSP).	PSP	is	responsible	for
spawning	Oracle	background	processes	after	the	instance	has	started.

			Un			These	processes	(two	of	them	on	the	databases	we	are	using,	called	u001
and	u002)	are	the	ones	used	to	spawn	various	threads	for	other	Oracle	background
processes	such	as	MMAN,	LGWR,	and	CKPT.	These	processes	might	have	different
numbers	to	them	based	on	when	they	are	spawned.

			VKTM			This	is	the	Virtual	Keeper	of	Time	(VKTM)	process.	This	process
provides	time	measurement	management	for	the	database.

Note	that	the	use	of	the	Oracle	multithreaded	model	does	not	change	anything	in	how
RMAN	works.	However,	if	you	have	scripts	that	use	OS	authentication	to	log	into	any
database	that	is	using	the	multithreaded	model	(that	is,	using	“/”),	you	will	need	to	revise
these	scripts	because	OS	authentication	is	not	allowed	when	using	the	Oracle
multithreaded	mode.

Oracle	Memory	and	RMAN
In	this	section,	we	look	at	the	memory	areas	we	need	to	be	concerned	with	in	relationship
to	RMAN.	As	with	any	process,	RMAN	does	require	memory	for	its	own	operations	and
as	a	part	of	its	database	interactions.	First,	we	describe	the	Oracle	SGA	in	more	detail,	and
then	we	look	at	the	Program	Global	Area	(PGA).

The	Oracle	System	Global	Area
The	principal	memory	structure	we	are	concerned	with	in	terms	of	RMAN	and	backup	and
recovery	is	the	System	Global	Area	(SGA).	The	SGA	consists	of	one	large	allocation	of
shared	memory	that	can	be	broken	down	into	several	memory	substructures:

			The	database	buffer	cache

			The	shared	pool

			The	redo	log	buffer

			The	large	pool

			The	Java	pool

			The	Streams	pool

A	number	of	different	memory	models	are	available	for	use	by	an	Oracle	database
instance.	Which	model	is	used	depends	on	various	constraints	(for	example,	HugePages
used	in	Linux	disallows	the	use	of	Automatic	Memory	Management).	Here	are	the
different	memory	models	available	within	Oracle:

			Force	Full	Database	Caching	Mode

			Automatic	Memory	Management	(AMM)

			Automatic	Shared	Memory	Management	(ASMM)

			Manual	Shared	Memory	Management

			PGA	Automatic	Memory	Management

			PGA	Manual	Memory	Management

It’s	really	beyond	the	scope	of	this	book	to	compare	and	contrast	the	benefits	of	these
models.	RMAN	typically	will	use	these	memory	areas	in	the	same	way.

Typically,	RMAN	uses	a	relatively	small	part	of	the	SGA	for	its	overall	operations.
RMAN	also	uses	the	shared	pool	quite	a	bit	since	RMAN	uses	several	Oracle	PL/SQL
packages	as	it	goes	through	its	paces.	These	packages	are	like	any	other	Oracle	PL/SQL
packages	in	that	they	must	be	loaded	into	the	shared	pool.	If	the	shared	pool	is	not	large
enough,	or	if	it	becomes	fragmented,	it	is	possible	that	the	RMAN	packages	will	not	be
able	to	execute.	Therefore,	it	is	important	to	allocate	enough	memory	to	the	shared	pool
for	RMAN	operations.

During	backup	operations,	RMAN	will	allocate	memory	buffers	and	move	the	data
from	the	database	datafiles	on	disk	to	that	memory	area.	The	data	is	then	moved	to	the
backup	storage	medium.	When	restores	are	occurring,	memory	is	again	allocated	to
support	the	transfer	of	restored	data	from	the	restore	media	and	then	to	the	location	where
that	data	needs	to	be	restored	to.

Typically	these	memory	buffers	are	allocated	from	the	Program	Global	Area	(PGA)
that	is	assigned	to	the	various	RMAN	backup	or	restore	processes.	The	exception	to	this	is
when	the	operating	system	that	RMAN	operations	are	occurring	on	does	not	have
asynchronous	I/O	facilities.	In	these	cases,	for	best	performance,	you	can	use	a	feature	of
RMAN	called	I/O	slaves.	When	I/O	slaves	are	in	use,	RMAN	will	use	the	large	pool	to
allocate	backup	buffer	memory	if	the	large	pool	is	allocated.	If	the	large	pool	is	not
allocated,	then	memory	from	the	SGA	proper	will	be	allocated	for	the	memory	buffers.
Most	systems	that	are	supported	today	offer	asynchronous	I/O,	and	as	a	result	the	use	of
I/O	slaves	is	rare.	If	you	are	configuring	I/O	slaves,	you	might	want	to	make	sure	that	you

really	need	to	be	using	this	feature.	It	might	well	be	causing	performance	issues	if	your	OS
supports	asynchronous	I/O	operations,	and	you	could	be	allocating	memory	to	the	large
pool	that	you	will	never	use.

Defining	SGA	Memory	Allocations	and	Choosing	Memory	Models
The	individual	sizes	of	the	SGA	components	are	allocated	based	on	the	settings	of
parameters	in	the	database	parameter	file.	Depending	on	the	version	of	the	database	you
are	using,	these	parameters	include	MEMORY_MAX_SIZE,	MEMORY_TARGET,
SGA_MAX_SIZE,	SGA_TARGET,	SHARED_POOL_SIZE,	DB_CACHE_SIZE,
DB_nK_CACHE_SIZE,	LOG_BUFFER,	LARGE_POOL_SIZE,	and	JAVA_POOL_SIZE
(and	several	others).	Each	of	these	is	defined	in	the	Oracle	documentation,	so	refer	to	it	if
you	need	more	information	on	them.	We	will	also	address	these	various	parameters
throughout	this	book	when	required.

Other	Kinds	of	Memory	to	Be	Aware	Of
Although	we	talk	about	the	SGA	and	the	PGA	a	lot,	there	are	other	kinds	of	memory	we
might	well	run	into.	Probably	the	most	typical	of	these	are	various	kinds	of	memory
caching	systems.	Very	often	disks	are	fronted	by	large	amounts	of	cache	memory.	Keep	in
mind	that	backup	procedures	can	flush	cache	memory	and	end	up	removing	hot	blocks.
This	is	a	good	argument	for	an	incremental	backup	strategy	because	it	will	reduce	the
amount	of	memory	required	overall	by	the	backup	process.

This	is	one	nice	thing	about	Oracle’s	Exadata	product.	Its	Smart	Flash	Cache	features
eliminate	the	problem	of	flooding	the	cache	with	blocks	that	do	not	need	to	be	cached.
Thus,	backup	operations	will	never	age	out	data	from	the	cache	as	the	result	of	a	backup.

Our	Take	on	Change,	Best	Practices,	and	Standards
We	find	change	just	for	the	sake	of	change	itself,	without	any	real	empirical	evidence
to	support	making	that	change,	to	be	a	really	bad	idea.	Way	too	many	people	get
swept	up	in	this	feature	or	that	feature.	Often	they	rush	to	implement	something	with
a	promise	of	better	performance	or	cheaper	operating	costs.	Sometimes	it	works.
Sometimes	it’s	a	disaster.

In	this	same	light,	we	always	are	very	careful	about	best	practices	or	silver	bullets
that	some	people	might	espouse.	Treat	such	things	with	caution.	Remember,
everyone	has	an	opinion.	However,	this	is	your	system,	and	it	is	unique.	As	such,	no
one	can	possibly	outline	best	practices	that	cover	every	possible	situation.	Remember
that	best	practices	are	really	just	guidelines.	They	are	worth	paying	attention	to,	but
they	don’t	replace	actual	thought	and	application	of	your	real-world	situation	when
you	develop	operating	policies	and	standards.

The	bottom	line	is	that	if	you	have	a	stable	environment,	you	need	to	be	very
cautious	about	any	change.	Stand	your	ground,	and	if	someone	suggests	a	change,
make	them	clearly	and	convincingly	quantify	the	expected	return	and	justify	that	in
the	face	of	the	risk	any	change	has	on	a	production	system.	What	does	this	have	to	do

with	RMAN	and	backup	and	recovery?	Everything.	The	best	backup	and	recovery
plan	is	the	one	that	you	never	ever	have	to	use	to	recover	because	your	architecture	is
well	designed	and	wisely	managed.

To	recap	quickly,	we	have	discussed	the	makings	of	an	Oracle	instance	over	the	last
several	pages.	We	have	talked	about	the	different	Oracle	processes	and	the	different
Oracle	memory	structures.	When	the	processes	and	the	memory	all	come	together,	an
Oracle	instance	is	formed.	Now	that	we	have	an	instance,	we	are	ready	for	a	database.	In
the	next	section,	we	discuss	the	various	structures	that	make	up	an	Oracle	database.

The	Oracle	Database
On	our	tour,	we	now	turn	our	attention	to	the	Oracle	database	architecture	itself.	An
Oracle	database	is	made	up	of	a	number	of	different	structures—some	physical,	some
logical,	and	some	physi-logical.	In	this	section,	we	look	at	each	of	these	types	of	structures
and	discuss	each	of	the	individual	components	of	the	Oracle	database.	We	will	conclude
this	section	by	looking	at	the	Fast	Recovery	Area	(FRA)	and	Automatic	Storage
Management	(ASM).

Oracle	Physical	Components			The	Oracle	database	physical	architecture	includes	the
following	components:

			Database	datafiles

			Online	redo	logs

			Archived	redo	logs

			Database	control	files

			Oracle	tablespaces

			Flashback	logs	(optional)

Each	of	these	items	is	physically	located	on	a	storage	device	that	is	connected	to	your
computer.	These	objects	make	up	the	physical	existence	of	your	Oracle	database,	and	to
recover	your	database,	you	may	need	to	restore	and	recover	one	or	more	of	these	objects
from	a	backup	(except	the	flashback	log).	Let’s	look	at	each	of	these	objects	in	a	bit	more
detail.

Database	Datafiles			The	database	datafiles	are	the	data	storage	medium	of	the	database
and	are	related	to	tablespaces,	as	you	will	see	shortly.	When	information	is	stored	in	the
database,	it	ultimately	gets	stored	in	these	physical	files.	Each	database	datafile	contains	a
datafile	header	that	contains	information	to	help	track	the	current	state	of	that	datafile.
This	datafile	header	is	updated	during	checkpoint	operations	to	reflect	the	current	state	of
the	datafile.	As	you	might	have	suspected,	database	datafiles	contain	database	data	as	well
as	temporary	data	and	undo	data.

Database	datafiles	can	have	a	number	of	different	statuses	assigned	to	them.	The
primary	statuses	we	are	interested	in	are	ONLINE,	which	is	the	normal	status,	and
OFFLINE,	which	is	generally	an	abnormal	status.	A	database	datafile	might	take	on	the
RECOVER	status	as	well,	indicating	that	there	is	a	problem	with	the	datafile	and	that

recovery	is	required.

If	the	database	is	in	ARCHIVELOG	mode	(more	on	this	later),	you	can	take	a	datafile
offline,	which	may	be	required	for	certain	recovery	operations.	If	the	database	is	in
NOARCHIVELOG	mode,	you	can	only	take	the	database	datafile	offline	by	dropping	it.
Offline	dropping	of	a	datafile	can	have	some	nasty	effects	on	your	database	(such	as	loss
of	data),	so	drop	datafiles	with	care.

Online	Redo	Logs			If	the	Oracle	SCN	can	be	likened	to	the	counter	on	a	VCR,	then	the
redo	logs	can	be	likened	to	the	videotape.	(This	analogy	becomes	harder	and	harder	as
DVRs	replace	VCRs!)	The	online	redo	logs	are	responsible	for	recording	every	single
atomic	change	that	occurs	in	the	database.	Each	Oracle	database	must	have	a	minimum	of
two	different	online	redo	log	groups,	and	most	databases	generally	have	many	more	than
that	for	performance	and	data	preservation	reasons.

Each	online	redo	log	group	can	have	multiple	members	located	on	different	disk	drives
for	protection	purposes.	Oracle	writes	to	the	different	members	in	parallel,	making	the
write	process	more	efficient.	Oracle	writes	to	one	redo	log	group	at	a	time,	in	round-robin
fashion.	When	the	group	has	been	filled,	the	LGWR	process	closes	those	redo	logs	and
then	opens	the	next	online	redo	log	for	processing.

Within	redo	logs	are	records	called	change	vectors.	Each	change	vector	represents	an
atomic	database	change,	in	SCN	order.	During	recovery	(RMAN	or	manual),	Oracle
applies	those	change	vectors	to	the	database.	This	has	the	effect	of	applying	all	change
records	to	the	database	in	order,	thus	recovering	it	to	the	point	in	time	of	the	failure	(or
another,	earlier	time	if	required).	The	LGWR	process	is	responsible	for	writing	the	change
vectors	(cumulatively	known	as	redo)	to	the	online	redo	logs	from	the	redo	log	buffer.	We
discuss	this	in	more	detail	shortly	in	the	section,	“The	Combined	Picture.”

Archived	Redo	Logs			A	log	switch	occurs	when	Oracle	stops	writing	to	one	online	redo
log	and	begins	to	write	to	another.	As	the	result	of	a	log	switch,	if	the	database	is	in
ARCHIVELOG	mode	and	the	ARCH	process	is	running,	a	copy	of	the	online	redo	log
will	be	made.	This	copy	of	the	online	redo	log	is	called	an	archived	redo	log.	Oracle	can
actually	copy	the	archived	redo	log	files	to	up	to	ten	different	destinations.	During	media
recovery,	the	archived	redo	logs	are	applied	to	the	database	to	recover	it.	We	discuss	this
in	more	detail	in	“The	Combined	Picture.”

Database	Control	Files			Each	Oracle	database	has	one	or	more	database	control	files.
The	control	file	contains	various	database	information,	such	as	the	current	SCN,	the	state
of	the	database	datafiles,	and	the	status	of	the	database.	Of	interest	to	the	RMAN	DBA	is
the	fact	that	the	control	file	also	stores	critical	information	on	various	RMAN	operations,
such	as	the	backup	status	of	each	database	datafile.	If	you	lose	your	control	file,	you	will
need	to	follow	specific	procedures	to	re-create	the	RMAN	catalog	within	it.	Also	of
interest	might	be	the	fact	that	the	checkpoint	SCN	(or	the	SCN	of	the	last	update	of	a
given	datafile)	is	stored	in	the	control	file.	Oracle	will	cross-check	this	checkpoint	SCN
with	the	checkpoint	SCNs	stored	in	the	datafile	headers.	If	they	all	match,	the	database
requires	no	recovery	whatsoever.	If	the	SCNs	do	not	match,	then	some	form	of	recovery
will	be	required.	Typically	this	will	be	crash	recovery,	which	is	automated.	Sometimes,	for
example	if	a	data	file	is	missing,	media	recovery	will	be	required.

Oracle	Tablespaces			Our	tour	continues	into	a	somewhat	metaphysical	part	of	Oracle.
Tablespaces	link	the	physical	world	of	Oracle	(in	the	form	of	database	datafiles)	to	the
logical	world	of	the	tablespace.	Often,	we	refer	to	a	tablespace	as	a	physi-logical	structure.
Oracle	stores	objects	within	tablespaces,	such	as	tables	and	indexes.

A	tablespace	is	physically	made	up	of	one	or	more	Oracle	database	datafiles.	Therefore,
the	overall	space	allocation	available	in	a	tablespace	depends	on	the	overall	allocated	size
of	these	database	datafiles.	There	are	different	kinds	of	tablespaces.	These	include	normal
data	tablespaces,	bigfile	tablespaces,	temporary	tablespaces	(these	use	tempfiles	rather
than	normal	datafiles),	and	undo	tablespaces.

Normal,	undo,	and	temporary	tablespaces	have	a	one-to-many	relationship	with	the
database	datafiles	or	tempfiles.	If	you	create	a	bigfile	tablespace,	then	there	will	be	only
one	datafile.	The	benefit	of	using	a	bigfile	tablespace	is	that	these	tablespaces	can	get
quite	a	bit	larger	than	non-bigfile	tablespaces,	and	as	a	result	they	can	store	more	data	and
take	advantage	of	large	file	systems.

The	bad	thing	about	a	bigfile	tablespace	is	that	it	is	a	single,	large	datafile.	This	was	a
problem	when	bigfile	tablespaces	first	came	out,	but	this	problem	has	since	been
addressed	by	RMAN	through	the	use	of	the	section-size	parameter	of	the	backup
command.	So,	now	you	can	parallelize	the	backup	of	a	bigfile	tablespace	during	your
backups.

A	tablespace	can	have	a	number	of	different	statuses.	It	can	be	OFFLINE	or	ONLINE,
and	may	also	be	in	either	READ	WRITE	or	READ	ONLY	mode.	If	a	tablespace	is	in
READ	ONLY	mode,	the	contents	of	the	tablespace	will	not	change.	Because	the	contents
of	a	READ	ONLY	tablespace	do	not	change,	DBAs	often	only	back	up	READ	ONLY
tablespace	database	datafiles	once,	immediately	after	they	are	made	read-only.	Of	course,
if	the	tablespace	is	ever	taken	out	of	READ	ONLY	mode,	you	need	to	start	backing	up	the
tablespace	again.

Flashback	Logs			Oracle	Database	10g	introduced	the	capability	to	flash	back	the	Oracle
database	to	a	time	other	than	the	current	time.	This	capability	is	facilitated	through	the	use
of	flashback	logs.	Flashback	logs	are	stored	in	the	FRA.	Oracle	is	solely	responsible	for
the	management	of	flashback	logs,	so	it	will	create,	remove,	and	resize	them	as	required.
Also	note	that	flashback	logs	are	not	archived	by	Oracle	and	are	not	needed	for	recovery.
RMAN	supports	flashback	recovery.

The	Fast	Recovery	Area
Oracle	Database	10g	introduced	the	concept	of	the	FRA	(originally	called	the	Flash
Recovery	Area	and	later	renamed	the	Fast	Recovery	Area).	The	FRA	defines	a	central	area
of	disk	space	for	recovery-related	files	such	as	RMAN	backups	and	archived	redo	logs.
The	Fast	Recovery	Area	should	not	be	confused	with	Oracle’s	Flashback	Database
features,	though	the	FRA	does	participate	in	Flashback	Database	operations.	The	FRA
does	more	than	just	support	Flashback	Database	operations,	though.	The	following
structures	can	be	stored	in	the	FRA:

			Archived	redo	logs

			RMAN	backup	set	pieces

			RMAN	datafile	copies

			Flashback	logs

			A	copy	of	the	database	control	file

			One	member	of	each	redo	log	group

			Control	file	autobackups	and	copies

We	will	discuss	the	FRA	in	much	more	detail	throughout	this	book.

Oracle	Automatic	Storage	Management
Oracle	ASM	is	Oracle’s	answer	to	the	need	for	an	integrated	system	to	manage	database
files.	ASM	supports	a	number	of	different	file	system	types,	from	cooked	disk	drives,	to
raw	disk	drives,	to	NetFiler	devices.	The	idea	of	ASM	is	to	simplify	the	life	of	the	DBA
by	making	Oracle	responsible	for	basic	disk	management	operations	such	as	load
balancing	and	data	protection.	RMAN	supports	the	ASM	infrastructure	in	that	you	can
place	your	database	FRA	on	ASM	disks,	or	you	can	back	up	directly	to	ASM	disks.

ASM	has	really	found	its	place	in	the	Oracle	world,	and	we	are	finding	it	being	put	to
use	more	and	more.	At	one	time,	we	felt	that	ASM	might	be	overkill,	but	now	we	feel	that
ASM	is	an	integral	part	of	any	stable	Oracle	database	configuration.	Even	if	you	are	just
using	one	database,	the	features	of	ASM	are	significant	enough	to	consider	using.

Starting	in	Oracle	Database	12cR2,	ASM	became	integrated	into	Oracle	Clusterware
rather	than	being	a	separately	installable	component.	However,	you	can	install	Oracle
Clusterware	and	ASM	without	a	license,	so	you	can	use	ASM	with	the	normal	Oracle
Database	license.	It	is	well	beyond	the	scope	of	this	book	to	get	into	the	specifics	of
installing	and	configuring	ASM.

NOTE

ASM	is	a	major	part	of	an	overall	tiered	RMAN	backup	strategy.	We	discuss
RMAN	backup	strategies	in	Chapter	13.

More	About	the	Oracle	Redo	Logs
We	have	talked	about	the	Oracle	redo	logs	somewhat	already,	but	they	are	such	important
things,	even	when	talking	about	RMAN,	that	we	wanted	to	dive	into	a	bit	more	detail.	You
might	ask,	“But	doesn’t	RMAN	take	care	of	everything	for	me?”	RMAN	certainly	tries	to
take	care	of	everything	for	you,	but	you	will	find	times	when	it’s	your	knowledge	that
gives	you	the	insight	to	truly	save	the	day.	Indeed,	just	having	a	recipe	to	follow	might
well	not	be	enough.	You	need	to	understand	the	whys	and	mechanics	behind	Oracle
Backup	and	Recovery.	As	Carl	Jung	said,	“The	shoe	that	fits	one	person	pinches	another;
there	is	no	recipe	for	living	that	suits	all	cases.”	Just	knowing	the	rudiments	of	backup	and

recovery	does	not	prepare	you	for	all	potential	problems	you	will	face.

Redo	logs	are	typically	created	when	the	database	is	first	created,	and	as	the	database
changes,	you	may	find	that	you	need	to	modify	the	online	redo	log	files	by	creating	more
of	them,	making	them	larger,	or	perhaps	renaming	them.	Because	you	are	an	enlightened
DBA	and	want	to	know	everything	you	can	about	the	backup	and	recovery	of	your
database,	you	will	want	to	understand	online	and	archived	redo	logs.	In	this	section,	we
talk	about	redo	logs	in	a	bit	more	detail.	First,	we	look	at	redo	logs	in	general.	Next,	we
look	at	the	multiplexing	of	online	redo	log	groups	and	the	redo	log	sequence	number.
Finally,	we	address	administration	of	online	redo	logs.

An	Overview	of	Redo	Logs
Oracle	redo	logs	come	in	two	flavors:

			Online	redo	logs

			Archived	redo	logs

Redo	logs	are	one	of	the	most	critical	components	when	restoring	and	recovering	an
Oracle	database.	This	is	because	redo	logs	store	a	history	of	almost	everything	that
happens	in	your	database.	During	normal	database	operations,	the	Oracle	LGWR	process
will	write	to	an	online	redo	log,	creating	a	change	record	that	you	really	hope	you	never
have	to	use.

The	LGWR	process	will	write	information	called	“redo”	to	the	online	redo	log	files	as
the	redo	is	generated	by	Oracle	transactions.	Redo	is	simply	a	record	of	what	occurs	in	the
database	and	the	order	in	which	those	events	happen.	Redo	is	generated	by	almost	every
Oracle	operation,	including	DML,	DDL,	and	transactional	commit	operations.	During
recovery,	Oracle	will	read	the	redo	and	essentially	replay	the	redo	in	the	order	it	was
generated	to	recover	the	database.	Sometimes	this	recovery	is	behind	the	scenes	and
requires	no	DBA	activity	(as	with	crash	recovery),	but	sometimes,	such	as	in	the	case	of
database	or	datafile	recovery,	the	DBA	has	to	get	involved.

Online	redo	log	files	are	fixed	in	size.	Once	the	LGWR	process	has	reached	the	end	of
a	given	online	redo	log	file,	it	will	close	that	file	and	try	to	find	another	online	redo	log
file	to	write	to.	This	process	is	called	a	log	switch.	A	log	switch	is	a	serial	process,	and	is
potentially	very	expensive	from	a	performance	point	of	view.	This	isn’t	a	performance
book,	though,	so	we	won’t	go	into	the	performance	aspects	of	a	log	switch.

During	a	log	switch,	LGWR	will	look	for	an	available	online	redo	log	file	that	it	can
write	to.	If	it	finds	an	available	online	redo	log	file,	it	will	open	that	file	and	begin	to	write
to	it.	If	LGWR	cannot	find	an	available	file,	it	will	wait	for	an	online	redo	log	to	become
available.	While	it’s	waiting,	LGWR	will	be	busy	writing	complaining	messages	to	the
alert	log	and	other	places,	and	database	operations	will	be	suspended.	Database	managers
typically	are	not	too	happy	if	the	databases	stop,	so	we	want	to	avoid	that	if	at	all	possible!

Each	online	redo	log	file	that	is	created	is	assigned	to	an	online	redo	log	group.	In	a
nonclustered	configuration,	Oracle	will	only	write	to	one	redo	log	group	at	a	time.	If	you
are	running	Real	Application	Clusters	(RAC),	each	RAC	instance	will	write	to	its	own	set
of	redo	log	groups.

Online	redo	log	groups	can	have	one	of	several	different	statuses:

			Current			This	is	the	online	redo	log	that	is	in	use.

			Active			This	is	an	online	redo	log	that	is	not	in	the	current	redo	log	file	group,
but	it’s	still	waiting	for	the	ARCH	process	to	finish	copying	redo	to	the	archived
redo	logs.

			Inactive			This	is	an	online	redo	log	that	isn’t	active	and	has	been	archived.

			Unused			This	is	an	online	redo	log	that	has	yet	to	be	used	by	the	Oracle
database.

The	status	of	an	online	redo	log	group	can	be	seen	by	querying	the	V$LOG	view,	as
seen	here:

Multiplexing	Online	Redo	Logs
If	you	want	to	have	a	really	bad	day,	then	just	try	losing	your	active	online	redo	log.	If	you
do,	it’s	pretty	likely	that	your	database	is	about	to	come	crashing	down	and	that	you	will
have	experienced	some	data	loss.	This	is	because	recovery	to	the	point	of	failure	in	an
Oracle	database	is	dependent	on	the	availability	of	the	online	redo	log.	As	you	can	see,	the
online	redo	log	makes	the	database	vulnerable	to	loss	of	a	disk	device,	mistaken
administrative	delete	commands,	and	other	kinds	of	errors.	To	address	this	concern,	you
can	create	mirrors	of	each	online	redo	log.	When	you	have	created	more	than	one	copy	of
an	online	redo	log,	the	group	that	log	is	a	member	of	is	called	a	multiplexed	online	redo
log	group.	Typically	these	multiplexed	copies	are	put	on	different	physical	devices	to
provide	additional	protection	for	the	online	redo	log	groups.	For	highest	availability,	we
recommend	that	you	separate	the	members	of	each	online	redo	log	group	onto	different
disk	devices,	different	everything.	Here	is	an	example	of	creating	a	multiplexed	online
redo	log	group:

Each	member	of	a	multiplexed	online	redo	log	group	is	written	to	in	parallel,	and
having	multiple	members	in	each	group	rarely	causes	performance	problems.

The	Log	Sequence	Number
As	each	online	redo	log	group	is	written	to,	that	group	is	assigned	a	number.	This	is	the
log	sequence	number.	The	first	log	sequence	number	for	a	new	database	is	always	1.	As

the	online	redo	log	groups	are	written	to,	the	number	will	increment	by	one	during	each
log	switch	operation.	So,	the	next	online	redo	log	being	written	to	will	be	log	sequence	2,
and	so	on.

During	normal	database	operations,	Oracle	will	open	an	available	online	redo	log,	write
redo	to	it,	and	then	close	it	once	it	has	filled	the	online	redo	log.	Once	the	online	redo	log
has	filled,	the	LGWR	process	switches	to	another	online	redo	log	group.	At	that	time,	if
the	database	is	in	ARCHIVELOG	mode,	LGWR	also	signals	ARCH	to	wake	up	and	start
working.	This	round-robin	style	of	writing	to	online	redo	logs	is	shown	in	Figure	2-1.

FIGURE	2-1.			Writing	to	online	redo	logs

ARCH	responds	to	the	call	from	LGWR	by	making	copies	of	the	online	redo	log	in	the
locations	defined	by	the	Oracle	database	parameter	LOG_ARCHIVE_DEST_n	and/or	to
the	defined	FRA.	Until	the	ARCH	process	has	successfully	completed	the	creation	of	at
least	one	archived	redo	log,	the	related	online	redo	log	file	cannot	be	reused	by	Oracle.
Depending	on	your	system	configuration,	more	than	one	archived	redo	log	may	need	to	be
created	before	the	associated	online	redo	log	can	be	reused.	As	archived	redo	logs	are
created,	they	maintain	the	log	sequence	number	assigned	to	the	parent	online	redo	log.
That	log	sequence	number	will	remain	unique	for	that	database	until	the	database	is
opened	using	the	resetlogs	operation.	Once	a	resetlogs	operation	is	executed,	the	log
sequence	number	is	reset	to	1.

Another	note	about	opening	the	database	using	the	resetlogs	command	when

performing	recovery:	If	you	are	using	Oracle	Database	10g	and	later	Oracle	provides	the
ability	to	restore	the	database	using	a	backup	taken	before	the	point	in	time	that	you	issued
the	resetlogs	command,	when	you	issue	the	resetlogs	command,	Oracle	will	archive	any
remaining	unarchived	online	redo	logs	before	the	online	redo	logs	are	reset.	This	provides
the	ability	to	restore	the	database	from	a	backup	taken	before	the	issuance	of	the	resetlogs
command.	Using	these	backup	files,	and	all	the	archived	redo	logs,	you	can	now	restore
beyond	the	point	of	the	resetlogs	command.	The	ability	to	restore	past	the	point	of	the
resetlogs	command	relieves	the	DBA	from	the	urgency	of	performing	a	backup	after	a
resetlogs-based	recovery	(though	such	a	backup	is	still	important).	This	also	provides	for
reduced	mean-time-to-recover	because	you	can	open	the	database	to	users	after	the
restore,	rather	than	having	a	requirement	to	back	up	the	database	first.

Finally,	you	should	be	aware	that	when	the	database	opens	with	the	resetlogs
command,	the	archivelog	sequence	numbers	will	be	reset.	The	SCN	of	the	database	is	not
reset,	however.	This	can	have	impacts	on	future	recoveries	by	SCN	or	log	sequence
number.

Management	of	Online	Redo	Logs
The	alter	database	command	is	used	to	add	or	remove	online	redo	logs.	In	this	example,
we	are	adding	a	new	online	redo	log	group	to	the	database.	The	new	logfile	group	will	be
group	4,	and	we	define	its	size	as	100m:

You	can	see	the	resulting	logfile	group	in	the	V$LOG	and	V$LOGFILE	views:

In	this	next	example,	we	remove	redo	logfile	group	4	from	the	database.	Note	that	this
does	not	physically	remove	the	physical	files.	You	will	still	have	to	perform	this	function
after	removing	the	logfile	group.	This	can	be	dangerous,	so	be	careful	when	doing	so:

NOTE

If	you	are	using	the	FRA	or	have	set	the
DB_CREATE_ONLINE_LOG_DEST_n	parameter,	Oracle	will	remove	online
redo	logs	for	you	after	you	drop	them.

To	resize	a	logfile	group,	you	will	need	to	drop	and	then	re-create	it	with	the	bigger	file
size.

ARCHIVELOG	Mode	vs.	NOARCHIVELOG	Mode
An	Oracle	database	can	run	in	one	of	two	modes.	By	default,	the	database	is	created	in
NOARCHIVELOG	mode.	This	mode	permits	normal	database	operations,	but	does	not
provide	the	capability	to	perform	point-in-time	recovery	operations	or	online	backups.	If
you	want	to	do	online	(or	hot)	backups,	then	run	the	database	in	ARCHIVELOG	mode.	In
ARCHIVELOG	mode,	the	database	makes	copies	of	all	online	redo	logs	via	the	ARCH
process	to	one	or	more	archive	log	destination	directories.

The	use	of	ARCHIVELOG	mode	requires	some	configuration	of	the	database	beyond
simply	putting	it	in	ARCHIVELOG	mode.	You	must	also	configure	the	ARCH	process
and	prepare	the	archived	redo	log	destination	directories.	Note	that	once	an	Oracle
database	is	in	ARCHIVELOG	mode,	that	database	activity	will	be	suspended	once	all
available	online	redo	logs	have	been	used.	The	database	will	remain	suspended	until	those
online	redo	logs	have	been	archived.	Thus,	incorrect	configuration	of	the	database	when	it
is	in	ARCHIVELOG	mode	can	eventually	lead	to	the	database	suspending	operations
because	it	cannot	archive	the	current	online	redo	logs.	This	might	sound	menacing,	but
really	it	just	boils	down	to	a	few	basic	things:

			Configure	your	database	properly	(we	cover	configuration	of	your	database	for
backup	and	recovery	in	this	book	quite	well).

			Make	sure	you	have	enough	space	available.

			Make	sure	that	things	are	working	as	you	expect	them	to.	For	example,	if	you
define	a	Fast	Recovery	Area	(FRA)	in	your	ARCHIVELOG	mode	database,	make
sure	the	archived	redo	logs	are	being	successfully	written	to	that	directory.

More	coverage	on	the	implications	of	ARCHIVELOG	mode,	how	to	implement	it	(and
disable	it),	and	the	configuration	for	ARCHIVELOG	operations	can	be	found	in	Chapter
5.

Oracle	Logical	Structures
There	are	several	different	logical	structures	within	Oracle.	These	structures	include
tables,	indexes,	views,	clusters,	user-defined	objects,	and	other	objects	within	the
database.	Schemas	own	these	objects,	and	if	storage	is	required	for	the	objects,	that
storage	is	allocated	from	a	tablespace.

It	is	the	ultimate	goal	of	an	Oracle	backup	and	recovery	strategy	to	be	able	to	recover
these	logical	structures	to	a	given	point	in	time.	Also,	it	is	important	to	recover	the	data	in
these	different	objects	in	such	a	way	that	the	state	of	the	data	is	consistent	to	a	given	point
in	time.	Consider	the	impact,	for	example,	if	you	were	to	recover	a	table	as	it	looked	at	10
A.M.,	but	only	recover	its	associated	index	as	it	looked	at	9	A.M.	The	impact	of	such	an

inconsistent	recovery	could	be	awful.	It	is	this	idea	of	a	consistent	recovery	that	really
drives	Oracle’s	backup	and	recovery	mechanism,	and	RMAN	fits	nicely	into	this	backup
and	recovery	architectural	framework.

The	Combined	Picture
Now	that	we	have	introduced	you	to	the	various	components	of	the	Oracle	database,	let’s
quickly	put	together	a	couple	of	narratives	that	demonstrate	how	they	all	work	together.
First,	we	look	at	the	overall	database	startup	process,	which	is	followed	by	a	narrative	of
the	basic	operational	use	of	the	database.

Startup	and	Shutdown	of	the	Database
Our	DBA,	Eliza,	has	just	finished	some	work	on	the	database,	and	it’s	time	to	restart	it.
She	starts	SQL*Plus	and	connects	as	SYS	using	the	SYSDBA	account.	At	the	SQL
prompt,	Eliza	issues	the	startup	command	to	open	the	database.	The	following	shows	an
example	of	the	results	of	this	command:

Recall	the	different	phases	that	occur	after	the	startup	command	is	issued:	instance
startup,	database	mount,	and	then	database	open.	Let’s	look	at	each	of	these	stages	now	in
a	bit	more	detail.

Instance	Startup	(startup	nomount)
The	first	thing	that	occurs	when	starting	the	database	is	instance	startup.	It	is	here	that
Oracle	parses	the	database	parameter	file	and	makes	sure	that	the	instance	is	not	already
running	by	trying	to	acquire	an	instance	lock.	Then,	the	various	database	processes	(as
described	in	“The	Oracle	Processes,”	earlier	in	this	chapter),	such	as	DBWn	and	LGWR,
are	started.	Also,	Oracle	allocates	memory	needed	for	the	SGA.	Once	the	instance	has
been	started,	Oracle	reports	to	the	user	who	has	started	it	that	the	instance	has	been	started
back	and	how	much	memory	has	been	allocated	to	the	SGA.

Had	Eliza	issued	the	command	startup	nomount,	then	Oracle	would	have	stopped	the
database	startup	process	after	the	instance	was	started.	She	might	have	started	the	instance
in	order	to	perform	certain	types	of	recovery,	such	as	control	file	re-creation.

Mounting	the	Database	(startup	mount)

The	next	stage	in	the	startup	process	is	the	mount	stage.	As	Oracle	passes	through	the
mount	stage,	it	opens	the	database	control	file.	Having	done	that	successfully,	Oracle
extracts	the	database	datafile	names	from	the	control	file	in	preparation	for	opening	them.
Note	that	Oracle	does	not	actually	check	for	the	existence	of	the	datafiles	at	this	point,	but
only	identifies	their	location	from	the	control	file.	Having	completed	this	step,	Oracle
reports	back	that	it	has	mounted	the	database.

At	this	point,	had	Eliza	issued	the	command	startup	mount,	Oracle	would	have
stopped	opening	the	database	and	waited	for	further	direction.	When	the	Oracle	instance	is
started	and	the	database	is	mounted	but	not	open,	certain	types	of	recovery	operations	may
be	performed,	including	renaming	the	location	of	database	datafiles	and	recovery	system
tablespace	datafiles.

Opening	the	Database
Eliza	issued	the	startup	command,	however,	so	Oracle	moves	on	and	tries	to	open	the
database.	During	this	stage,	Oracle	verifies	the	presence	of	the	database	datafiles	and
opens	them.	As	it	opens	them,	it	checks	the	datafile	headers	and	compares	the	SCN
information	contained	in	those	headers	with	the	SCN	stored	in	the	control	files.	Let’s	talk
about	these	SCNs	for	a	second.

SCNs	are	Oracle’s	method	of	tracking	the	state	of	the	database.	As	changes	occur	in	the
database,	they	are	associated	with	a	given	SCN.	As	these	changes	are	flushed	to	the
database	datafiles	(which	occurs	during	a	checkpoint	operation),	the	headers	of	the
datafiles	are	updated	with	the	current	SCN.	The	current	SCN	is	also	recorded	in	the
database	control	file.

When	Oracle	tries	to	open	a	database,	it	checks	the	SCNs	in	each	datafile	and	in	the
database	control	file.	If	the	SCNs	are	the	same	and	the	bitmapped	flags	are	set	correctly,
then	the	database	is	considered	to	be	consistent,	and	the	database	is	opened	for	use.

NOTE

Think	of	SCNs	as	being	like	the	counter	on	a	VCR.	As	time	goes	on,	the	counter
continues	to	increment,	indicating	a	temporal	point	in	time	where	the	tape
currently	is.	So,	if	you	want	to	watch	a	program	on	the	tape,	you	can	simply
rewind	(or	fast	forward)	the	tape	to	the	counter	number,	and	there	is	the
beginning	of	the	program.	SCNs	are	the	same	way.	When	Oracle	needs	to	recover
a	database,	it	“rewinds”	to	the	SCN	it	needs	to	start	with	and	then	replays	all	of
the	transactions	after	that	SCN	until	the	database	is	recovered.

If	the	SCNs	are	different,	then	Oracle	automatically	performs	crash	or	instance
recovery,	if	possible.	Crash	or	instance	recovery	occurs	if	the	redo	needed	to	generate	a
consistent	image	is	in	the	online	redo	log	files.	If	crash	or	instance	recovery	is	not	possible
because	of	a	corrupted	datafile	or	because	the	redo	required	to	recover	is	not	in	the	online
redo	logs,	then	Oracle	requests	that	the	DBA	perform	media	recovery.	Media	recovery

involves	recovering	one	or	more	database	datafiles	from	a	backup	taken	of	the	database
and	is	a	manual	process,	unlike	instance	recovery.	Assisting	in	media	recovery	is	where
RMAN	comes	in,	as	you	will	see	in	later	chapters.	Once	the	database	open	process	is
completed	successfully	(with	no	recovery,	crash	recovery,	or	media	recovery),	then	the
database	is	open	for	business.

Shutting	Down	the	Database
Of	course,	Eliza	will	probably	want	to	shut	down	the	database	at	some	point	in	time.	To	do
so,	she	could	issue	the	shutdown	command.	This	command	closes	the	database,	unmounts
it,	and	then	shuts	down	the	instance	in	almost	the	reverse	order	as	the	startup	process
already	discussed.	There	are	several	options	to	the	shutdown	command.

Note	in	particular	that	a	shutdown	abort	of	a	database	is	basically	like	simulating	a
database	crash.	This	command	is	used	often,	and	it	rarely	causes	problems.	Oracle
generally	recommends	that	your	database	be	shut	down	in	a	consistent	manner,	if	at	all
possible.

If	you	must	use	the	shutdown	abort	command	to	shut	down	the	database	(and	in	the
real	world,	this	does	happen	frequently	because	of	outage	constraints),	then	you	should
reopen	the	database	with	the	startup	command	(or	even	better,	startup	restrict).
Following	this,	do	the	final	shutdown	on	the	database	using	the	shutdown	immediate
command	before	performing	any	offline	backup	operations.	Note	that	even	this	method
may	result	in	delays	shutting	down	the	database	because	of	the	time	it	takes	to	roll	back
transactions	during	the	shutdown	process.

NOTE

As	long	as	your	backup	and	recovery	strategy	is	correct,	it	really	doesn’t
matter	whether	the	database	is	in	a	consistent	state	(as	with	a	normal	shutdown)
or	an	inconsistent	state	(as	with	a	shutdown	abort)	when	an	offline	backup
occurs.	Oracle	does	recommend	that	you	do	cold	backups	with	the	database	in	a
consistent	state,	and	we	recommend	that,	too	(because	the	online	redo	logs	will
not	be	getting	backed	up	by	RMAN).	Finally,	note	that	online	backups	eliminate
this	issue	completely!

More	Oracle	Database	Internals
In	this	section,	we	are	going	to	follow	some	users	performing	different	transactions	in	an
Oracle	database.	First,	we	provide	you	with	a	graphical	roadmap	that	puts	together	all	the
processes,	memory	structures,	and	other	components	of	the	database	for	you.	Then,	we
follow	a	user	as	the	user	makes	changes	to	the	database.	We	then	look	at	commits	and	how
they	operate.	Finally,	we	look	at	database	checkpoints	and	how	they	work.

Process	and	Database	Relationships

We	have	discussed	a	number	of	different	processes,	memory	structures,	and	other	objects
that	make	up	the	Oracle	database.	We	have	also	discussed	the	use	of	multithreaded	Oracle.
Figure	2-2	provides	a	graphic	of	the	Oracle	database	processes	that	might	help	you	better
understand	the	interrelationships	between	the	different	components	in	Oracle.	Even	in
multithreaded	mode,	these	processes	exist,	but	just	as	a	thread	as	opposed	to	individual
processes.

FIGURE	2-2.			Architecture	of	a	typical	Oracle	database

Changing	Data	in	the	Database
Now,	assume	the	database	is	open.	Let’s	say	that	Fred	needs	to	add	a	new	record	to	the
DEPT	table	for	the	janitorial	department.	So,	Fred	might	issue	a	SQL	statement	like	this:

The	insert	statements	(as	well	as	update	and	delete	commands)	are	collectively	known
as	Data	Manipulation	Language	(DML).	As	a	statement	is	executed,	redo	is	generated	and
stored	in	the	redo	log	buffer	in	the	Oracle	SGA.	Note	that	redo	is	generated	by	this
command,	regardless	of	the	presence	of	the	commit	command.	The	delete	and	update
commands	work	generally	the	same	way	with	respect	to	redo	generation.

One	of	the	results	of	DML	is	that	undo	is	generated	and	stored	in	rollback	segments.
Undo	consists	of	instructions	that	allow	Oracle	to	undo	(or	roll	back)	the	statement	being
executed.	Using	undo,	Oracle	can	roll	back	the	database	changes	and	provide	read
consistent	images	(also	known	as	read	consistency)	to	other	users.	Let’s	look	a	bit	more	at
the	commit	command	and	read	consistency.

Committing	the	Change
Having	issued	the	insert	command,	Fred	wants	to	ensure	that	this	change	is	committed	to
the	database,	so	he	issues	the	commit	command:

The	effects	of	issuing	the	commit	command	include	the	following:

			The	change	becomes	visible	to	all	users	who	query	the	table	at	a	point	in	time
after	the	commit	occurs.	If	Eliza	queries	the	DEPT	table	after	the	commit	occurs,
then	she	will	see	department	60.	However,	if	Eliza	had	already	started	a	query
before	the	commit,	then	this	query	would	not	see	the	changes	to	the	table.

			The	change	is	recoverable	if	the	database	is	in	NOARCHIVELOG	mode	and	if
crash	or	instance	recovery	is	required.

			The	change	is	recoverable	if	the	database	is	in	ARCHIVELOG	mode
(assuming	a	valid	backup	and	recovery	strategy)	and	media	recovery	is	required,	and
if	all	archived	and	online	redo	logs	are	available.

The	commit	command	causes	the	Oracle	LGWR	process	to	flush	the	online	redo	log
buffer	to	the	online	redo	logs.	Uncommitted	redo	is	flushed	to	the	online	redo	logs
regardless	of	a	commit	(in	fact,	uncommitted	changes	can	be	written	to	the	datafiles,	too).
When	a	commit	is	issued,	Oracle	writes	a	commit	vector	to	the	redo	log	buffer,	and	the
buffer	is	flushed	to	disk	before	the	commit	returns.	It	is	this	commit	vector,	and	the	fact
that	the	commit	issued	by	Fred’s	session	will	not	return	until	his	redo	has	been	flushed	to
the	online	redo	logs	successfully,	that	will	ensure	that	Fred’s	changes	will	be	recoverable.

The	commit	Command	and	Read	Consistency			Did	you	notice	that	Eliza	was	not	able
to	see	Fred’s	change	until	he	issued	the	commit	command?	This	is	known	as	read
consistency.	Another	example	of	read	consistency	would	be	a	case	where	Eliza	started	a
report	before	Fred	committed	his	change.	Assume	that	Fred	committed	the	change	during
Eliza’s	report.	In	this	case,	it	would	be	inconsistent	for	department	60	to	show	up	in
Eliza’s	report	because	it	did	not	exist	at	the	time	that	her	report	started.	As	Eliza’s	report
continues	to	run,	Oracle	checks	the	start	SCN	of	the	report	query	against	the	SCNs	of	the
blocks	being	read	in	Oracle	to	produce	the	report	output.	If	the	time	of	the	report	is	earlier
than	the	current	SCN	on	the	data	block,	Oracle	goes	to	the	rollback	segments	and	finds

undo	for	that	block	that	will	allow	Oracle	to	construct	an	image	consistent	with	the	time
that	the	report	started.

As	Fred	continues	other	work	on	the	database,	the	LGWR	process	writes	to	the	online
redo	logs	on	a	regular	basis.	At	some	point	in	time,	an	online	redo	log	will	fill	up,	and
LGWR	will	close	that	log	file,	open	the	next	log	file,	and	begin	writing	to	it.	During	this
transition	period,	LGWR	also	signals	the	ARCH	process	to	begin	copying	the	log	file	that
it	just	finished	using	to	the	archive	log	backup	directories.

Checkpoints
Now,	you	might	be	wondering,	when	does	this	data	actually	get	written	out	to	the	database
datafiles?	Recall	that	a	checkpoint	is	an	event	in	which	Oracle	(through	DBWR)	writes
data	out	to	the	datafiles.	There	are	several	different	kinds	of	checkpoints.	Some	of	the
events	that	result	in	a	checkpoint	are	the	following:

			A	redo	log	switch

			Normal	database	shutdowns

			When	a	tablespace	is	taken	in	or	out	of	online	backup	mode	(see	“Oracle
Physical	Backup	and	Recovery”	later	in	this	chapter)

Note	that	ongoing	incremental	checkpoints	occur	throughout	the	lifetime	of	the
database,	providing	a	method	for	Oracle	to	decrease	the	overall	time	required	when
performing	crash	recovery.	As	the	database	operates,	Oracle	is	constantly	writing	out
streams	of	data	to	the	database	datafiles.	These	writes	occur	in	such	a	way	as	to	not
impede	performance	of	the	database.	Oracle	provides	certain	database	parameters	to	assist
in	determining	how	frequently	Oracle	must	process	incremental	checkpoints.

NOTE

You	might	have	heard	of	Oracle	Multitenant,	which	we	will	cover	in	detail	in
Chapter	4.	Even	though	there	are	a	number	of	changes	in	the	way	you	manage	the
Oracle	database	when	using	Oracle	Multitenant,	the	way	that	many	of	the	backup
and	recovery	structures	work,	as	described	in	this	chapter,	largely	have	not
changed.	Where	there	are	slight	differences,	we	will	cover	them	in	Chapter	4.
What	has	changed	is	how	you	back	up	and	recover	the	multitenant	database
structures.	We	will	be	discussing	that	throughout	this	book.

Controlling	the	Database	Software
During	various	recovery	operations,	you	need	to	control	the	state	of	the	Oracle	database
and	its	associated	instance.	Let’s	quickly	review	how	to	start	and	stop	Oracle	databases.

To	start	the	Oracle	Database	12c	database,	you	use	the	SQL*Plus	Oracle	utility.	Log	in
as	the	user	system	by	using	the	SYSDBA	login	ID.	At	the	SQL*Plus	prompt,	issue	the

startup	command,	as	you	can	see	in	this	example:

When	you	start	an	Oracle	database	with	the	startup	command,	the	operation	goes
through	three	different	phases:

			Instance	startup			The	Oracle	database	instance	is	started.

			Database	mount			The	Oracle	database	is	mounted.

			Database	open			The	Oracle	database	is	opened	for	user	activity.

NOTE

You	should	be	aware	that	the	RMAN	client,	which	we	will	discuss	in	later
chapters,	has	the	ability	to	shut	down	and	start	up	the	Oracle	database	on	its
own.	You	will	not	need	to	move	from	RMAN	to	SQL*Plus	during	a	recovery
operation	in	most	cases.

The	startup	command	has	several	different	variations	(which	are	important	to	know
for	several	different	RMAN	operations),	including	the	following:

			startup			Causes	Oracle	to	go	through	each	of	the	three	startup	phases	and	to
open	to	the	user	community.

			startup	restrict			Causes	Oracle	to	go	through	each	of	the	three	startup	phases
and	to	open	in	restricted	mode.	Only	those	users	with	restricted	privileges	can	access
the	database.

			startup	nomount			Causes	the	startup	process	to	stop	after	it	has	successfully
started	the	database	instance.	You	will	often	use	this	command	to	start	the	database
instance	prior	to	actually	creating	a	database.	This	command	is	also	handy	to	have	if
you	need	to	re-create	the	control	file.	Note	that	to	use	RMAN	with	a	given	database,
you	must	be	able	to	successfully	start	the	instance	with	the	startup	nomount
command.

			startup	mount			Causes	the	startup	process	to	stop	after	it	has	successfully
started	the	database	instance	and	then	mounted	it.	This	command	is	helpful	if	you
need	to	recover	the	SYSTEM	tablespace.

			startup	read	only			Causes	your	Oracle	database	(or	standby	database)	to	open
in	READ	ONLY	mode.	Therefore,	DML	operations	are	not	supported,	but	you	can
query	the	database.	This	is	handy	if	you	are	doing	point-in-time	recovery	and	you
want	to	make	sure	you	have	recovered	the	database	to	the	correct	point	in	time
before	you	commit	to	the	new	database	incarnation	with	the	resetlogs	command.

			startup	force			Causes	the	database	to	be	shut	down	with	a	shutdown	abort

(discussed	in	the	next	list).	This	command	can	be	followed	by	the	mode	you	wish
the	database	to	be	opened	in	again.	Examples	include

			startup	force	restrict

			startup	force	mount

			startup	force	nomount

Of	course,	now	that	you	know	how	to	start	up	the	database,	you	need	to	know	how	to
shut	it	down.	Again,	from	SQL*Plus,	you	can	use	the	shutdown	command,	which	comes
in	these	flavors:

			shutdown	(also	shutdown	normal)			Causes	Oracle	to	wait	for	all	user
processes	to	disconnect	from	the	database.	Once	this	has	occurred,	the	database	will
be	completely	shut	down.	Use	of	this	option	avoids	instance	recovery.	After	the
shutdown	command	is	executed,	no	new	user	processes	are	able	to	connect	to	the
database.

			shutdown	immediate			Kills	all	existing	user	sessions	and	rolls	back	all
uncommitted	transactions.	Use	of	this	option	avoids	instance	recovery.	After
shutdown	immediate	is	executed,	no	new	user	processes	are	able	to	connect	to	the
database.

			shutdown	abort			Basically,	this	crashes	the	database.	Use	of	this	option
requires	instance	(but	not	media)	recovery.	After	shutdown	abort	is	executed,	no
new	user	processes	are	able	to	connect	to	the	database.

			shutdown	transactional			Causes	Oracle	to	wait	for	all	user	processes	to
commit	their	current	transactions	and	then	disconnects	the	user	processes	and	shuts
down	the	database.	While	Oracle	is	waiting	for	these	transactions	to	complete,	no
new	user	sessions	are	allowed	to	connect	to	the	database.

As	we	proceed	through	this	book,	we	use	many	of	these	commands,	and	it	is	important
to	understand	what	state	the	database	and	its	associated	instance	are	in	when	the	command
has	completed.

NOTE

Within	Oracle	Multitenant	are	a	number	of	additional	commands	you	would
use	to	manage	the	database.	We	cover	these	in	Chapter	4.

Oracle	Backup	and	Recovery	Primer
Before	you	use	RMAN,	you	should	understand	some	general	backup	and	recovery
concepts	in	Oracle.	Backups	in	Oracle	come	in	two	general	categories:	logical	and
physical.	In	the	following	sections,	we	quickly	look	at	logical	backup	and	recovery	and
then	give	Oracle	physical	backup	and	recovery	a	full	treatment.

Logical	Backup	and	Recovery
Oracle	Database	12c	uses	the	Oracle	Data	Pump	architecture	to	support	logical	backup
and	recovery.	These	utilities	include	the	Data	Pump	Export	program	(expdp)	and	the	Data
Pump	Import	program	(impdp).	With	logical	backups,	point-in-time	recovery	is	not
possible.	RMAN	does	not	do	logical	backup	and	recovery,	so	this	topic	is	beyond	the
scope	of	this	book.

Oracle	Physical	Backup	and	Recovery
Physical	backups	are	what	RMAN	is	all	about.	Before	we	really	delve	into	RMAN	in	the
remaining	chapters	of	this	book,	let’s	first	look	at	what	is	required	to	manually	do	physical
backups	and	recoveries	of	an	Oracle	database.	Although	RMAN	removes	you	from	much
of	the	work	involved	in	backup	and	recovery,	some	of	the	principles	remain	the	same.
Understanding	the	basics	of	manual	backup	and	recovery	will	help	you	understand	what	is
going	on	with	RMAN	and	will	help	us	contrast	the	benefits	of	RMAN	versus	previous
methods	of	backing	up	Oracle.

We	have	already	discussed	ARCHIVELOG	mode	and	NOARCHIVELOG	mode	in
Oracle.	In	either	mode,	Oracle	can	do	an	offline	backup.	Further,	if	the	database	is	in
ARCHIVELOG	mode,	then	Oracle	can	do	offline	or	online	backups.	We	will	cover	the
specifics	of	these	operations	with	RMAN	in	later	chapters	of	this	book.

Of	course,	if	you	back	up	a	database,	it	would	be	nice	to	be	able	to	recover	it.
Following	the	sections	on	online	and	offline	backups,	we	will	discuss	the	different	Oracle
recovery	options	available.	Finally,	in	these	sections,	we	take	a	very	quick,	cursory	look	at
Oracle	manual	backup	and	recovery.

NOARCHIVELOG	Mode	Physical	Backups
We	have	already	discussed	NOARCHIVELOG	mode	in	the	Oracle	database.	This	mode	of
database	operations	supports	backups	of	the	database	only	when	the	database	is	shut
down.	Also,	only	full	recovery	of	the	database	up	to	the	point	of	the	backup	is	possible	in
NOARCHIVELOG	mode.	To	perform	a	manual	backup	of	a	database	in
NOARCHIVELOG	mode,	follow	these	steps	(note	that	these	steps	are	different	if	you	are
using	RMAN,	which	we	will	cover	in	later	chapters):

1.			Shut	down	the	database	completely.

2.			Back	up	all	database	datafiles,	the	control	files,	and	the	online	redo	logs.

3.			Restart	the	database.

ARCHIVELOG	Mode	Physical	Backups
If	you	are	running	your	database	in	ARCHIVELOG	mode,	you	can	continue	to	perform
full	backups	of	your	database	with	the	database	either	running	or	shut	down.	Even	if	you
perform	the	backup	with	the	database	shut	down,	you	will	want	to	use	a	slightly	different
cold	backup	procedure:

1.			Shut	down	the	database	completely.

2.			Back	up	all	database	datafiles.

3.			Restart	the	database.

4.			Force	an	online	redo	log	switch	with	the	alter	system	switch	logfile
command.	Once	the	online	redo	logs	have	been	archived,	back	up	all	archived	redo
logs.

5.			Create	a	backup	of	the	control	file	using	the	alter	database	backup	control
file	to	trace	and	alter	database	backup	controlfile	to	'file_name'	commands.

Of	course,	with	your	database	in	ARCHIVELOG	mode,	you	may	well	want	to	do
online,	or	hot,	backups	of	your	database.	With	the	database	in	ARCHIVELOG	mode,
Oracle	allows	you	to	back	up	each	individual	tablespace	and	its	datafiles	while	the
database	is	up	and	running.	The	nice	thing	about	this	is	that	you	can	back	up	selective
parts	of	your	database	at	different	times.	To	do	an	online	backup	of	your	tablespaces,
follow	this	procedure:

1.			Use	the	alter	tablespace	begin	backup	command	to	put	the	tablespaces	and
datafiles	that	you	wish	to	back	up	in	online	backup	mode.	If	you	want	to	back	up
the	entire	database,	you	can	use	the	alter	database	begin	backup	command	to	put
all	the	database	tablespaces	in	hot	backup	mode.

2.			Back	up	the	datafiles	associated	with	the	tablespace	you	have	just	put	in	hot
backup	mode.	(You	can	opt	to	just	back	up	specific	datafiles.)

3.			Take	the	tablespaces	out	of	hot	backup	mode	by	issuing	the	alter	tablespace
end	backup	command	for	each	tablespace	you	put	in	online	backup	mode	in	Step
1.	If	you	want	to	take	all	tablespaces	out	of	hot	backup	mode,	use	the	alter
database	end	backup	command.

4.			Force	an	online	redo	log	switch	with	the	alter	system	switch	logfile
command.

5.			Once	the	log	switch	has	completed	and	the	current	online	redo	log	has	been
archived,	back	up	all	the	archived	redo	logs.

Note	the	log	switch	and	backup	of	archived	redo	logs	in	Step	5.	This	is	required,
because	all	redo	generated	during	the	backup	must	be	available	to	apply	should	a	recovery
be	required.	While	Oracle	continues	to	physically	update	the	datafiles	during	the	online
backup	(except	for	the	datafile	headers),	there	is	a	possibility	of	block	splitting	during
backup	operations,	which	will	make	the	backed-up	datafile	inconsistent.	Further,	since	a
database	datafile	might	be	written	after	it	has	been	backed	up	but	before	the	end	of	the
overall	backup	process,	it	is	important	to	have	the	redo	generated	during	the	backup	to
apply	during	recovery	because	each	datafile	on	the	backup	might	well	be	current	as	of	a
different	SCN,	and	thus	the	datafile	backup	images	will	be	inconsistent.

Redo	generation	changes	when	you	issue	the	alter	tablespace	begin	backup	command
or	alter	database	begin	backup	command.	Typically,	Oracle	only	stores	change	vectors
as	redo	records.	These	are	small	records	that	just	define	the	change	that	has	taken	place.
When	a	datafile	is	in	online	backup	mode,	Oracle	will	record	the	entire	block	that	is	being
changed	rather	than	just	the	change	vectors.	This	means	total	redo	generation	during

online	backups	can	increase	significantly.	This	can	impact	disk	space	requirements	and
CPU	overhead	during	the	hot	backup	process.	RMAN	enables	you	to	perform	hot	backups
without	having	to	put	a	tablespace	in	hot	backup	mode,	thus	eliminating	the	additional	I/O
you	would	otherwise	experience.	Things	return	to	normal	when	you	end	the	online	backup
status	of	the	datafiles.

Note	that	in	both	backups	in	ARCHIVELOG	mode	(online	and	offline),	we	do	not	back
up	the	online	redo	logs,	and	instead	back	up	the	archived	redo	logs	of	the	database.	In
addition,	we	do	not	back	up	the	control	file,	but	rather	create	backup	control	files.	We	do
this	because	we	never	want	to	run	the	risk	of	overwriting	the	online	redo	logs	or	control
files	during	a	recovery.

You	might	wonder	why	we	don’t	want	to	recover	the	online	redo	logs.	During	a
recovery	in	ARCHIVELOG	mode,	the	most	current	redo	is	likely	to	be	available	in	the
online	redo	logs,	and	thus	the	current	online	redo	log	will	be	required	for	full	point-in-time
recovery.	Because	of	this,	we	do	not	overwrite	the	online	redo	logs	during	a	recovery	of	a
database	that	is	in	ARCHIVELOG	mode.	If	the	online	redo	logs	are	lost	as	a	result	of	the
loss	of	the	database	(and	hopefully	this	will	not	be	the	case),	you	will	have	to	do	point-in-
time	recovery	with	all	available	archived	redo	logs.

For	much	the	same	reason	that	we	don’t	back	up	the	online	redo	logs,	we	don’t	back	up
the	control	files.	Because	the	current	control	file	contains	the	latest	online	and	archived
redo	log	information,	we	do	not	want	to	overwrite	that	information	with	earlier
information	on	these	objects.	In	case	we	lose	all	of	our	control	files,	we	will	use	a	backup
control	file	to	recover	the	database.

Finally,	consider	performing	supplemental	backups	of	archived	redo	log	files	and	other
means	of	protecting	the	archived	redo	logs	from	loss.	Loss	of	an	archived	redo	log	directly
impacts	your	ability	to	recover	your	database	to	the	point	of	failure.	If	you	lose	an
archived	redo	log	and	that	log	sequence	number	is	no	longer	part	of	the	online	redo	log
groups,	you	will	not	be	able	to	recover	your	database	beyond	the	archived	redo	log
sequence	prior	to	the	sequence	number	of	the	lost	archived	redo	log.

NOARCHIVELOG	Mode	Recoveries
If	you	need	to	recover	a	backup	taken	in	NOARCHIVELOG	mode,	doing	so	is	as	simple
as	recovering	all	the	database	datafiles,	the	control	files,	and	the	online	redo	logs	and
starting	the	database.	Of	course,	a	total	recovery	may	require	such	things	as	recovering	the
Oracle	RDBMS	software,	the	parameter	file,	and	other	required	Oracle	items,	which	we
will	discuss	in	the	last	section	of	this	chapter.

Note	that	a	recovery	in	NOARCHIVELOG	mode	is	only	possible	to	the	point	in	time
that	you	took	your	last	backup.	If	you	are	recovering	a	database	backed	up	in
NOARCHIVELOG	mode,	you	can	only	recover	the	database	to	the	point	of	the	backup.
No	database	changes	after	the	point	of	the	backup	can	be	recovered	if	your	database	is	in
NOARCHIVELOG	mode.

ARCHIVELOG	Mode	Recoveries
A	database	that	is	in	ARCHIVELOG	mode	can	be	backed	up	using	online	or	offline

backups.	The	fortunate	thing	about	ARCHIVELOG	mode,	as	opposed	to
NOARCHIVELOG	mode,	is	that	you	can	recover	the	database	to	the	point	of	the	failure
that	occurred.	In	addition,	you	can	choose	to	recover	the	database	to	a	specific	point	in
time,	or	to	a	specific	point	in	time	based	on	the	change	number.

ARCHIVELOG	mode	recoveries	also	allow	you	to	do	specific	recoveries	on	datafiles,
tablespaces,	or	the	entire	database.	In	addition,	you	can	do	point-in-time	recovery	or
recovery	to	a	specific	SCN.	Let’s	quickly	look	at	each	of	these	options.

In	this	section,	we	briefly	cover	full	database	recoveries	in	ARCHIVELOG	mode.	We
then	look	at	tablespace	and	datafile	recoveries,	followed	by	point-in-time	recoveries.

ARCHIVELOG	Mode	Full	Recovery			You	can	recover	a	database	backup	in
ARCHIVELOG	mode	up	to	the	point	of	failure,	assuming	that	the	failure	of	the	database
did	not	compromise	at	least	one	member	of	each	of	your	current	online	redo	log	groups
and	any	archived	redo	logs	that	were	not	backed	up.	If	you	have	lost	your	archived	redo
logs	or	online	redo	logs,	you	will	need	to	perform	some	form	of	point-in-time	recovery,	as
discussed	later	in	this	section.	Also,	if	you	have	lost	all	copies	of	your	current	control	file,
you	will	need	to	recover	it	and	perform	an	incomplete	recovery.

To	perform	a	full	database	recovery	from	a	backup	of	a	database	in	ARCHIVELOG
mode,	follow	this	procedure:

1.			Restore	all	the	database	datafiles	from	your	backup.

2.			Restore	all	backed	up	archived	redo	logs.

3.			Mount	the	database	(startup	mount).

4.			Recover	the	database	(recover	database).

5.			Oracle	prompts	you	to	apply	redo	from	the	archived	redo	logs.	Simply	enter
AUTO	at	the	prompt,	and	Oracle	will	automatically	apply	all	redo	logs.

6.			Once	all	redo	logs	have	been	applied,	open	the	recovered	database	(alter
database	open).

ARCHIVELOG	Tablespace	and	Datafile	Recovery			Tablespace	and	datafile	recovery
can	be	performed	with	the	database	mounted	or	open.	To	perform	a	recovery	of	a
tablespace	in	Oracle	with	the	database	open,	follow	these	steps:

1.			Take	the	tablespace	offline	(alter	tablespace	offline).

2.			Restore	all	datafiles	associated	with	the	tablespace	to	be	recovered.

3.			Recover	the	tablespace	(recover	tablespace)	online.

4.			Once	recovery	has	completed,	bring	the	tablespace	online	(alter	tablespace
online).

Just	as	you	can	recover	a	tablespace,	you	can	also	recover	specific	datafiles.	This	has
the	benefit	of	leaving	the	tablespace	online.	Only	data	that	resides	in	the	offline	datafiles
will	be	unavailable	during	the	recovery	process.	The	rest	of	the	database	will	remain
available	during	the	recovery.	Here	is	a	basic	outline	of	a	datafile	recovery:

1.			Take	the	datafile	offline	(alter	database	datafile	'file_name'	offline).

2.			Restore	all	datafiles	to	be	recovered.

3.			Recover	the	tablespace	(recover	datafile)	online.

4.			Once	recovery	has	completed,	bring	the	datafile	online	(alter	database
datafile	'file_name'	online).

ARCHIVELOG	Point-in-Time	Recoveries			Another	benefit	of	ARCHIVELOG	mode	is
the	capability	to	recover	a	database	to	a	given	point	in	time	rather	than	to	the	point	of
failure.	This	capability	is	used	often	when	creating	a	clone	database	(perhaps	for	testing	or
reporting	purposes)	or	in	the	event	of	major	application	or	user	error.	You	can	recover	a
database	to	either	a	specific	point	in	time	or	a	specific	database	SCN.

If	you	want	to	recover	a	tablespace	to	a	point	in	time,	you	need	to	recover	the	entire
database	to	the	same	point	in	time	(unless	you	perform	tablespace	point-in-time	recovery,
which	is	a	different	topic).	For	example,	assume	that	you	have	an	accounting	database,
that	most	of	your	data	is	in	the	ACCT	tablespace,	and	that	you	wish	to	recover	the
database	back	in	time	two	days.	You	cannot	just	restore	the	ACCT	tablespace	and	recover
it	to	a	point	in	time	two	days	ago,	because	the	remaining	tablespaces	(SYSTEM,	TEMP,
and	RBS,	for	example)	will	still	be	consistent	to	the	current	point	in	time,	and	the	database
will	fail	to	open	because	it	will	be	inconsistent.

To	recover	a	database	to	a	point	in	time,	follow	these	steps:

1.			Recover	all	database	datafiles	from	a	backup	that	ended	before	the	point	in
time	to	which	you	want	to	recover	the	database.

2.			Recover	the	database	to	the	desired	point	in	time.	Use	the	command	recover
database	until	time	'01-01-2010	21:00:00'	and	apply	the	redo	logs	as	required.

3.			Once	the	recovery	is	complete,	open	the	database	using	the	alter	database
open	resetlogs	command.

You	can	also	choose	to	recover	the	database	using	an	SCN	number:

1.			Recover	all	database	datafiles	from	a	backup	that	ended	before	the	point	in
time	to	which	you	want	to	recover	the	database.

2.			Recover	the	database	to	the	desired	SCN.	Use	the	command	recover
database	until	change	'221122'	and	apply	the	redo	logs	as	required.

3.			Once	the	recovery	is	complete,	open	the	database.

Further,	you	can	apply	changes	to	the	database	and	manually	cancel	the	process	after	a
specific	archived	redo	log	has	been	applied:

1.			Recover	all	database	datafiles	from	a	backup	that	ended	before	the	point	in
time	to	which	you	want	to	recover	the	database.

2.			Recover	the	database	to	the	desired	point	in	time.	Use	the	command	recover
database	until	cancel	and	apply	the	redo	logs	as	required.	When	you	have	applied
the	last	archived	redo	log,	simply	issue	the	cancel	command	to	finish	applying
redo.

3.			Once	the	recovery	is	complete,	open	the	database.

Keep	in	mind	the	concept	of	database	consistency	when	doing	point-in-time	recovery
(or	any	recovery,	for	that	matter).	If	you	are	going	to	recover	a	database	to	a	given	point	in
time,	you	must	do	so	with	a	backup	that	finished	before	the	point	in	time	to	which	you
wish	to	recover.	Also,	you	must	have	all	the	archived	redo	logs	(and	possibly	the
remaining	online	redo	logs)	available	to	complete	recovery.

A	Word	About	Flashback	Database			Another	recovery	method	available	to	you	is	the
use	of	Oracle’s	flashback	features.	We	cover	Oracle’s	flashback	features	in	more	depth	in
Chapter	16,	but	know	that	with	the	varied	flashback	functionality,	you	can	significantly
reduce	the	overall	time	it	takes	to	recover	your	database	from	user-	and	application-level
errors.	RMAN	supports	some	of	the	Oracle	Database	12c	flashback	features,	so	it	is	most
appropriate	to	cover	those	in	this	book.

Backing	Up	Other	Oracle	Components
We	have	quickly	covered	the	essentials	of	backup	and	recovery	for	Oracle.	One	last	issue
that	remains	to	be	covered	is	the	items	that	need	to	be	backed	up.	These	generally	are
backed	up	with	less	frequency	because	they	change	rarely.	These	items	include	the
following:

			The	Oracle	RDBMS	software	(Oracle	Home	and	the	Oracle	Inventory).

			Network	parameter	files	(names.ora,	sqlnet.ora,	and	tnsnames.ora).

			Database	parameter	files	(init.ora,	INI	files,	and	so	forth).	Note	that	RMAN
does	allow	you	to	back	up	the	database	parameter	file	(only	if	it’s	a	SPFILE)	along
with	the	control	file!

			The	system	oratab	file	and	other	system	Oracle-related	files	(for	example,	all
rc	startup	scripts	for	Oracle).

It	is	important	that	these	items	be	backed	up	regularly	as	a	part	of	your	backup	and
recovery	process.	You	need	to	plan	to	back	up	these	items	regardless	of	whether	you	do
manual	backups	or	RMAN	backups,	because	RMAN	does	not	back	up	these	items	either.

As	you	can	see,	the	process	of	backup	and	recovery	of	an	Oracle	database	can	involve	a
number	of	steps.	Because	DBAs	want	to	make	sure	they	do	backups	correctly	every	time,
they	generally	write	a	number	of	scripts	for	this	purpose.	There	are	a	few	problems	with
this	practice,	however.	First	of	all,	scripts	can	break.	When	the	script	breaks,	who	is	going
to	support	it,	particularly	when	the	DBA	who	wrote	it	moves	to	a	new	position	somewhere
in	the	inaccessible	tundra	in	northern	Alaska?	Second,	either	you	have	to	write	the	script
to	keep	track	of	when	you	add	or	remove	datafiles,	or	you	have	to	manually	add	or	remove
datafiles	from	the	script	as	required.

With	RMAN,	you	get	a	backup	and	recovery	product	that	is	included	with	the	base
database	product	for	free,	and	that	reduces	the	complexity	of	the	backup	and	recovery
process.	Also,	you	get	the	benefit	of	Oracle	support	when	you	run	into	a	problem.	Finally,
with	RMAN,	you	get	additional	features	that	no	other	backup	and	recovery	process	can
match.	We	will	look	at	those	features	in	coming	chapters.

Summary
We	didn’t	discuss	RMAN	much	in	this	chapter,	but	we	laid	some	important	groundwork
for	future	discussions	of	RMAN	that	you	will	find	in	later	chapters.	As	promised,	we
covered	some	essential	backup	and	recovery	concepts,	such	as	high	availability	and
backup	and	recovery	planning,	that	are	central	to	the	purpose	of	RMAN.	We	then	defined
several	Oracle	terms	that	you	need	to	be	familiar	with	later	in	this	text.	We	also	reviewed
the	Oracle	database	architecture	and	internal	operations.	We	cannot	stress	enough	how
important	it	is	to	have	an	understanding	of	how	Oracle	works	inside	when	it	comes	time	to
actually	recover	your	database	in	an	emergency	situation.	Finally,	we	discussed	manual
backup	and	recovery	operations	in	Oracle.	Contrast	these	to	the	same	RMAN	operations
in	later	chapters,	and	you	will	find	that	RMAN	is	ultimately	an	easy	solution	for	backing
up	and	recovering	your	Oracle	database.

CHAPTER
3

Introduction	to	the	RMAN	Architecture

T
his	chapter	takes	you	through	each	of	the	components	in	the	RMAN	architecture,	one	by
one,	explaining	the	role	each	plays	in	a	successful	backup	or	recovery	of	the
Oracle	database.	Most	of	this	discussion	assumes	that	you	have	a	good
understanding	of	the	Oracle	RDBMS	architecture.	If	you	are	not	familiar	at	a
basic	level	with	the	different	components	of	an	Oracle	database,	you	might	want

to	read	the	brief	introduction	in	Chapter	2,	or	pick	up	a	beginner’s	guide	to	database
administration,	before	continuing.	After	we	discuss	the	different	components	for	backup
and	recovery,	we	walk	through	a	simple	backup	procedure	to	disk	and	talk	about	each
component	in	action.

Server-Managed	Recovery
In	the	previous	chapter,	you	learned	the	principles	and	practices	of	backup	and	recovery	in
the	old	world.	It	involved	creating	and	running	scripts	to	capture	the	filenames,	associate
them	with	tablespaces,	get	the	tablespaces	into	backup	mode,	get	an	OS	utility	to	perform
the	copy,	and	then	stop	backup	mode.

But	this	book	is	really	about	using	Recovery	Manager	(RMAN).	Recovery	Manager
implements	a	type	of	server-managed	recovery	(SMR).	SMR	refers	to	the	ability	of	the
database	to	perform	the	operations	required	to	keep	itself	backed	up	successfully.	It	does
so	by	relying	on	built-in	code	in	the	Oracle	RDBMS	kernel.	Who	knows	more	about	the
schematics	of	the	database	than	the	database	itself?

The	power	of	SMR	comes	from	what	details	it	can	eliminate	on	your	behalf.	As	the
degree	of	enterprise	complexity	increases	and	the	number	of	databases	that	a	single	DBA
is	responsible	for	increases,	personally	troubleshooting	dozens	or	even	hundreds	of
individual	scripts	becomes	too	burdensome.	In	other	words,	as	the	move	to	“grid
computing”	becomes	more	mainstream,	the	days	of	personally	eyeballing	all	the	little
details	of	each	database	backup	become	a	thing	of	the	past.	Instead,	many	of	the	nitpicky
details	of	backup	management	get	handled	by	the	database	itself,	allowing	us	to	take	a
step	back	from	the	day-to-day	upkeep	and	to	concentrate	on	more	important	things.
Granted,	the	utilization	of	RMAN	introduces	certain	complexities	that	overshadow	the
complete	level	of	ease	that	might	be	promised	by	SMR—why	else	would	you	be	reading
this	book?	But	the	blood,	sweat,	and	tears	you	pour	into	RMAN	will	give	you	huge
payoffs.	You’ll	see.

The	RMAN	Utility
RMAN	is	the	specific	implementation	of	SMR	provided	by	Oracle.	RMAN	is	a	stand-
alone	application	(not	unlike	SQL*Plus)	that	makes	a	client	connection	to	the	Oracle
database.	To	perform	its	duties,	RMAN	has	to	be	able	to	access	internal	backup	and
recovery	packages.	These	internal	RMAN	packages	are	built	into	the	Oracle	Database
kernel,	so	they	are	available	even	if	the	database	is	not	open.	These	packages	are	available
as	soon	as	the	database	instance	is	started	in	NOMOUNT	mode.	There	are	some	basic
procedures	to	follow	if	you	can’t	get	the	Oracle	database	instance	to	start,	which	we	will
describe	in	this	book	when	we	discuss	backup	and	recovery.

The	result	is	that	RMAN	is,	at	its	very	core,	nothing	more	than	a	command	interpreter
that	takes	simplified	commands	you	type,	submits	them	to	the	database,	and	turns	those
commands	into	remote	procedure	calls	(RPCs)	that	are	executed	at	the	database.	We	point
this	out	primarily	to	make	one	thing	very	clear:	RMAN	does	very	little	work.	The	real
work	of	actually	backing	up	and	recovering	a	database	is	performed	by	programs	and	the
spawned	processes	of	those	programs	within	the	target	database	itself.	The	target	database
refers	to	the	database	that	is	being	backed	up.

You	can	actually	see	the	internal	PL/SQL	packages	that	RMAN	uses	in	the	database,
and	in	the	early	days	of	RMAN	there	were	rare	cases	that	you	actually	had	to	access	those
packages	to	be	able	to	restore	your	database.	Those	days	are	long	past,	though.	The	last
time	I	had	to	do	any	kind	of	manual	restore	with	the	PL/SQL	packages	was	back	in	the
Oracle	8i	days.	Since	then,	RMAN	has	added	some	commands	that	have	removed	almost
any	need	to	access	these	packages.	In	very	rare	situations	you	might	need	to	use	them	to
reset	some	setting,	but	these	cases	are	well	documented	on	Metalink	Oracle	Support
(MOS),	and	by	and	large	they	are	not	something	to	worry	about.

The	RMAN	utility	is	automatically	installed	when	the	database	software	is	installed,
just	like	Data	Pump	or	SQL*Loader	is.	RMAN	is	included	with	Enterprise	and	Standard
Editions,	although	there	are	restrictions	if	you	have	a	license	only	for	Standard	Edition:
without	Enterprise	Edition,	for	example,	RMAN	can	only	allocate	a	single	channel	for
backups.	As	of	Oracle	Database	12c,	the	current	database	family	consists	of	the	following
editions:

			Oracle	Database	Standard	Edition	Two

			Oracle	Database	Enterprise	Edition

			Oracle	Database	Express	Edition

			Oracle	Database	Personal	Edition

Oracle	Enterprise	Edition	has	the	largest	number	of	supported	features,	and	the	two
versions	of	Standard	Edition	have	restricted	feature	sets.	The	feature	differences	are	pretty
wide,	and	they	change	from	time	to	time.	We	recommend	that	you	review	Chapter	1	of	the
Oracle	Database	Licensing	Information	documentation	for	Oracle	Database	12cR1	if	you
wish	to	determine	what	features	in	your	version	of	the	database	are	supported.	In	this
book,	we	assume	you	are	using	Oracle	Enterprise	Edition;	therefore,	all	the	features	of	that
version	of	the	database	product	will	be	supported.

Although	we	won’t	provide	an	exhaustive	list	of	features	not	supported,	here	are	some
of	the	main	RMAN	features	we	discuss	that	are	only	supported	by	Oracle	Database
Enterprise	Edition:

			Multitenant

			Oracle	Data	Guard	features

			Parallelized	and	duplexed	backup	sets

			Block	change	tracking	for	incremental	backups

			Unused	block	compression	in	RMAN	backups

			Block-level	recovery	via	RMAN

			Automatic	block	repair

			Tablespace	point-in-time	recovery

			Trial	recoveries

			Flashback	Database	features

			Cross-platform	backup	and	recovery

You	can	also	install	RMAN	as	part	of	the	Oracle	client	install.	If	you	wish	to	install
RMAN	during	the	client	install,	you	need	to	choose	the	Administrator	option	instead	of
the	Runtime	client	option.

The	RMAN	utility	is	made	up	of	several	pieces	of	code,	including	the	following:

			The	RMAN	executable			The	client	used	to	interface	with	RMAN.

			The	$ORACLE_HOME/rdbms/admin/recover.bsq	file			This	file	almost
provides	a	script	for	what	the	commands	you	issue	from	RMAN	do.	It	shows	you
the	procedures	being	called	and	other	process-related	information.

			The	$ORACLE_HOME/rdbms/admin/dbmsrman.sql	file			This	file
contains	the	header	files	for	the	wrapped	dbms_rcvman	PL/SQL	package	that	is
loaded	into	the	database.	This	package	is	mostly	dedicated	to	the	management	of	the
RMAN	metadata	records.

			The	$ORACLE_HOME/rdbms/admin/dbmsbkrs.sql	file			This	is	the
header	file	for	the	dbms_backup_restore-wrapped	PL/SQL	package	that	is	loaded
in	the	database.	A	great	deal	of	commentary	related	to	RMAN	is	contained	in	this
file.	If	you	truly	want	to	understand	the	guts	of	RMAN,	this	is	a	long	file	to	look
through.

			The	Oracle	database	stored	packages	dbms_backup_restore	and
dbms_rcvcat			These	wrapped	packages	are	really	the	guts	of	RMAN.	Most	RMAN
operations	consist	of	calls	to	one	of	these	two	packages,	which	do	the	actual	work.

Needless	to	say,	you	should	never	change	any	of	these	files,	but	we	thought	it	would	be
nice	to	show	you	where	the	interesting	stuff	resides	(in	case	you	like	to	go	spelunking).

Of	all	of	these	files,	the	recover.bsq	file	is	probably	the	brains	of	the	whole	operation.	It
coordinates	the	commands	from	the	RMAN	client	to	the	database	packages.	So,	RMAN	is
kind	of	like	the	Godfather—he	gives	the	basic	order:	“restore	the	database.”	The
recover.bsq	file	is	his	lieutenant,	who	designs	the	plan	and	implements	it.	This	file	then
gets	the	strong-armed	RDBMS	packages	to	do	the	heavy	lifting.	Think	about	it:	the
Godfather	can	even	say	“drop	database”	and	it	will	mysteriously	disappear…	probably	to
be	found	buried	somewhere	in	the	Nevada	desert.

The	RMAN	utility	serves	a	distinct,	orderly,	and	predictable	purpose:	it	interprets
commands	you	provide	into	PL/SQL	calls	that	are	remotely	executed	at	the	target
database.	The	command	language	is	unique	to	RMAN,	and	using	it	takes	a	little	practice.
It	is	essentially	a	stripped-down	list	of	all	the	things	you	need	to	do	to	back	up,	restore,	or
recover	databases,	or	to	manipulate	those	backups	in	some	way.	These	commands	are

interpreted	by	the	executable	translator,	then	matched	to	PL/SQL	blocks	in	the	recover.bsq
file.	RMAN	then	passes	these	RPCs	to	the	database	to	gather	information	based	on	what
you	have	requested.	If	your	command	requires	an	I/O	operation	(in	other	words,	a	backup
command	or	a	restore	command),	then	when	this	information	is	returned,	RMAN	prepares
another	block	of	procedures	and	passes	it	back	to	the	target	database.	These	blocks	are
responsible	for	engaging	the	system	calls	to	the	OS	for	specific	read	or	write	operations.

RMAN	and	Database	Privileges
Just	like	SQL*Plus,	RMAN	is	a	client.	Just	like	with	SQL*Plus,	you	need	to	have	the
correct	privileges	to	log	into	the	database	using	RMAN.	Prior	to	Oracle	Database	12c,
RMAN	required	SYSDBA	or	SYSOPER	privilege	for	whatever	account	it	logged	into.
This	makes	sense	because	RMAN	needs	to	have	the	privileges	necessary	to	start	up,	shut
down,	and—during	restore	operations—create	the	target	database	and	so	on.	So,	if	you
have	an	account	with	SYSDBA	privileges,	RMAN	can	connect	to	it	as	shown	here:

Note	that	you	don’t	need	to	use	the	“as	sysdba”	part	of	the	connection	string.	RMAN
always	assumes	that	you	intend	to	connect	using	the	SYSDBA	privileges.

In	Oracle	Database	12c,	a	new	privilege	called	SYSBACKUP	has	been	added.	Now	a
user	can	have	either	SYSDBA	or	SYSBACKUP	privilege	to	use	RMAN.	The
SYSBACKUP	privilege	is	more	restrictive	than	SYSDBA.	When	you	connect	as
SYSBACKUP,	your	current	schema	will	be	the	SYS	schema,	but	the	current	user	will	be
SYSBACKUP	(as	opposed	to	SYSDBA).

The	SYSBACKUP	privilege	has	a	number	of	system-level	privileges	associated	with	it.
You	can	find	these	privileges	documented	in	Chapter	4	of	the	Oracle	Database	Security
Guide	12c.

If	you	try	to	connect	as	someone	who	does	not	have	the	appropriate	privileges,	RMAN
will	give	you	an	error:

This	is	a	common	error	during	the	setup	and	configuration	phase	of	RMAN.	It	is
encountered	when	you	are	not	logged	into	your	server	in	such	a	way	that	you	do	not	have
sufficient	privileges	to	perform	RMAN	operations.	This	can	be	due	to	many	different
reasons.	You	may	have	OS	authenticated	logins	disabled,	you	may	not	have	a	password
file	properly	configured,	or	your	user	might	not	have	the	right	permissions.	Any	number
of	reasons	can	cause	your	login	to	be	rejected.	In	Chapter	7	we	walk	through	examples	of
properly	setting	up	RMAN	privileges	so	that	you	can	use	the	product.

The	Network	Topology	of	RMAN	Backups
When	it	comes	to	using	RMAN	over	the	network,	just	think	of	it	like	using	SQL*Plus.	If
you	are	using	RMAN	on	the	backup	server,	then	all	you	need	to	do	is	set	the	Oracle
environment	as	you	would	for	SQL*Plus	and	carry	on	executing	RMAN	commands.

Additionally,	just	like	with	SQL*Plus,	if	you	want	to	run	RMAN	remotely,	you	use
TNS	services	to	connect	to	the	database.	When	you	connect	remotely	via	TNS	to	a
privileged	account	(such	as	SYSDBA),	the	database	must	have	a	password	file.	The	same
is	true	if	you	are	using	RMAN.	All	the	RMAN	connections	have	to	use	privileged
accounts,	so	to	use	RMAN	via	Oracle	TNS,	the	database	must	have	a	password	file.

RMAN	and	Scale
True	story.	One	evening	this	author	had	a	call	from	one	of	the	higher-ups	of	the	company	I
was	working	for.	A	real	disaster	had	occurred	at	a	company	we	did	business	with,	and	they
were	in	deep	trouble.	I	was	on	a	red-eye	flight	that	night	and	landed	the	next	morning.
When	I	got	to	the	company	data	center,	I	arrived	to	see	a	number	of	people	with	long	faces
—they	were	not	happy.

As	I	dove	into	the	problem,	I	found	the	following:

			A	disk	controller	had	failed.

			Around	200	databases	were	impacted.

			They	had	replaced	the	disk	controller,	and	when	they	spun	up	the	disks,	they
discovered	that	there	was	a	lot	of	corrupted	blocks	on	those	disks.

			As	a	result	of	the	corruption,	some	75	percent	of	the	databases	would	not	start.

This	was	a	huge	problem,	of	course.	However,	there	was	this	sense	of	calm	as	everyone
was	sure	that	backups	were	available	to	restore	these	databases.	Then	the	calm	turned	into
desperation	as	we	discovered	the	following:

			There	was	no	standardized	way	used	to	back	up	the	databases.	Some	DBAs
used	their	own	home-grown	scripts,	some	used	RMAN,	and	some	used	one	of	two
tools	that	the	organization	owned.	Worse	yet,	three	of	the	DBAs	were	away	on
vacation.

			We	discovered	that	the	sole	location	where	the	most	current	backups	were
stored	was	on	the	disk	array	that	had	failed.	Many	of	the	backups	and/or	archived
redo	logs	were	therefore	unavailable	to	perform	full	restores.

			There	were	offsite	backups,	but	at	best	they	were	a	week	old.

As	you	can	imagine,	the	restore	exercise	was	a	long	and	painful	one,	and	in	many	cases	it
was	not	a	complete	one.	The	team	I	was	working	with	literally	spent	three	days	combing
through	how	they	were	doing	backups	for	each	individual	database,	where	those	backups
were,	what	kind	of	restore	needed	to	be	done,	and	then	scrambling	to	see	if	the	recovery
was	even	possible.	I	had	not	spent	sleepless	nights	like	that	for	many	years.

A	lot	of	lessons	can	be	learned	from	this	experience,	to	be	sure.	Some	of	these	lessons

we	discuss	in	Chapter	15,	in	which	we	discuss	architecting	an	enterprise-worthy	backup
and	recovery	strategy.	The	other	lesson,	which	I	think	is	relevant	for	this	chapter,	is	one	of
consistency	and	standardization.	Particularly	with	backup	and	recovery,	it’s	important	to
have	a	single,	enterprise-wide	solution	that	everyone	else	knows	about.	This	is	the	only
way	you	can	scale	as	your	organization	grows.	This	is	also	how	you	reduce	risk	and
downtime.

That	being	said,	we	strongly	suggest	that	you	consolidate	all	of	your	Oracle	database
backup	jobs	using	RMAN	as	your	sole	platform.	Further,	as	we	will	discuss	in	Chapters
14,	we	strongly	recommend	using	the	Oracle	Cloud	Control	infrastructure	to	manage	all	of
your	RMAN	backups,	including	scheduling	them.	This	architecture	provides	an	easy-to-
use,	single	pane	of	glass	from	which	to	manage	your	backups	and	restores.

Frankly,	the	growth	of	data	and	the	proliferation	of	databases	is	not	going	to	stop.	It’s
just	going	to	become	harder	and	harder	to	manage	the	sprawl.	Therefore,	cron	jobs	and
home-baked	shell	scripts	just	don’t	cut	it	anymore.	There	is	a	significant	cost	to	these
things—they	might	be	fun	to	do,	but	they	cost	money	and	they	don’t	scale	for	many
reasons.	You	should	avoid	them	and	instead	look	to	OEM	to	help	you	centrally	manage
your	needs	using	a	single,	reliable,	repeatable	method.

This	all	being	said,	we	also	want	to	make	it	crystal	clear	that	an	RMAN	recovery
catalog	is,	in	most	cases,	no	longer	an	optional	item.	The	RMAN	recovery	catalog	stores
RMAN	metadata.	So	everything	you	wanted	to	know	about	an	RMAN	backup	is	stored	in
the	recovery	catalog.	If	you	only	have	one	or	two	databases	to	manage,	you	might	well	be
able	to	live	without	it.	However,	in	a	true	enterprise	architecture,	you	will	want	to
implement	and	use	a	recovery	catalog.	We	discuss	the	recovery	catalog	throughout	this
book.

RMAN	and	Shared	Servers
If	you	will	be	making	a	remote	connection	from	RMAN	to	a	target	database	that	is
running	the	Oracle	Database	Shared	Server	option,	you	need	to	create	a	tnsnames.ora
entry	that	can	connect	you	to	the	target	database	with	a	dedicated	server	process.	RMAN
cannot	use	Shared	Servers	(formerly	known	as	Multi-Threaded	Servers,	or	MTS)	to	make
a	database	connection.	So	if	you	use	Shared	Servers,	you	need	to	create	a	separate	Oracle
Net	alias	that	uses	a	dedicated	server	process.

The	difference	between	the	two	can	be	seen	in	the	following	sample	tsnames.ora	file.
Note	that	the	first	alias	entry	is	for	dedicated	server	processes,	and	the	second	uses	the
Shared	Servers	architecture.

Running	RMAN	Locally	from	the	Target	Database’s
ORACLE_HOME
Of	course,	you	can	run	RMAN	locally	on	the	server	where	your	target	database	is	located.
This	might	be	required	at	times	for	very	specific	reasons.	Although	our	recommendation
in	previous	versions	of	this	book	has	been	to	run	your	backups	on	the	local	servers,	we
now	feel	confident	enough	with	Cloud	Control	12c	that	we	strongly	advise	that	you	use
that	tool	to	run	your	backups	rather	than	run	them	on	the	servers	themselves	through	some
scheduling	facility	such	as	cron.	Using	Cloud	Control	really	removes	a	lot	of	the
headaches	from	managing	numerous	databases	across	many	servers.	We	discuss	these
issues	in	Chapters	14	in	a	lot	more	detail	and	provide	you	with	a	nice	list	of	the	benefits
when	you	run	your	RMAN	backups	from	Cloud	Control.

When	you	do	run	RMAN	locally,	you	will	almost	always	make	a	bequeath	connection
to	the	database	rather	than	going	through	the	TNS	networking	stack.	This	then	potentially
requires	no	password	file	setup	and	no	tnsnames.ora	configuration.	Bear	in	mind	that	the
simplicity	of	this	option	is	also	its	drawback:	as	soon	as	you	want	to	introduce	a	recovery
catalog	or	perform	a	database	duplication	operation,	you	introduce	all	the	elements	you
were	trying	to	avoid	in	the	first	place.	Also,	we	abhor	the	notion	of	OS	authenticated
logins	to	the	database.

Yes,	you	will	find	that	our	opinion	on	the	optimal	RMAN	architecture	has	changed	a
great	deal	in	this	book.	Database	Cloud	Control	12c	is	a	wonderful	and	stable	product.	It

now	has	become	our	platform	of	choice	for	RMAN	backup	administration.

NOTE

Oracle	Database	12c	has	removed	all	support	for	Oracle	Database	Control
and	replaced	it	with	a	new	product	called	Database	Express.	When	we	talk	about
Oracle	Database	Cloud	Control,	we	are	not	talking	about	Oracle	Database
Express	in	any	way.	See	Chapter	14	for	more	information	on	Oracle	Database
Cloud	Control.

The	Database	Control	File
So	far,	we	have	discussed	the	RMAN	executable	and	its	role	in	the	process	of	using
server-managed	recovery	with	Oracle	12c.	As	we	said,	the	real	work	is	being	done	at	the
target	database—it’s	backing	itself	up.	Next,	we	must	discuss	the	role	of	the	control	file	in
an	RMAN	backup	or	recovery	process.

The	control	file	has	a	day	job	already;	it	is	responsible	for	the	physical	schematics	of
the	database.	The	name	says	it	all:	the	control	file	controls	where	the	physical	files	of	a
database	can	be	found	and	what	header	information	each	file	currently	contains	(or	should
contain).	Its	contents	include	datafile	information,	redo	log	information,	and	archive	log
information.	It	has	a	snapshot	of	each	file	header	for	the	critical	files	associated	with	the
database.	Because	of	this	wealth	of	information,	the	control	file	has	been	the	primary
component	of	any	recovery	operation	prior	to	RMAN	(Chapter	2	discusses	this	in	greater
detail).

Because	of	the	control	file’s	role	as	the	repository	of	database	file	information,	it	makes
sense	that	RMAN	would	utilize	the	control	file	to	pull	information	about	what	needs	to	be
backed	up.	And	that’s	just	what	it	does:	RMAN	uses	the	control	file	to	compile	file	lists,
obtain	checkpoint	information,	and	determine	recoverability.	By	accessing	the	control	file
directly,	RMAN	can	compile	file	lists	without	a	user	having	to	create	the	list	herself,	thus
eliminating	one	of	the	most	tiresome	steps	of	backup	scripting.	And	RMAN	does	not
require	that	the	script	be	modified	when	a	new	file	is	added.	It	already	knows	about	your
new	file.	RMAN	knows	this	because	the	control	file	knows	this.

The	control	file	also	moonlights	as	an	RMAN	data	repository.	After	RMAN	completes
a	backup	of	any	portion	of	the	database,	it	writes	a	record	of	that	backup	to	the	control
file,	along	with	checkpoint	information	about	when	the	backup	was	started	and	completed.
This	is	one	of	the	primary	reasons	that	the	control	file	grew	exponentially	in	size	between
Oracle	version	7	and	Oracle	version	8—RMAN	tables	in	the	control	file.	These	records
are	often	referred	to	as	metadata—data	about	the	data	recorded	in	the	actual	backup.	This
metadata	will	also	be	stored	in	a	recovery	catalog	when	one	is	used.

Record	Reuse	in	the	Control	File

The	control	file	can	grow	to	meet	space	demands.	When	a	new	record	is	added	for	a	new
datafile,	a	new	log	file,	or	a	new	RMAN	backup,	the	control	file	can	expand	to	meet	these
demands.	However,	there	are	limitations.	Because	most	databases	can	live	for	years,
during	which	time	thousands	of	redo	logs	switch	and	thousands	of	checkpoints	occur,	the
control	file	has	to	be	able	to	eliminate	some	data	that	is	no	longer	necessary.	Therefore,	it
ages	out	information	as	it	needs	space	and	reuses	certain	“slots”	in	tables	in	round-robin
fashion.	However,	some	information	cannot	be	eliminated—for	instance,	the	list	of
datafiles.	This	information	is	critical	for	the	minute-to-minute	database	operation,	and	new
space	must	be	made	available	for	these	records.

The	control	file	thus	separates	its	internal	data	into	two	types	of	records:	circular	reuse
records	and	noncircular	reuse	records.	Circular	reuse	records	are	records	that	include
information	that	can	be	aged	out	of	the	control	file	if	push	comes	to	shove.	This	includes,
for	instance,	archive	log	history	information,	which	can	be	removed	without	affecting	the
production	database.	Noncircular	reuse	records	are	those	records	that	cannot	be	sacrificed.
If	the	control	file	runs	out	of	space	for	these	records,	the	file	expands	to	make	more	room.
These	records	include	datafile	and	log	file	lists.

The	record	of	RMAN	backups	in	the	control	file	falls	into	the	category	of	circular	reuse
records,	meaning	that	the	records	will	get	aged	out	if	the	control	file	section	that	contains
them	becomes	full.	This	can	be	catastrophic	to	a	recovery	situation:	without	the	record	of
the	backups	in	the	control	file,	it	is	as	though	the	backups	never	took	place.	Remember
this:	if	the	control	file	does	not	have	a	record	of	your	RMAN	backup,	the	backup	cannot
easily	be	used	by	RMAN	for	recovery.	There	is	a	command	called	catalog	that	makes	it
possible	to	refresh	the	control	file	records,	so	all	is	not	lost	(we	discuss	the	catalog
command	in	later	chapters	of	this	book).	This	makes	the	control	file	a	critical	piece	in	the
RMAN	equation.	Without	one,	we	have	nothing.	If	records	get	aged	out,	then	we	have
created	a	lot	of	manual	labor	to	rediscover	the	backups.

Fear	not,	though.	Often,	we	can	take	steps	to	ensure	that	important	records	don’t	get
aged	out.	First,	it	usually	takes	some	time	for	the	control	file	to	fill	up	in	the	first	place.	By
the	time	it	has,	there	are	backups	that	are	already	obsolete	and	can	be	removed.

Second,	you	can	set	the	CONTROL_FILE_RECORD_KEEP_TIME	parameter	to
make	sure	that	the	control	file	does	not	age	out	records	prematurely.	By	default,	this
parameter	is	set	to	7	(in	days).	This	means	that	if	a	record	is	less	than	seven	days	old,	the
control	file	will	not	delete	it,	but	rather	expand	the	control	file	section.	If	the	record	is	over
seven	days	old,	the	record	would	be	deleted	rather	than	the	control	file	expanded.

You	can	set	the	CONTROL_FILE_RECORD_KEEP_TIME	parameter	to	a	higher
value	(say,	30	days)	so	that	the	control	file	always	expands	until	only	records	older	than	a
month	will	be	overwritten	when	necessary.	Setting	this	to	a	higher	day	value	is	a	good
idea,	but	the	reverse	is	not	true.	Setting	this	parameter	to	0	means	that	the	record	section
never	expands,	in	which	case	you	are	flirting	with	disaster.

If	you	need	to	retain	records	over	365	days,	or	if	you	will	be	using	archival	backups
(which	we	discuss	in	Chapter	8),	you	must	have	a	recovery	catalog.	In	this	case,	you	won’t
need	to	worry	about	records	disappearing	in	the	control	file.	Whereas	the	control	file	will
age	out	records	based	on	the	CONTROL_FILE_RECORD_KEEP_TIME	parameter,	the

control	file	will	not.

The	Snapshot	Control	File
As	you	probably	know,	the	control	file	is	a	busy	little	file.	It’s	responsible	for	storing	all
sorts	of	metadata	about	your	database,	and	it’s	changing	all	the	time,	updating	SCN
records,	file	locations,	and	so	on.	This	activity	is	critical	to	the	livelihood	of	your	database,
so	the	control	file	must	be	available	for	usage	by	the	RDBMS	on	a	constant	basis.

Like	many	things	Oracle,	RMAN	needs	to	work	with	a	consistent	image.	The	fact	that
the	control	file	is	this	little	demon	of	business	then	causes	issues.	Because	the	control	file
does	not	have	the	benefit	of	its	own	UNDO	tablespace,	RMAN	needs	a	way	to	manage	a
consistent	view	of	the	control	file.	Sure,	RMAN	could	take	a	latch	against	the	control	file
for	the	duration	of	the	backup,	but	that	would	mean	the	database	could	not	advance	the
checkpoint,	switch	logs,	or	produce	new	archive	logs.	Impossible.

To	get	around	this,	RMAN	uses	the	snapshot	control	file,	an	exact	copy	of	your	control
file	that	is	only	used	by	RMAN	during	backup	and	resync	operations.	At	the	beginning	of
these	operations,	RMAN	refreshes	the	snapshot	control	file	from	the	actual	control	file,
thus	putting	a	momentary	lock	on	the	control	file.	Then,	RMAN	switches	to	the	snapshot
and	uses	it	for	the	duration	of	the	backup;	in	this	way,	it	has	read	consistency	without
holding	up	database	activity.

By	default,	the	snapshot	control	file	exists	in	the	ORACLE_HOME/dbs	directory	on
Unix	platforms	and	in	the	ORACLE_HOME/database	directory	on	Windows.	It	has	a
default	name	of	SNCF<ORACLE_SID>.ORA.	This	can	be	modified	or	changed	at	any
time	by	using	the	configure	snapshot	controlfile	command:

Certain	conditions	might	lead	to	the	following	error	on	the	snapshot	control	file,	which
is	typically	the	first	time	a	person	ever	notices	the	file	even	exists:

This	error	happens	when	the	snapshot	control	file	header	is	locked	by	a	process	other
than	the	one	requesting	the	enqueue.	If	you	have	multiple	backup	jobs,	it	may	be	that	you
are	trying	to	run	two	backup	jobs	simultaneously	from	two	different	RMAN	sessions.	To
troubleshoot	this	error,	open	a	SQL*Plus	session	and	run	the	following	SQL	statement:

Rebuilding	the	Control	File
There	may	be	occasions	when	you	need	to	rebuild	or	restore	the	control	file.	Often	you
will	use	RMAN	to	perform	this	operation,	and	this	is	described	in	Chapter	7.	You	can	also
manually	rebuild	the	control	file	with	the	create	control	file	command.	There	are
generally	two	ways	of	doing	this.	One	is	to	handcraft	the	create	control	file	command

yourself,	and	the	second	is	to	use	the	create	control	file	command	contained	in	the	trace
file	that	is	created	with	the	alter	database	backup	controlfile	to	trace	command.	We
cover	these	conditions	in	Chapter	7	in	much	more	detail.

The	RMAN	Server	Processes
RMAN	makes	a	client	connection	to	the	target	database,	and	two	server	processes	are
spawned.	The	primary	process	is	used	to	make	calls	to	packages	in	the	SYS	schema	in
order	to	perform	the	backup	or	recovery	operations.	This	process	coordinates	the	work	of
the	channel	processes	during	backups	and	restores.

The	secondary,	or	shadow,	process	polls	any	long-running	transactions	in	RMAN	and
then	logs	the	information	internally.	You	can	view	the	results	of	this	polling	in	the	view
V$SESSION_LONGOPS:

You	can	also	view	these	processes	in	the	V$SESSION	view.	When	RMAN	allocates	a
channel,	it	provides	the	session	ID	information	in	the	output:

The	“sid”	information	corresponds	to	the	SID	column	in	V$SESSION.	So	you	could
construct	a	query	such	as	this:

RMAN	Channel	Processes
In	addition	to	the	two	default	processes,	an	individual	process	is	created	for	every	channel
that	you	allocate	during	a	backup	or	restore	operation.	In	RMAN	lingo,	the	channel	is	the
server	process	at	the	target	database	that	coordinates	the	reads	from	the	datafiles	and	the
writes	to	the	specified	location	during	backup.	During	a	restore,	the	channel	coordinates

reads	from	the	backup	location	and	the	writing	of	data	blocks	to	the	datafile	locations.
There	are	only	two	kinds	of	channels:	disk	channels	and	tape	channels.	You	cannot
allocate	both	kinds	of	channels	for	a	single	backup	operation—you	are	writing	the	backup
either	to	disk	or	to	tape.	Like	the	background	RMAN	process,	the	channel	processes	can
be	tracked	from	the	data	dictionary,	and	then	correlated	with	an	SID	at	the	OS	level.	It	is
the	activity	of	these	channel	processes	that	gets	logged	by	the	polling	shadow	process	into
the	V$SESSION_LONGOPS	view.

RMAN	and	I/O	Slaves
Some	people	confuse	the	idea	of	I/O	slaves	and	think	that	they	need	to	be	configured	for
RMAN	to	work	properly.	If	your	OS	supports	asynchronous	I/O,	and	pretty	much	all	of
them	do	today,	then	you	do	not	need	to	configure	disk	I/O	slaves.	Disk	I/O	slaves	were
designed	to	mimic	asynchronous	I/O	for	RMAN	in	systems	that	do	not	provide	this
feature.	RMAN	supports	two	different	kinds	of	I/O	slaves:	disk	I/O	slaves	and	tape	I/O
slaves.

Tape	I/O	slaves	assist	with	server	process	access	to	the	tape	device.	If	you	have	the
parameter	BACKUP_TAPE_IO_SLAVES	set	to	TRUE,	then	RMAN	will	allocate	a	single
I/O	slave	per	tape	channel	process	to	assist	with	writes	to	the	tape	location.	Unlike	with
disk	I/O	slaves,	this	parameter	affects	no	part	of	the	database	other	than	RMAN	tape
backups.	Because	there	is	no	native	asynchronous	I/O-to-tape	devices,	we	recommend	you
set	this	parameter	to	TRUE.	It	will	help	keep	your	tape	drives	streaming,	meaning	better
performance	on	backups	and	restores.	Chapter	11	discusses	tape	streaming	in	more	depth.

The	SYS	Packages	Used	by	RMAN
The	RMAN	server	process	that	coordinates	the	work	of	the	channels	has	access	to	two
packages	in	the	SYS	schema:	DBMS_RCVMAN	and	DBMS_BACKUP_RESTORE.
These	two	packages	compose	the	entirety	of	the	RMAN	functionality	in	the	target
database.

SYS.DBMS_RCVMAN
SYS.DBMS_RCVMAN	is	the	package	that	is	used	to	access	the	tables	in	the	control	file
and	pass	this	information	to	RMAN	so	it	can	build	backup	and	restore	operations	that
accurately	reflect	the	database	schematics.	This	package	is	responsible	for	setting	TIME
operators	and	verifying	checkpoint	information	in	the	datafile	headers	prior	to	running	any
operation.	It	also	checks	file	locations	and	sizes,	along	with	other	information	concerning
node	affinity	(in	a	RAC	environment)	and	disk	affinity.	This	kind	of	information	affects
performance,	and	RMAN	has	automatic	load-balancing	and	performance-enhancing
algorithms	that	it	runs	through	prior	to	building	the	actual	backup/restore	commands.
Chapter	11	talks	in	depth	about	these	performance	gains.	Stay	tuned.

SYS.DBMS_BACKUP_RESTORE
SYS.DBMS_RCVMAN	accesses	the	control	file	and	verifies	all	the	requisite	information.

It	passes	this	information	back	to	the	RMAN	server	process,	which	can	then	create
PL/SQL	blocks	based	on	code	in	the	recover.bsq	file.	These	PL/SQL	blocks	are	made	up
of	calls	to	the	package	DBMS_BACKUP_RESTORE,	the	true	workhorse	of	RMAN.
DBMS_BACKUP_RESTORE	is	the	actual	package	that	creates	system	calls	to	back	up
datafiles,	control	files,	and	archived	redo	logs.	RMAN	takes	the	information	returned	from
DBMS_RCVMAN,	divvies	out	the	work	among	the	channels	based	on	the	load-balancing
algorithm,	and	then	creates	a	series	of	calls	to	DBMS_BACKUP_RESTORE.

It	is	the	work	of	DBMS_BACKUP_RESTORE	that	you	can	track	in
V$SESSION_LONGOPS.	It	performs	the	backup	and	restore	operations.	In	addition,	it
accesses	the	control	file,	but	only	in	a	very	limited	way.	It	accesses	it	to	back	it	up
(actually,	it	backs	up	the	snapshot	control	file)	and	to	write	backup	information	to	it	after
backups	have	completed.	Once	it	has	completed	a	backup	set,	it	writes	to	tables	in	the
control	file	the	information	about	when	the	backup	was	taken,	how	long	it	took	to
complete,	and	the	size	and	name	of	the	backup.

RMAN	Packages	in	the	Kernel
Both	of	these	RMAN	packages	are	installed	by	default	by	running	the	catproc.sql	script
when	the	database	is	created.	There	is	no	way	to	omit	them	during	database	creation,	and
therefore	they	exist	in	every	Oracle	database	since	version	8.0.3.	What	this	means	to	you
is	that	no	configuration	by	you	is	required	for	RMAN	to	work.	You	can	run	RMAN	right
now	and	start	backing	up	your	database.

These	packages	have	another	important	trait:	they	are	hard-coded	into	the	Oracle
software	library	files,	so	they	can	be	called	even	when	the	database	is	not	open.	Most
packages,	as	you	know,	would	only	be	available	when	the	database	is	open.	However,
RMAN	can	write	calls	to	DBMS_BACKUP_RESTORE	when	the	database	instance	is	in
either	NOMOUNT	or	MOUNT	mode.	This	is	a	critical	element,	and	the	reason	is	clear:
we	need	to	be	able	to	back	up	and	restore	the	database	even	when	it	is	not	open.

Which	brings	us	to	an	interesting	point:	What	state	must	the	target	be	in	if	we	are	to
connect	to	it	using	RMAN?	Does	the	instance	need	to	be	started,	or	do	we	need	to	mount
it,	or	must	it	be	open?	The	answer	is	that	RMAN	can	connect	to	the	target	database	in	any
of	these	three	states,	but	it	must	at	least	be	in	NOMOUNT	mode	(otherwise,	there’s	no
there	there!)	for	RMAN	to	do	much	more	than	issue	a	startup	command.

Backing	Up	the	Data	Block
When	you	used	manual	(non-RMAN)	techniques	for	backups,	you	are	backing	up	the
database	at	the	file	level.	As	a	result	of	this,	there	is	very	little	integrity	checking	that	goes
on	within	the	database	datafiles.	If	a	block	in	the	datafile	is	corrupted,	then	guess	what—
your	backup	is	corrupted.	This	same	problem	applies	to	“snapshot”	kinds	of	backups
where	the	file	system	mirror	is	broken	and	the	snapshot	is	backed	up	by	some	OS	utility.
I’ve	seen	more	than	one	case	where	the	snapshot	backups	were	all	unable	to	be	used
because	of	block	corruption	that	was	not	able	to	be	corrected.	RMAN,	however,	is
different.	Because	RMAN	is	integrated	into	the	RDBMS,	it	has	access	to	your	data	at	the
same	level	that	the	database	itself	uses:	the	data	block.

Block-level	access	is	what	distinguishes	RMAN	from	any	other	backup	utility.	This	is
an	extremely	powerful	level	of	access	that	provides	nearly	all	the	benefits	that	you	will	get
from	using	RMAN.	It	is	because	of	this	access	that	we	can	utilize	the	data	block	for	more
efficient	backup	and	recovery.	In	backing	up	at	the	block	level,	we	can	validate	the	block.
In	backing	up	at	the	block	level,	we	can	actually	restore	individual	corrupted	blocks.
Block-level	access	provides	a	great	deal	of	flexibility	when	it	comes	time	for	things	such
as	incremental	backups	and	other	operations	that	exist	at	the	block	level.

The	Data	Block	Backup	Overview
Here’s	how	it	works:	RMAN	compiles	the	list	of	files	to	be	backed	up,	based	on	the
backup	algorithm	rules.	Based	on	the	number	of	channels	and	the	number	of	files	being
simultaneously	backed	up,	RMAN	creates	memory	buffers	in	the	Oracle	shared	memory
segment.	This	is	typically	in	the	Private	Global	Area	(PGA)	of	the	individual	RMAN
processes	(a	single	process	is	spawned	off	for	each	channel	that	is	backing	up	the
database).	There	are	circumstances	that	will	push	the	memory	buffers	into	the	Shared
Global	Area	(SGA),	but	this	is	rare.

The	channel	server	process	then	begins	reading	the	datafiles,	block	by	block,	filling	the
RMAN	memory	buffers	with	these	blocks.	When	a	buffer	is	full,	it	pushes	the	blocks	from
an	input	buffer	into	an	output	buffer.	With	a	full	backup,	or	incremental	backup	without
block	change	tracking	enabled,	this	memory-to-memory	write	occurs	for	each	individual
used	data	block	in	the	datafiles.	In	the	case	of	an	incremental	backup	where	block	change
tracking	is	enabled,	only	blocks	marked	to	be	read	in	the	tracking	file	would	be	read.	If	the
block	meets	the	criteria	for	being	backed	up	and	the	memory-to-memory	write	detected	no
corruption,	then	the	block	remains	in	the	output	buffer	until	the	output	buffer	is	full.	Once
full,	the	output	buffer	is	pushed	to	the	backup	location—a	disk	or	a	tape,	whichever	it	may
be.

Once	the	entire	set	of	files	has	been	filtered	through	the	memory	buffers,	the	backup
piece	is	finished,	and	RMAN	writes	the	completion	time	and	name	of	the	backup	piece	to
the	target	database	control	file.

The	Benefits	of	Block-Level	Backups
Several	benefits	are	realized	with	RMAN	block-level	backups.	We	have	already	described
how	the	block	is	checked	for	corruption.	Other	benefits	include	the	ability	to	implement
various	kinds	of	compression	of	the	backup	image.	Finally,	backing	up	at	the	block	level
can	provide	performance	benefits.	Let’s	look	at	each	of	these	issues	in	more	detail.

Null	Block	Compression
Null	block	compression	becomes	an	option	when	we	have	access	to	the	data	block.	We
can	eliminate	blocks	that	have	never	been	used	(have	a	zeroed	header)	and	discard	them
during	the	memory-to-memory	write.	Therefore,	we	only	back	up	blocks	that	have	been
used	and	that	have	a	more	efficient	backup.

This	is	a	good	place	to	mention	the	different	misconceptions	related	to	null	block
compression.	The	first	misconception	is	that	null	compression	eliminates	empty	blocks.

The	null	compression	algorithm	has	only	two	access	points	that	RMAN	has	to	the
database:	the	file	header	and	the	block	header.	RMAN	can	only	draw	conclusions	about
the	contents	of	a	block	from	its	header	or	from	the	file	header	information.	Why	no	space
management	information?	Space	management	information	is	only	available	when	the
database	is	open,	and	RMAN	null	compression	cannot	rely	on	the	database	being	open.
We	must	rely	only	on	that	information	that	we	can	get	without	an	open	database:	namely,
file	headers	and	block	headers.	So,	if	you	truncate	a	table,	all	the	blocks	that	had
information	in	them	but	are	now	empty	will	be	backed	up,	because	RMAN	only	knows
that	the	block	has	been	initialized	by	a	segment.	It	does	not	know	that	the	block	is	empty.

The	second	common	misconception	about	null	block	compression	is	that	null
compression	saves	time	during	the	backup	because	less	is	being	backed	up.	This	is	true,	to
a	certain	extent,	but	only	if	your	backup	device	is	an	extremely	bad	bottleneck.	If	you
stream	very	quickly	to	your	disk	or	tape	backup	location,	then	the	act	of	eliminating
blocks	in	memory	saves	little	time	because	RMAN	is	still	reading	every	block	in	the	file
into	memory—it	just	is	not	writing	every	block	to	the	output	device.	Even	during
incremental	backups,	which	eliminate	blocks	based	on	an	incremental	checkpoint	SCN,
we	still	have	to	check	the	header	of	each	block	to	discover	if	it	has	changed	since	the	last
incremental	backup.	Incremental	backups,	then,	save	space	in	our	backup	location,	and
they	provide	a	faster	form	of	recovery,	but	they	are	not	meant	to	be	a	significant	or	reliable
timesaver	during	the	actual	backup.

Unused	Block	Compression
Unused	block	compression	is	another	mechanism	for	skipping	unused	blocks.	It	matches
null	block	compression	in	its	outcome:	namely,	never-initialized	blocks	will	not	be	backed
up.	However,	after	version	10.2.0.3,	it	also	can	exclude	used-but-empty	blocks.	This
algorithm	lends	itself	to	saved	time	during	backup,	because	it	accesses	space	management
information	and	checks	the	bitmaps	for	each	segment.	From	this	information,	it	builds	the
lists	of	initialized	blocks	and	does	not	even	attempt	to	back	up	the	others.	This	means
there	is	less	total	data	read	into	memory,	which	translates	into	saved	time.

Unused	block	compression	is	automatically	used,	but	it	cannot	be	used	for	all	blocks	in
a	database.	There	are	architectural	limits	to	the	approach,	and	it	requires	the	following	be
true:

			The	backup	requested	is	a	full	or	level	0	incremental	backup.

			The	backup	is	going	to	disk	(or	Oracle	Secure	Backup).

			The	COMPATIBLE	init	parameter	is	set	to	10.2	or	higher.

			There	are	no	guaranteed	restore	points	for	the	database.

			The	datafile	is	locally	managed	(that	is,	the	space	management	info	is	in	the
file	header,	not	in	the	data	dictionary).

It	is	this	final	element,	locally	managed	datafiles,	that	allows	RMAN	to	get	the	bitmap
info	it	requires	for	successful	unused	block	compression	because	it	does	not	require	a
round	trip	through	the	(perhaps	unavailable)	data	dictionary.

Binary	Compression
In	version	10g,	RMAN	finally	made	available	a	version	of	whitespace	compression,	as
would	be	done	by	a	ZIP	utility.	This	provides	actual	compression	of	the	backed-up	blocks
themselves.	In	addition,	the	new	block-change	tracking	file	allows	RMAN	to	skip	some
blocks	during	backup	without	reading	them	into	a	memory	buffer—so	incremental
backups	begin	to	save	time	if	the	change	tracking	is	turned	on.	For	more	on	compression
and	block-change	tracking,	see	the	full	coverage	in	Chapter	7.

Starting	with	version	11g,	you	can	enable	Oracle	Advanced	Compression,	which
provides	three	different	levels	of	compression,	so	you	can	match	the	binary	compression
to	your	environment.	The	levels	are	High,	Medium,	and	Low:	High,	for	bandwidth-bound
environments	where	limiting	access	to	the	network	resources	is	the	highest	priority;
Medium,	for	a	combination	of	compression	ratio	to	CPU	utilization;	and	Low,	where	CPU
utilization	is	the	limiting	factor	over	network	bandwidth	or	total	size	of	the	backup	piece.

Backup	Performance	with	Block-Level	Backup
Block-level	backup	also	provides	performance	gains	from	the	perspective	of	redo
generation.	As	you	learned	in	Chapter	2,	if	you	use	the	old-school	hot	backup
methodology,	the	amount	of	redo	that	you	generate	while	you	are	running	with	a
tablespace	in	hot	backup	mode	can	sometimes	grow	exponentially.	This	causes	excess
redo	log	switching,	checkpoint	failure,	and	massive	amounts	of	archive	log	generation	that
can	further	cascade	into	space	management	challenges	in	your	log	archive	destination.

RMAN,	on	the	other	hand,	does	not	require	hot	backup	mode	because	it	does	not	need
to	guarantee	block	consistency	during	a	backup.	RMAN’s	access	to	the	data	block	allows
it	to	coordinate	with	DBWR	processes	writing	dirty	buffers,	and	it	can	wait	until	the	block
is	consistent	before	it	reads	the	block	into	memory.	So,	blocks	aren’t	being	dumped	to
redo,	and	we	always	have	consistent	blocks	in	our	backup.

RMAN	does	require	ARCHIVELOG	mode,	of	course.	In	fact,	RMAN	will	not	allow
you	to	back	up	a	datafile	while	the	database	is	open	unless	you	are	in	ARCHIVELOG
mode.	It	gives	you	the	following	polite	error:

RMAN	also	leverages	block-level	backups	to	provide	an	often-overlooked	but
extremely	useful	recovery	option:	block	media	recovery.	Now,	if	you	were	to	receive	the
stomach-turning	“ora-1578:	block	corruption	detected”	error,	instead	of	recovering	the
entire	file	and	performing	recovery,	RMAN	can	simply	recover	the	bad	block	and	perform
recovery,	meaning	the	rest	of	the	data	in	the	datafile	is	available	during	the	recovery.	More
information	on	this	appears	in	Chapter	8.

Another	nice	feature	of	RMAN	is	multisection	backups.	Because	RMAN	handles
backups	at	the	block	level,	it	can	segment	off	very	large	datafiles	(like	those	associated
with	bigfile	tablespaces)	and	back	up	and	restore	those	segments	in	parallel.	This	can
make	backup	and	restore	much	faster	because	it	allows	you	to	take	advantage	of	as	much
parallelism	as	possible.

This	just	touches	the	surface	of	all	the	benefits	you	get	from	RMAN,	but	you	get	the

point.	The	payoff	is	enormous	when	RMAN	is	utilized	for	block-level	backups.	The	rest
of	this	book	is	dedicated	to	utilizing	this	to	your	advantage.

RMAN	in	Memory
RMAN	builds	buffers	in	memory	through	which	it	streams	data	blocks	for	potential
backup.	This	memory	utilization	counts	against	the	total	size	of	the	PGA	and,	sometimes,
the	SGA.	There	are	two	kinds	of	memory	buffers.	Input	buffers	are	the	buffers	that	are
filled	with	data	blocks	read	from	files	that	are	being	backed	up.	Output	buffers	are	the
buffers	that	are	filled	when	the	memory-to-memory	write	occurs	to	determine	whether	a
particular	block	needs	to	be	backed	up.	When	the	output	buffer	is	filled,	it	is	written	to	the
backup	location.	The	memory	buffers	differ	depending	on	whether	you	are	backing	up	to
or	restoring	from	disk	or	tape.	Figure	3-1	illustrates	input	and	output	buffer	allocation.	It
illustrates	a	backup	of	two	datafiles	being	multiplexed	into	a	single	backup	set.

FIGURE	3-1.			Input	and	output	buffers	in	memory

Input	Memory	Buffers
When	you	are	backing	up	the	database,	the	size	and	number	of	input	memory	buffers
depend	on	the	exact	backup	command	being	executed.	Primarily,	they	depend	on	the

number	of	files	being	multiplexed	into	a	single	backup.	Multiplexing	refers	to	the	number
of	files	that	will	have	their	blocks	backed	up	to	the	same	backup	piece.	To	keep	the
memory	allocation	within	reason,	the	following	rules	are	applied	to	the	memory	buffer
sizes	based	on	the	number	of	files	being	backed	up	together	(this	is	known	as
multiplexing):

			If	the	number	of	files	going	into	the	backup	set	is	four	or	less,	then	RMAN
allocates	four	buffers	per	file	at	1MB	per	buffer.	The	total	will	be	16MB	or	less.

			If	the	number	of	files	going	into	the	backup	set	is	greater	than	four	but	no
greater	than	eight,	then	each	file	gets	four	buffers,	each	of	512KB.	This	ensures	that
the	total	remains	at	16MB	or	less.

			If	the	number	of	files	being	multiplexed	is	greater	than	eight,	then	RMAN
allocates	four	buffers	of	size	128KB.	This	ensures	that	each	file	being	backed	up
will	account	for	512KB	of	buffer	memory.

Bear	in	mind	that	these	memory	amounts	are	on	a	per-channel	basis.	So,	if	you	allocate
two	channels	to	back	up	a	database	with	32	datafiles,	for	instance,	then	RMAN	will	load-
balance	the	files	between	the	two	channels	and	may	not	end	up	with	16	files	per	channel.
If	some	files	are	significantly	larger	than	others,	you	may	end	up	with	only	8	files	going
into	one	backup	set	and	24	files	going	into	the	other.	If	this	were	the	case,	then	the	buffers
for	the	first	channel	with	eight	files	would	allocate	16MB	of	memory	for	input	buffers
(four	buffers	multiplied	by	512KB	each,	multiplied	by	eight	files),	and	the	second	channel
would	allocate	12MB	of	memory	buffers	(512KB	per	file	multiplied	by	24	files).

The	formula	for	the	number	of	input	buffers	is	slightly	different	if	you	are	using	ASM.
In	this	case	the	number	of	buffers	that	will	be	created	is	the	same	as	the	number	of
physical	disks	in	the	ASM	disk	group.	In	this	case,	the	size	of	these	buffers	is	dependent
on	the	operating	system	that	the	database	is	running	on.	Additionally,	ASM	will	autotune
the	buffers	related	to	a	backup,	so	when	you	are	running	ASM	you	really	don’t	need	to
worry	about	the	input	buffers	that	much.

You	can	use	the	following	query	to	monitor	the	size	of	buffers	on	a	per-file	basis	while
the	backup	is	running:

Output	Buffers	When	Backing	Up	to	Disk
In	addition	to	input	buffers,	RMAN	allocates	output	buffers,	depending	on	what	the	output
source	is.	If	you	are	backing	up	to	disk,	then	RMAN	allocates	output	buffers	that	must	fill
up	with	data	blocks	from	the	input	buffers	before	being	flushed	to	the	backup	destination
on	your	file	system.	Per	channel,	there	will	be	four	output	buffers,	each	of	which	is	1MB.
Therefore,	the	memory	footprint	per	channel	will	always	be	4MB.

The	movement	of	blocks	from	the	input	buffers	to	the	output	buffers	is	also	where
some	critical	RMAN	processing	occurs,	including	validation,	compression,	and	encryption

of	the	data	blocks.	Note	that	there	are	varying	levels	of	validation	available,	which	we	will
discuss	in	later	chapters	of	this	book.

Output	Memory	Buffers	When	Backing	Up	to	Tape
Memory	allocation	is	different	when	backing	up	to	tape,	to	account	for	the	slower	I/O
rates	that	we	expect	from	tape	devices.	When	you	are	backing	up	to	or	restoring	from	tape,
RMAN	typically	allocates	four	buffers	per	channel	process,	each	of	which	is	256KB,	so
that	the	total	memory	footprint	per	channel	is	1MB.	These	values	can	be	platform
dependent	and	can	also	be	adjusted	when	allocating	the	RMAN	channels.	We	discuss
allocating	RMAN	channels	starting	in	Chapter	11	of	this	book	and	then	really	throughout
many	of	the	remaining	chapters.

Memory	Buffers	on	Restore
During	a	restore	from	a	disk	backup,	the	input	buffers	will	be	1MB,	and	RMAN	will
allocate	four	buffers	per	channel.	When	restoring	from	tape,	RMAN	allocates	four	input
buffers	with	a	size	of	BLKSIZE,	which	defaults	to	256KB.	The	output	buffers	on	restore
are	always	128KB,	and	there	will	be	four	of	them	per	channel.

Multisection	Backups	and	Memory
Starting	in	Oracle	Database	11g,	Oracle	introduced	a	new	feature	that	allows	RMAN	to
use	multiple	channels	to	back	up	a	single	large	file.	This	means	that	the	memory
input/output	buffer	conversation	earlier	still	holds	true,	but	the	buffers	are	per	channel,	not
necessarily	per	file.	Therefore,	each	channel	opens	the	four	input	buffers	for	each	section
of	the	file	it	will	be	backing	up.	The	output	buffers	remain	the	same	as	the	preceding
algorithm	per	backup	piece.

RMAN	Memory	Utilization:	PGA	vs.	SGA
Backups	to	disk	use	PGA	memory	space	for	backup	buffers,	which	is	allocated	out	of	the
memory	space	for	the	channel	processes.	If	your	operating	system	is	not	configured	for
native	asynchronous	I/O,	you	can	utilize	the	parameter	DBWR_IO_SLAVES	to	use	I/O
slaves	for	filling	up	the	input	buffers	in	memory.	If	this	parameter	is	set	to	any	nonzero
value,	RMAN	automatically	allocates	four	I/O	slaves	to	coordinate	the	load	of	blocks	into
the	input	memory	buffer.	To	coordinate	this	work,	RMAN	must	utilize	a	shared	memory
location.	Therefore,	the	memory	buffers	for	disk	backups	are	pushed	into	the	shared	pool,
or	the	large	pool	if	one	exists.

Memory	for	tape	output	buffers	is	allocated	in	the	PGA,	unless	you	are	using	tape	I/O
slaves.	To	enable	tape	I/O	slaves,	you	set	the	init.ora	parameter
BACKUP_TAPE_IO_SLAVES	to	TRUE.	This	can	be	done	dynamically	and	set	in	the
SPFILE	if	you	desire.	When	this	is	set	to	TRUE,	RMAN	creates	a	single	slave	process	per
channel	to	assist	with	the	backup	workload.	To	coordinate	this	work,	RMAN	pushes	the
memory	allocation	into	the	SGA.

If	either	of	these	I/O	slave	options	is	configured,	memory	will	be	pulled	from	the
shared	pool	area	in	the	SGA,	unless	you	have	a	large	pool	configured.	If	you	do	not	have	a

large	pool	configured	and	you	expect	to	use	I/O	slaves,	we	highly	recommend	that	you
create	a	large	pool	with	a	size	based	on	the	total	number	of	channels	you	expect	to	allocate
for	your	backups,	plus	1MB	for	overhead.	If	you	already	have	a	large	pool	for	Shared
Servers	(formerly	MTS),	JDBC	connection	pooling,	or	because	you	have
PARALLEL_AUTOMATIC_TUNING	set	to	TRUE,	then	increase	the	size	of	the	pool	to
account	for	the	RMAN	memory	buffers.

This	introduction	to	the	RMAN	memory	architecture	does	not	include	much
information	on	tuning	your	system	to	cope	with	RMAN	backups.	Obviously,	a	resource	hit
takes	place	while	RMAN	is	running.	In	fact,	you	can	tune	RMAN	to	use	more	or	less
resources,	depending	on	your	needs.	Chapter	16	discusses	how	to	do	this	in	greater	detail.

One	last	note	on	memory	utilization:	If	you	are	backing	up	to	tape,	you	will	be	using	a
media	management	server	product.	If	you	are	running	your	media	manager	from	the	same
system	as	your	target	database,	you	will	need	additional	system	resources	for	the	tape
subsystem.	Be	sure	to	factor	this	in	when	tuning	for	backups.

The	Large	Pool	in	the	Oracle	SGA
The	large	pool	is	a	specific	area	in	the	SGA	of	Oracle’s	memory	space.	It	is
configured	using	the	LARGE_POOL_SIZE	parameter	in	your	init.ora	or	SPFILE,
and	the	value	is	specified	in	bytes.	The	large	pool	is	utilized	for	certain	memory
activities	that	require	shared	space	but	tend	to	walk	all	over	the	usual	operations	in
the	shared	pool.	Its	occupants	are	primarily	restricted	to	RMAN	memory	buffers	if
I/O	slaves	are	used,	and	Shared	Servers	for	connection	pooling.	Sometimes	the	large
pool	is	used	for	Java	connections,	and	it	will	also	house	parallel	query	slaves	if	you
set	PARALLEL_AUTOMATIC_TUNING	to	TRUE	(this	is	deprecated	in	10g).

Do	you	need	a	large	pool?	No.	Without	one,	all	of	its	potential	occupants	simply
take	up	space	in	the	shared	pool.	This	is	not	the	end	of	the	world,	but	it’s	highly
desirable	to	separate	out	RMAN	buffers	into	their	own	space	in	the	PGA.	That	way,
SQL	and	PL/SQL	parsing	and	other	normal	shared	pool	operations	are	not	affected
by	RMAN	backups,	and	vice	versa.	It	also	makes	tuning	the	Oracle	memory	space
for	RMAN	simpler	and	more	straightforward.

The	Recovery	Catalog
So	far,	we	have	discussed	the	two	most	important	RMAN	components:	the	RMAN	client
utility	and	the	internal	database	packages.	However,	another	component	is	involved	with
RMAN	backups,	although	its	usage	is	entirely	optional:	the	recovery	catalog.	Our	advice,
use	the	recovery	catalog!

The	recovery	catalog	is	a	repository	for	metadata	about	RMAN	backups.	In	a	sense,
you	can	think	of	the	recovery	catalog	as	merely	a	copy	of	the	pertinent	information	out	of
the	control	file	that	RMAN	requires	for	backup	and	recovery	purposes.	You	create	the
recovery	catalog	in	a	user’s	schema	in	an	Oracle	database,	and	it	is	no	more	than	a	few
packages,	tables,	indexes,	and	views.	These	tables	contain	data	that	is	refreshed	from	the

target	database	control	file	upon	a	resync	command	from	within	RMAN.	The	difference,
of	course,	is	that	the	recovery	catalog	can	contain	information	about	all	the	databases	in
your	enterprise—and	the	control	file	holds	only	information	about	its	own	database.

To	use	a	recovery	catalog,	you	first	connect	from	RMAN	to	the	target	database.	Then,
you	make	a	second	Oracle	Net	connection	to	the	recovery	catalog	from	within	RMAN,
like	this:

In	the	connect	string	to	the	catalog,	you	pass	the	username	and	password	for	the	user
who	owns	the	RMAN	catalog.	Unlike	with	the	target,	the	connection	to	the	catalog	is	not	a
sysdba	connection	and	does	not	need	this	privilege	granted	to	it.

Once	connected,	you	can	manually	resync	the	catalog,	or	it	will	be	implicitly
resynchronized	on	any	backup	or	restore	operation.	A	resync	refers	to	the	refreshing	of	the
information	from	the	target	database	control	file	to	the	tables	in	the	recovery	catalog.

A	recovery	catalog	can	serve	as	a	repository	for	more	than	one	target	database,	and	as
such	can	help	centralize	the	administration	of	backups	of	many	different	databases.	It	has
views	that	can	be	queried	from	SQL*Plus	to	determine	the	number,	size,	and	range	of
backups	for	each	target	database	that	has	been	registered	in	that	catalog.

Figure	3-2	details	the	network	topology	when	a	catalog	is	used.	Two	Oracle	packages
are	used	to	manage	the	recovery	catalog:	DBMS_RCVMAN	and	DBMS_RCVCAT.	It	is
in	this	way	that	the	RMAN	utility	can	use	either	the	recovery	catalog	or	the	target	database
control	file	for	information	about	backup	and	recovery,	and	not	worry	about	different
implementations.

FIGURE	3-2.			Connecting	to	a	recovery	catalog

The	package	name	DBMS_RCVMAN	in	the	recovery	catalog	can	lead	to	some
confusion	on	the	database	that	houses	the	recovery	catalog.	This	database	is	usually

referred	to	as	the	catalog	database.	The	catalog	database	is	also	a	potential	target
database,	so	it	also	has	a	package	in	the	SYS	schema	called	DBMS_RCVMAN;	thus,	if
you	select	from	DBA_OBJECTS	on	your	catalog	database,	there	are	two	packages	with
the	same	name,	in	two	different	schemas.	This	is	not	a	mistake	or	a	problem.	One	of	them
is	built	by	the	catproc.sql	at	the	time	of	database	creation	(in	the	SYS	schema),	and	the
other	is	built	when	we	create	the	recovery	catalog	(in	a	regular	user	schema).

The	second	package	in	the	recovery	catalog	is	DBMS_RCVCAT,	and	it	is	only	used	to
perform	operations	specific	to	the	recovery	catalog	during	RMAN	operations.	In	essence,
you	can	think	of	this	package	as	being	the	recovery	catalog	implementation	of
DBMS_BACKUP_RESTORE;	whereas	DBMS_BACKUP_RESTORE	writes	backup
completion	information	to	the	target	database	control	file,	DBMS_RCVCAT	does	this	in
the	recovery	catalog.

The	base	tables	that	contain	information	in	the	recovery	catalog	are	unimportant
because	you	do	not	want	to	manually	modify	them.	Instead,	for	the	catalog’s	protection,
Oracle	created	a	series	of	views,	all	prefixed	with	RC_,	that	can	be	used	to	extract
information	from	the	catalog.	Manually	issuing	any	DML	against	catalog	objects	is	a
dangerous	prospect,	and	we	don’t	recommend	it.	The	RC_*	views,	and	what	you	can	get
from	them,	are	outlined	in	Chapter	11.	As	noted	there,	these	views	are	different
implementations	of	corresponding	v$views	in	the	database	control	file.

The	Auxiliary	Database
The	auxiliary	database	refers	to	the	instance	that	will	become	host	to	restored	files	from
the	target	database	in	the	event	of	a	tablespace	point-in-time	recovery	(TSPITR),	a
duplication	operation	(cloning	the	database),	or	the	creation	of	a	standby	database	using
RMAN	backups.	Also,	the	auxiliary	database	is	used	for	new	features	in	Oracle	Database
12c	such	as	the	ability	to	extract	individual	tables	from	backups	(discussed	in	Chapter	9).
When	you	perform	any	of	these	tasks,	you	will	be	connecting	to	the	target	database	and
the	auxiliary	database	at	the	same	time	from	within	RMAN.	In	this	way,	you	can	utilize
the	information	about	the	backups	in	the	target	database	control	file	to	coordinate	the
restore	of	those	backups	to	the	auxiliary	database	location.	The	following	shows	the
connection	to	both	the	target	database	(locally)	and	the	auxiliary	database	(using	an	Oracle
Net	connection):

RMAN	makes	a	simultaneous	connection	to	each	database	and	requires	access	to	the
SYS.DBMS_BACKUP_RESTORE	and	SYS.DBMS_RCVMAN	packages	in	both	the
target	database	and	the	auxiliary	database.	As	such,	RMAN	requires	SYSDBA,
SYSOPER,	or	SYSBACKUP	privilege	at	the	auxiliary,	just	as	it	does	at	the	target.
Because	you	have	to	connect	to	both	databases	using	privileged	accounts,	you	should
configure	both	of	them	with	a	password	file	so	that	you	can	make	a	privileged	Oracle	Net
connection	to	it.	This	is	a	requirement,	especially	if	you	want	to	use	OEM	to	manage	your
backups	and	use	a	recovery	catalog.

We	discuss	the	auxiliary	database	setup	in	great	detail	in	Chapter	21.	Figure	3-3	shows
the	network	topology	of	an	RMAN	configuration	when	an	auxiliary	database	is	used.

FIGURE	3-3.			Network	topology	with	an	auxiliary	database	in	the	mix

Compatibility	Issues
Given	the	number	of	different	components	that	we	have	to	work	with,	you	must	stick	with
database	version	restrictions	when	working	with	RMAN.	There	are	five	different	pieces	to
the	compatibility	puzzle,	each	of	which	has	a	version	number:

			The	RMAN	executable	version	(the	client	utility)

			The	target	database

			The	recovery	catalog	schema

			The	recovery	catalog	database

			The	auxiliary	database	(for	duplication,	TSPITR,	and	standby	creation)

The	easiest	answer,	of	course,	is	to	make	sure	all	of	these	components	are	on	the	latest
version	of	the	database.	If	they	are	all	at	the	same	level,	then	there	is	no	problem,	right?	Of

course,	in	the	world	where	all	of	your	databases	are	at	the	same	level,	everyone	has	their
very	own	pony,	fairies	roam	the	earth,	babies	never	cry,	and	no	one	ever	has	to	take
backups	because	failures	never	occur.	But	for	the	world	we	live	in,	there	are	some	things
to	understand	about	RMAN	version	compatibility.

Some	general	rules	must	be	considered	when	it	comes	to	compatibility.	Let’s	take	a
look	at	those.

The	RMAN	General	Compatibility	Rules
A	general	set	of	rules	apply	to	RMAN	compatibility	issues.	The	version	of	the	RMAN
client	should	be	equal	to	the	following:

			The	version	of	the	target	database.

			The	version	of	the	auxiliary	database.

			The	version	of	the	recovery	catalog.

			Any	release	of	the	Oracle	database	can	restore	backup	sets	or	image	copies
that	were	created	be	any	earlier	version	of	the	Oracle	database.	Thus,	an	12.1.0.2
Oracle	database	RMAN	client	can	be	used	to	restore	an	11.2.0.4	database.

Table	3-1	provides	a	copy	of	the	RMAN	compatibility	matrix	you	can	use	to	refer	to
the	supported	versions	of	the	various	components	of	RMAN.

TABLE	3-1.			RMAN	Compatibility	Matrix

The	RMAN	Process:	From	Start	to	Finish
So	far,	we	have	discussed	the	different	architectural	components	of	taking	a	backup	using
Recovery	Manager.	As	you	may	have	noticed,	there	are	a	number	of	pieces	to	keep
straight.	To	put	it	into	a	little	perspective,	we	will	run	through	a	typical	backup	operation
and	explain	the	underlying	RMAN	activity	at	every	step.	That	way,	you	should	be	able	to
associate	the	lengthy	exposition	in	this	chapter	to	the	actual	steps	that	you	will	take	to
perform	a	backup.

The	following	example	illustrates	a	backup	of	a	database	called	PROD.	The	backup
will	be	going	to	a	disk	location;	the	discussion	of	setting	up	and	utilizing	a	media	manager
for	backups	to	tape	will	be	deferred	to	Chapters	4	through	8.	The	target	database	PROD
has	20	datafiles	and	is	running	in	ARCHIVELOG	mode.	The	database	is	up	and	running
during	this	operation.	Here	is	our	backup	command:

That’s	it.	That’s	all	it	takes.	The	following	discussion	explains	what	happens.

RMAN	makes	the	bequeath	connection	to	the	target	database	that	we	have	set	up	in	our
environment.	This	means	it	checks	the	variable	ORACLE_SID	for	an	instance	name,	then
spawns	a	server	process	at	that	instance,	logging	in	as	a	sysdba	user.	This	connects	as	the
internal	database	user	SYS.	RMAN	immediately	spawns	the	channel	processes	that	will	be
used	to	perform	the	backup.	In	this	case,	we	are	using	default	settings,	so	only	one	channel
is	allocated.	We	are	not	using	I/O	slaves,	so	the	process	allocates	memory	in	the	PGA.

Next,	RMAN	compiles	a	call	to	SYS.DBMS_RCVMAN	to	request	database	schematic
information	from	the	target	database	control	file,	starting	with	a	determination	of	the	target
database	version.	It	gathers	version	information	from	the	control	file,	along	with	control
file	information	itself:	What	type	of	control	file	is	it?	What	is	the	sequence	number	current
in	it?	When	was	it	created?

Because	we	have	specified	a	full	database	backup,	RMAN	requests	information	for
each	datafile	in	the	database	and	determines	if	any	files	are	offline.	As	part	of	this
information,	it	gathers	which	disk	each	file	is	on	and	how	to	dole	out	the	work.	Because
we	are	using	default	settings,	there	will	be	only	one	channel	and	only	one	backup	set.
Therefore,	RMAN	ignores	all	disk	affinity	information	and	concentrates	on	compiling	the
list	of	files	for	inclusion	in	the	backup	set.

After	the	list	is	compiled,	RMAN	is	ready	to	begin	the	backup	process	itself.	To
guarantee	consistency,	it	then	builds	the	snapshot	control	file.	If	one	already	exists,	it
overwrites	it	with	a	new	one.	Then	RMAN	creates	the	call	to	the
DBMS_BACKUP_RESTORE	package	to	create	the	backup	piece.	The	backup	piece	will
be	built	in	the	default	file	location;	on	Unix,	this	is	ORACLE_HOME/dbs,	and	on
Windows,	it	is	ORACLE_HOME/database.	RMAN	has	the	file	list,	so	it	can	allocate	the
memory	buffers	for	performing	the	read	from	disk.	With	20	files,	RMAN	allocates	input
buffers	of	size	128KB.	There	will	be	four	buffers	per	file,	for	a	total	memory	utilization	of
10MB	for	input	buffers.	RMAN	will	only	allocate	four	output	buffers,	each	of	1MB.	This
brings	our	total	memory	utilization	to	14MB	for	the	backup.

After	the	memory	is	allocated,	RMAN	initializes	the	backup	piece.	The	backup	piece
will	be	given	a	default	name	that	guarantees	uniqueness.	RMAN	then	begins	the	backup.
In	database	versions	9.2,	10.1,	and	10.2,	RMAN	allocates	disk	space	in	50MB	increments:
50MB	is	allocated	on	disk	and	filled	with	output	buffers;	when	full,	another	50MB	is
grabbed,	until	the	last	block	is	dumped	to	the	backup	piece.	When	the	backup	is	complete,
any	remaining	space	in	the	final	50MB	chunk	is	freed.	It	is	worth	pointing	out	that	RMAN
no	longer	does	a	check	to	see	if	there	is	enough	space	to	complete	the	entire	backup	at	the
onset.	This	is	due	to	the	fact	that	null	compression,	and	also	whitespace	compression,	will
significantly	reduce	the	backup	from	being	the	size	of	the	datafiles.	Instead,	RMAN	will
run	its	backup	until	it	runs	out	of	space	and	then	fail.

Once	the	backup	piece	is	initiated,	the	channel	process	can	begin	the	database	backup
process.	RMAN	determines	if	you	are	using	an	SPFILE,	and	if	so,	it	backs	it	up
automatically	as	part	of	your	backup	set.	Then	RMAN	will	back	up	the	current	control	file
to	the	backup	set.	This	control	file	backup	is	automatic	whenever	the	SYSTEM	tablespace
is	backed	up;	this	behavior	is	changed	if	you	have	control	file	autobackup	turned	on	(see

Chapter	11).

So,	we	have	the	SPFILE	and	the	control	file	backed	up,	it	is	time	to	begin	the	datafile
reads	to	pull	data	blocks	into	memory.	The	channel	process	does	this	by	doing	a	read-
ahead	on	the	disk	and	pulling	several	blocks	into	memory	at	the	same	time.	Then,	the
memory-to-memory	write	from	input	buffer	to	output	buffer	occurs.	During	this	write,
RMAN	determines	if	the	block	has	ever	been	initialized	or	if	the	block	header	information
is	still	zeroed	out.	If	it	is	an	unused	block,	the	write	to	the	output	buffer	never	occurs	and
the	block	is	discarded.	If	the	block	has	been	used,	RMAN	performs	a	checksum	on	the
block.	If	the	header	and	footer	of	the	block	do	not	match,	RMAN	indicates	a	corrupt	block
and	aborts	the	backup.	If	the	block	has	been	initialized	and	it	passes	the	checksum,	then
that	block	is	written	to	the	output	buffer.

Once	the	output	buffer	fills	to	capacity,	we	dump	the	buffer	to	the	backup	file	location.
The	RMAN	buffers	are	being	filled	up	with	blocks	from	all	of	the	datafiles,	so	there	is	no
order	to	the	blocks	in	the	dump	file.	The	file	is	merely	a	bucket,	and	only	RMAN	will	be
able	to	restore	the	blocks	to	their	proper	location	upon	restore.	While	the	blocks	are	being
written	out	to	the	backup	piece,	the	status	of	the	backup	is	being	polled	by	the	RMAN
shadow	process.	It	checks	in	on	the	RPCs	at	the	target	and	passes	that	information	to
V$SESSION_LONGOPS	for	your	review.	Based	on	the	information	gathered	at	the
beginning	of	the	backup	operation,	RMAN	has	an	estimated	completion	percentage	for
each	channel	process.	This	can	be	viewed	in	V$SESSION_LONGOPS:

Once	every	block	in	a	datafile	has	been	read	into	an	input	buffer	and	its	status
determined,	then	RMAN	completes	the	file	backup	by	writing	the	datafile	header	out	to
the	backup	piece.	After	all	the	files	have	their	file	headers	written	to	the	backup	piece,
RMAN	makes	a	final	call	to	SYS.DBMS_BACKUP_RESTORE,	which	writes	backup
information	to	the	control	file.	This	information	includes	the	name	of	the	backup	piece,
the	checkpoint	SCN	at	the	time	it	started,	and	the	time	it	completed.

And	that	is	the	entire	process.	Obviously,	it	gets	more	complex	if	we	exercise	more
backup	options,	such	as	using	multiple	channels,	using	the	FILESPERSET	parameter,	and
backing	up	to	tape.	But	each	of	these	configurations	shares	the	same	fundamental	process
as	previously	described.	If	at	any	time	during	your	study	or	testing	of	RMAN	you	want	a
more	intimate	look	at	the	internal	steps	RMAN	takes	during	backup,	you	can	turn	the
debug	option	on	for	the	backup	and	get	a	complete	list	of	the	entire	process:

Be	warned,	though,	that	this	output	is	extremely	verbose,	and	it	can	hamper	backup
performance.	Only	use	debug	for	learning	purposes	on	TEST	instances,	unless	otherwise
instructed	to	do	so	by	Oracle	Support	Services	when	you	are	troubleshooting	a	production
backup	problem.

The	Fast	Recovery	Area
The	Fast	Recovery	Area	(FRA)	is	not	a	requirement	for	using	RMAN,	but	it	should	be.
The	FRA	was	introduced	in	Oracle	Database	version	10g.	It	was	first	called	the	Flash
Recovery	Area	but	was	then	renamed	to	the	Fast	Recovery	Area.	The	term	recovery	files
refers	to	all	files	that	might	be	required	for	a	media	recovery	operation:	full	datafile
backups,	incremental	backups,	datafile	copies,	backup	control	files,	and	archive	logs.	The
FRA	also	functions	as	a	repository	for	mirrored	copies	of	online	redo	log	files,	the	block-
change	tracking	file,	and	for	a	current	control	file.	If	set	up,	flashback	logs	for	using	the
flashback	database	option	also	live	in	the	FRA.

The	concept	behind	the	FRA	is	to	simplify	the	management	of	your	backup	and
recovery	duties	by	consolidating	the	requisite	files	into	a	single	location	that	Oracle	and
RMAN	can	then	micromanage,	while	the	DBA	moves	on	to	other	important	duties.	The
FRA	really	is	part	of	an	overall	backup	and	recovery	architecture	strategy	that	is	designed
to	ensure	that	the	database	is	recoverable,	with	a	minimum	of	work	on	the	part	of	the
DBA.	We	discuss	this	architecture	in	more	detail	in	Chapter	5.

The	FRA	that	you	set	up	can	be	either	a	directory	on	a	normal	disk	volume	or	an
Automatic	Storage	Management	(ASM)	disk	group.	The	FRA	is	determined	by	two
initialization	parameters:	DB_RECOVERY_FILE_DEST	and
DB_RECOVERY_FILE_DEST_SIZE.	The	first	determines	the	location;	the	second,	the
size.	These	can	be	set	in	your	init.ora	file,	if	you	still	use	one,	or	in	the	SPFILE	via	an
alter	system	set	command.	We	will	discuss	configuring	the	FRA	in	more	detail	in	Chapter
5.

With	an	FRA	configured,	you	are	not	required	to	set	any	other
LOG_ARCHIVE_DEST_n	parameter	for	archive	logs;	by	default,	with	an	FRA,	Oracle
will	default	the	setting	for	LOG_ARCHIVE_DEST_10	to	use	the	FRA.	There	may	be
some	cases	where	you	will	want	to	set	other	log	archived	destination	directories—for
example,	with	standby	databases.	We	will	discuss	those	specific	cases	as	we	come	to	them
in	the	different	chapters	of	this	book.

It	should	also	be	noted	that	with	an	FRA	in	use,	the	parameters
LOG_ARCHIVE_DEST	or	LOG_ARCHIVE_DUPLEX_DEST	are	mutually	exclusive,

but	you	certainly	rid	yourself	of	these	outdated	parameters	long	ago,	right?

The	FRA	manages	recovery	files	internally,	first	based	on	database	name,	then	on	types
of	files,	and	then	by	the	dates	when	the	files	are	generated.	The	files	themselves	are	named
according	to	the	Oracle	Managed	Files	(OMF)	format.	Significant	internal	directory
structures	exist	for	file	management.	However,	the	point	of	an	FRA	is	that	you	don’t	need
to	spend	much	time	worrying	about	the	files.

The	same	FRA	can	be	used	by	multiple	databases.	This	can	provide	significant
advantages,	particularly	for	a	Data	Guard	configuration,	but	also	if	you	have	a	large	ASM
disk	group	and	multiple	databases	on	the	same	system.	It	can	come	in	handy,	as	well,
when	it	comes	time	to	clone	production	for	test	purposes.

Summary
In	this	chapter,	we	have	covered	the	basic	RMAN	architecture.	We	talked	about	server-
managed	recovery	and	then	we	started	a	discussion	on	the	RMAN	utility.	We	also	talked
about	RMAN	and	some	networking	considerations,	and	we	discussed	the	control	file	and
its	importance	related	to	RMAN	operations.	We	then	discussed	the	various	RMAN
processes	and	how	RMAN	backs	up	database	blocks.	We	also	discussed	how	RMAN	uses
memory,	the	RMAN	recovery	catalog,	and	the	RMAN	auxiliary	database.	We	finished	this
chapter	by	discussing	how	RMAN	backups	work	in	general,	followed	by	a	discussion	on
compatibility	and	finally	the	Fast	Recovery	Area.	That’s	a	lot	of	ground	to	cover	in	a	few
pages!	Time	to	move	on	to	the	next	chapter	and	learn	even	more	about	RMAN!

CHAPTER
4

Oracle	Database	12c	Multitenant

O
ne	of	the	truly	defining	new	features	of	Oracle	Database	12c	is	the	introduction	of	
Multitenant	(and	it’s	my	intent	to	use	the	acronym	OM	for	Oracle	Multitenant
—it’s	not	official,	but	my	goodness	it	saves	a	lot	of	typing!).	In	fact,	OM	may
perhaps	be	the	biggest	architectural	change	to	the	Oracle	database	ever.	OM	is
designed	to	add	a	number	of	database	efficiencies	to	your	environment,

including	the	following:

			Quick	and	efficient	provisioning	of	databases

			Easier	database	patching

			Easier	database	consolidation	efforts

			More	robust	and	efficient	resource	utilization

In	this	chapter	we	want	to	introduce	you	to	this	new	architecture.	We	won’t	discuss
anything	really	specific	to	RMAN	here,	but	what	we	do	discuss	will	be	relevant	to	RMAN
operations	that	you	will	learn	about	later	in	this	book.	Thus,	we	are	teaching	you	about
how	OM	works	here,	and	we	will	save	the	RMAN	goodies	relative	to	OM	for	the	chapters
they	most	appropriately	belong	in.	For	example,	backing	up	an	Oracle	Multitenant
database	with	RMAN	is	covered	in	Chapter	7,	where	we	discuss	RMAN	backups.	For	the
most	part,	you	will	find	that	many	things	don’t	change	a	great	deal.	However,	some	things
are	different,	and	we	will	make	sure	to	point	those	out	to	you.

Also,	let’s	be	clear	that	for	right	now,	using	Oracle	Multitenant	is	wholly	optional;	in
fact,	it’s	a	separate	licensed	product.	You	can	upgrade	your	pre-12c	database	to	Oracle
Database	12c	and	it	will	look,	act,	and	feel	just	the	same	as	it	did	before.	The	good	news,
then,	is	that	you	do	not	need	to	move	all	of	your	Oracle	databases	into	a	multitenant	model
—yet.	However,	I	suspect	that	someday	this	will	be	the	only	model	available	for	use.	As	a
result,	it’s	a	good	idea	to	get	a	leg	up	on	what’s	coming	in	the	future	and	learn	how	to	use
the	features	of	OM	now	when	you	have	the	time	rather	than	when	it’s	forced	upon	you.

Therefore,	this	chapter	is	designed	to	be	an	introduction	to	OM	so	that	you	can	be
prepared	to	integrate	RMAN	backup	strategies	into	the	OM	architecture.	The	goal	of	this
chapter	is	that	once	you	have	finished	it,	you	should	understand	the	following:

			The	basic	architecture	of	OM	databases

			How	OM	databases	differ	from	non-OM	databases

			What	a	CDB	is,	and	what	a	PDB	is

			The	different	kinds	of	users/schemas	present	in	an	OM	database	architecture
and	the	basic	security	model	for	these	different	kinds	of	users/schemas

			A	review	of	features	in	OM	databases	that	are	related	to	overall	backup,
recovery,	and	similar	operations	in	an	Oracle	database

So,	let’s	get	started	and	see	what	all	this	OM	stuff	is	all	about.

Introducing	Oracle	Multitenant

Oracle	Database	12c	has	introduced	a	new	feature	called	Oracle	Multitenant.	This	one
feature	is	perhaps	the	biggest	change	in	the	Oracle	database	ever,	so	it’s	important	to	know
about	it.

Oracle	Multitenant	introduces	some	interesting	changes	to	the	traditional	architecture
of	the	Oracle	Database	from	both	the	physical	and	logical	points	of	view.	Until	now,	it	has
always	been	a	given	that	a	particular	Oracle	Database	instance	(or	set	of	instances,	in	the
case	of	an	Oracle	RAC	database)	is	always	associated	with	only	one	database.	With	the
introduction	of	Oracle	Multitenant,	that	basic	assumption	is	no	longer	always	true.	Now,
one	database	instance	can	have	many	databases	attached	to	it.	We	know,	we	might	well
have	already	sent	your	head	spinning.

Oracle	Multitenant	provides	the	ability	to	create	multiple	Oracle	databases	(called
pluggable	databases,	or	PDBs)	within	the	confines	of	a	single	main	database	called	the
container	database	(CDB).	These	PDBs	then	share	the	various	computing	resources	of	the
CDB,	which	makes	the	overall	data	processing	system	much	more	efficient.

Typical	use	cases	for	OM	databases	are	several.	Consolidation	of	a	large	number	of
disparate	databases	often	rises	to	the	top	of	the	list.	Oracle	Multitenant	is	a	great	tool	for
database	consolidation.	Beyond	the	typical	use	cases	for	consolidation	(reduction	in	power
usage,	cooling	costs,	space	requirements,	and	so	on)	using	Oracle	Multitenant	Database
can	be	a	much	more	efficient	platform	to	run	multiple	databases	on	from	a	performance
and	resource	utilization	point	of	view.	It	is	simply	more	efficient	to	run	more	databases	as
PDBs	in	an	Oracle	Multitenant	database	than	to	run	them	individually	on	the	same
machine.	Also,	the	OM	database	environment	provides	powerful	features	that	make	it
quick	and	easy	to	clone	databases	within	a	CDB	or	over	to	another	CDB.

In	this	section	then,	we	introduce	you	to	the	principal	actors	in	the	Oracle	Multitenant
Database	play.	First,	we	discuss	the	CDB	in	some	more	detail,	and	then	we	discuss	the
PDB	in	more	detail.	Finally,	we	talk	a	little	bit	about	how	Oracle	Multitenant	impacts
backup	and	recovery	with	RMAN.

The	CDB
At	the	core	of	the	Oracle	Multitenant	architecture	is	what	is	called	the	container	database
(CDB),	which	is	the	parent,	or	root,	structure	within	the	OM	architecture.	The	container
database	is	the	overarching	owner	of	an	OM	database.	It	is	a	database	in	its	own	right,	and
when	you	start	an	OM	database	instance,	what	you	are	really	starting	is	the	instance
associated	with	the	container	database.	Therefore,	the	processes	(or	threads)	and	SGA
memory	that	are	allocated	when	the	OM	database	is	started	belong	to	that	one	container
database.	Let’s	look	at	the	CDB	in	a	bit	more	detail	then.	In	the	following	sections	we	will
look	at	the	following:

			The	architecture	of	the	CDB

			Naming	the	CDB

			CDB	creation

			The	CDB	root	container

Architecture	of	the	CDB
The	CDB	is	very	much	like	an	Oracle	database.	One	might	say	it’s	an	“Oracle	database	on
steroids.”	As	we	discuss	the	architecture	of	the	CDB	in	this	section,	you	will	find	that	it	is
very	familiar.	As	we	progress	through	the	different	components	of	the	CDB,	use	Figure	4-
1	as	a	reference	to	help	you	put	all	the	pieces	together.	The	components	of	the	CDB	are	as
follows:

FIGURE	4-1.			The	CDB	architecture

			The	instance			As	with	normal	Oracle	databases,	the	CDB	is	associated	with
an	Oracle	instance.	Obviously	if	the	CDB	is	an	Oracle	RAC	database,	it	will	have
one	or	more	instances	associated	with	it.	The	CDB	and	all	of	the	PDBs	associated
with	that	CDB	share	the	same	instance.	Therefore,	they	share	all	of	the	same	SGA
memory	structures,	and	there	is	just	one	set	of	parameters	that	is	used	to	configure
memory.

			The	CDB			The	CDB	represents	the	database	as	a	whole.	The	CDB	contains
multiple	containers	that	store	metadata	and	database	data.	The	database	instance	is
directly	tied	to	the	CDB.

			Containers	or	pluggable	databases	(PDBs)			The	container	is	the	principal
storage	unit	for	system	metadata	and	system	schema	information	(see	the	root
container).	It	can	also	be	a	unique	and	isolated	storage	location	for	specific	database
metadata	and	schema	data.	Containers	are	also	known	as	pluggable	databases,	or
PDBs.	A	CDB	can	contain	one	or	more	PDBs.

One	thing	you	will	want	to	be	aware	of	is	that	the	Oracle	database	does	not
consider	CDB$ROOT	to	be	a	PDB,	but	it	does	consider	it	to	be	a	container.
Therefore,	if	you	are	querying	the	data	dictionary	views	(which	we	will	discuss	later
in	this	chapter),	keep	in	mind	that	if	you	want	to	see	everything,	including	the

CDB$ROOT	container,	you	will	need	to	use	the	various	container	views	rather	than
the	PDB	views.	This	is	important,	as	you	will	see	in	a	moment,	because	if	you	use
the	wrong	views,	you	very	well	might	miss	something	important.

Figure	4-2	provides	an	example	of	how	CDBs	and	PDBs	work	together.

FIGURE	4-2.			The	Oracle	Multitenant	CDB	and	PDBs

			Root	container			Each	CDB	has	exactly	one	root	container.	This	container
provides	a	location	for	schemas,	schema	objects,	and	non	schema	objects	that
belong	to	the	CDB	as	a	whole.	System	metadata	required	for	the	database	to	manage
the	individual	PDBs	is	stored	in	the	root	container.	The	root	container	is	named
CDB$ROOT.

			Seed	PDB			Each	CDB	has	an	Oracle-supplied	container	called	PDB$SEED
that	is	used	as	a	template	to	create	new	PDBs	within	the	CDB.	You	cannot	add	or
modify	objects	in	PDB$SEED.

			PDB			See	Containers	or	pluggable	databases	(PDBs).

			Oracle	Database	instance			This	includes	the	normal	instance-related	items
such	as	the	instance	parameter	files,	System	Global	Area	(SGA),	and	background
processes.

			At	least	one	control	file			As	with	a	non-CDB,	you	would	typically	multiplex
the	control	file.	This	control	file	supports	the	CDB	and	all	PDBs	that	are	plugged
into	that	CDB.

			Two	or	more	online	redo	log	groups			As	with	a	non-CDB,	you	would
typically	create	several	groups	and	multiplex	them.	These	redo	logs	support	the
entire	CDB,	along	with	all	the	PDBs	that	are	plugged	into	it.	Because	the	online
redo	logs	serve	the	entire	CDB	and	all	associated	PDBs,	they	need	to	be	large
enough	and	sufficiently	numerous	to	avoid	performance	problems.	If	you	add	PDBs
to	a	CDB,	you	may	need	to	analyze	the	online	redo	log	requirements	for	the	CDB

and	determine	if	you	need	to	enlarge	the	size	of	or	increase	the	number	of	online
redo	logs.	The	online	redo	logs	are	considered	to	be	stored	as	a	part	of	the	root
container.	If	the	CDB	instance/database	is	in	ARCHIVELOG	mode,	then	archived
redo	logs	will	also	be	created	by	the	CDB	via	the	normal	ARCH	process.	The
configuration	of	ARCHIVELOG	mode	itself	is	done	at	the	level	of	the	CDB.	You
cannot	opt	to	disable	ARCHIVELOG	mode	for	individual	PDBs.

			One	or	more	sets	of	temporary	files			A	CDB	has	a	minimum	of	a	single
temporary	tablespace,	called	TEMP	by	default.	This	tablespace	is	contained	in	the
root	container	and	supports	the	temporary	tablespace	needs	of	the	root	CDB	and	all
the	attached	PDBs.	You	can	create	and	define	a	different	default	temporary
tablespace	for	the	CDB,	if	you	choose.	You	can	also	give	individual	PDBs	their	own
individual	temporary	tablespaces.

			An	UNDO	tablespace	and	related	tempfiles			A	single	UNDO	tablespace	and
its	tempfiles	reside	in	the	root	container	of	the	CDB	in	a	non-RAC	configuration.	In
a	RAC	configuration,	you	will	have	an	UNDO	tablespace	for	each	thread.	The
UNDO	tablespace	supports	the	entire	CDB	and	all	PDBs.

			SYSTEM	and	SYSAUX			These	CDB	system-related	tablespace	datafiles
contain	the	data	dictionary	for	the	root	container.	These	tablespaces	also	contain
pointers	to	data	dictionary	information	associated	with	attached	PDBs	(more	on	this
later).	The	CDB	has	no	user	tablespaces	or	related	datafiles.	No	data	should	ever	be
stored	in	the	CDB.	Though	it’s	possible	to	create	objects	in	the	SYSTEM	and
SYSAUX	tablespaces,	as	always,	those	tablespaces	are	reserved	for	Oracle	only.

It’s	clear	that	the	CDB	itself	is	a	database.	That	is,	it	has	its	own	tablespaces,	data
dictionary,	UNDO	tablespace,	TEMP	tablespace,	control	files,	and	online	redo	logs,	just
like	a	regular	database.	You	can	create	objects	in	the	CDB,	just	like	any	other	database,
but	please	do	not	do	this—this	is	bad	form,	and	the	CDB	police	will	come	looking	for	you
and	subject	you	to	hours	of	watching	Jim	Carrey	making	the	world’s	most	obnoxious
noise	on	YouTube	until	you	promise	that	you	will	never	again	create	objects	in	the	CDB
without	support	telling	you	to.

Figure	4-3	provides	an	example	of	what	a	typical	CDB	looks	like	just	after	it’s	created
for	the	first	time.

FIGURE	4-3.			The	freshly	created	CDB

Naming	the	CDB
You	might	have	more	than	one	Oracle	database	instance	running	on	your	database	server
right	now.	In	the	same	way	that	you	can	run	many	database	instances,	you	can	run	many
CDB	database	instances.	That	being	the	case,	it	follows	that	just	like	Oracle	database
instances	have	database	names	(or	SIDs),	so,	too,	do	CDB	database	instances.

Just	as	a	given	database	server	can	host	many	non-CDB	Oracle	databases,	it	can	also
host	many	CDBs.	Like	a	regular	Oracle	database,	each	CDB	has	its	own	ORACLE_SID
that	identifies	that	CDB	uniquely	from	every	other	database	(CDB	or	not)	on	that	database
server.	For	example,	on	my	Oracle	Database	12c	server	I	currently	have	two	database
SIDs.	One	is	a	non-CDB	(called	orcl)	and	one	is	a	CDB	(called	contdb).	The	following
example	shows	the	two	LGWR	processes	running:

Because	not	all	Oracle	databases	are	CDBs,	you	will	want	to	be	able	to	determine
whether	you	are	dealing	with	a	CDB	or	not.	For	example,	you	might	need	to	know	this
information	if	you	want	to	be	able	to	create	or	plug	in	a	PDB	because	the	related	database
must	have	been	created	as	a	CDB.	To	see	if	your	database	has	been	created	as	a	CDB,	you
can	query	the	V$DATABASE	view	column	named	CDB,	as	shown	here:

The	preceding	output	shows	that	a	database	called	CONTDB	has	been	created	as	an	OM

container	database.	Also	note	that	the	same	instance-	and	database-naming	restrictions	on
non-CDBs	apply	to	CDBs.

CDB	Creation
You	create	a	CDB	in	almost	the	same	way	you	create	a	regular	Oracle	database,	except
that	you	indicate	that	the	database	to	be	created	is	a	container	database.	This	is	done	by
adding	the	enable	pluggable	database	clause	to	the	create	database	command	or	by
clicking	a	button	and	adding	some	additional	information	within	the	Database
Configuration	Assistant	(DBCA)	when	creating	a	database.	You	must	take	into	account	a
number	of	different	considerations	when	creating	a	CDB,	and	this	book	isn’t	really	about
creating	Oracle	databases.	Therefore,	we	refer	you	to	the	Oracle	Database	Documentation
(really,	several	books	within	that	set)	for	planning	considerations,	details,	and	specifics	on
creating	CDBs.

Oracle	supports	running	a	CDB	only	on	Oracle	Database	version	12c	and	later.	The
COMPATIBLE	parameter	must	be	set	to	12.0.0.0	or	greater	to	be	able	to	create	a	CDB.
The	version	of	the	CDB	and	the	PDBs	that	you	will	plug	into	the	CDB	must	be	the	same.
Thus,	you	cannot	have	an	Oracle	Database	11g	PDB	plugged	into	an	Oracle	12c	CDB.
This	also	means	you	can’t	restore	an	11g	database	to	a	12c	CDB	(which	is	true	also	for	a
non-CDB	database).

Another	thing	to	note	is	that	you	cannot	convert	a	CDB	into	a	non-CDB.	You	cannot
change	an	existing	non-CDB	into	a	CDB.	Methods	are	available	to	move	the	PDBs	in	a
CDB	out	of	a	CDB	and	make	them	their	own	stand-alone	database.	There	are	also
methods	available	to	take	an	existing	database	and	move	it	into	a	CDB	environment	as	a
PDB.	We	address	these	methods	in	several	chapters	of	this	book	as	they	become	relevant.

The	CDB	Root	Container
After	you	have	created	the	CDB,	it	contains	what	is	called	the	root	container	(introduced
earlier	in	the	section	“Architecture	of	the	CDB”).	Each	CDB	has	only	one	root	container,
which	is	open	in	read-only	mode	whenever	the	CDB	itself	is	open.	The	root	container	is
used	to	store	system	information	about	the	CDB	itself	and	to	store	all	the	metadata
required	for	PDBs	that	will	later	become	part	of	the	CDB.	The	root	container	is	a	single
PDB	called	CDB$ROOT.

The	CDB$ROOT	container	essentially	stores	all	the	CDB-related	metadata.	Therefore,
the	object	definitions	for	all	of	the	data	dictionary	tables	and	the	underlying	tables	of	the
data	dictionary	with	all	of	its	associated	data	is	there.	We	will	talk	about	pluggable
databases	shortly,	but	in	a	CDB	the	pluggable	database	may	actually	store	data	relevant	to
that	PDB	as	opposed	to	it	being	stored	in	CDB$ROOT.	In	this	case,	there	are	often
pointers	in	the	CDB$ROOT	container	that	point	to	that	data	so	it	can	be	accessed	when
logged	into	the	CDB$ROOT	container.	Figure	4-4	provides	a	graphic	look	at	the	root
container	and	its	contents.

FIGURE	4-4.			The	root	container

So,	you	might	be	thinking,	“If	I	can’t	put	objects	in	a	CDB,	what	good	is	it?	Where	do	I
put	data	and	create	schemas	and	do	other	kinds	of	DBA	things?”	I’m	glad	you	asked.
That’s	where	the	pluggable	databases	(PDBs)	come	in.

Pluggable	Databases
I	love	the	movie	Independence	Day.	In	this	movie	there	is	this	huge	alien	ship	that’s	the
mother	ship	of	many	smaller,	but	still	quite	large	and	scary-looking,	baby	ships.	This
mother	ship	sends	these	baby	ships	out	to	go	blow	up	things	all	over	the	earth.	The	CDB	is
kind	of	like	a	more	peaceful	version	of	that	mother	ship.

Think	of	the	CDB	as	the	mother	ship.	The	little	baby	ships	of	this	CDB	are	the
pluggable	databases	(PDBs).	When	we	say	little,	we	only	mean	it	metaphorically,	because
a	PDB	is	an	Oracle	database—thus,	it	can	store	lots	of	data.	So	the	main	job	of	the	CDB	is

to	provide	an	environment	in	which	anywhere	from	0	to	253	PDBs	can	live,	run,	and
thrive.	Fortunately,	they	are	not	known	to	blow	the	smithereens	out	of	Los	Angeles	and
Washington,	D.C.,	like	the	aliens	do	in	Independence	Day!

Each	PDB	is	a	wholly	contained	database	in	and	of	itself.	Each	PDB	is	separated	from
any	other	PDB	within	a	CDB.	Each	PDB	has	the	following:

			Its	own	container	database	name

			One	or	more	unique	service	names

			Users	and	schema	namespaces

			Tablespaces	and	datafiles

			A	unique	security	domain

The	application	connects	to	a	PDB	through	a	service	provided	by	that	PDB	that	is
registered	to	a	listener	process.	This	works	just	like	any	other	individual	Oracle	database,
and	indeed	in	many	ways	that	is	what	a	PDB	is—just	another	Oracle	database	simply
sharing	the	resources	of	one	instance	instead	of	many.	As	a	result,	the	PDB	looks	no
different	to	the	application	than	if	it	had	been	connected	to	a	non-OM	database.	Thus,	the
application	is	abstracted	from	the	architecture	completely.	This	abstraction	is	taken	a	level
deeper,	even	when	you	add	Oracle	RAC	and	the	SCAN	listener	into	the	mix.

For	the	DBA,	you	should	know	that	within	the	Oracle	data	dictionary	the	PDBs	are
often	referred	to	as	containers,	and	in	this	book	we	use	both	names	interchangeably.	Each
PDB	is	assigned	a	unique	identifier	called	the	container	ID,	which	displays	as	a	column
called	CON_ID.	This	column	is	also	found	in	many	of	the	Oracle	database	data	dictionary
views	of	a	CDB.

In	Figure	4-5,	we	have	taken	the	simple	CDB	we	showed	you	in	Figure	4-1	and	have
added	PDBs	to	it.

FIGURE	4-5.			A	CDB	and	many	PDBs

Notice	that	every	PDB	has	a	name	associated	with	it.	When	the	PDB	is	created,	a
service	with	the	name	of	the	PDB	is	also	created	automatically.	This	service	is	registered
with	the	listener	process	servicing	that	CDB.	One	thing	to	be	careful	about	is	service	name
collisions	at	the	listener	level.	If	you	have	two	CDBs	using	the	same	listener	service	and
they	have	two	PDBs	that	are	named	the	same,	all	sorts	of	issues	will	arise	with	your
networking.	One	way	around	this	is	to	have	a	separate	listener	for	each	CDB,	or	just	make
sure	you	don’t	name	PDBs	the	same!

As	a	DBA,	you	will	love	the	new	CDB/PDB	architecture	because	it	makes	many
common	DBA	tasks	much	easier.	The	CDB/PDB	architecture	makes	database	cloning
much	easier,	it	makes	moving	databases	between	CDBs	much	easier,	and	it	makes
upgrading	databases	much	easier.	The	CDB	makes	it	easier	to	monitor	your	databases
because	they	are	centralized	into	one	location.

Further,	the	PDBs	share	the	memory	and	processor	resources	of	the	CDB.	This	results
in	a	significant	performance	improvement	and	better	resource	utilization	in	environments
where	there	are	many	databases.	Memory	is	more	efficiently	utilized,	and	CPU	utilization
is	typically	much	improved.	Oracle	has	done	significant	testing	and	has	demonstrated	that
you	can	efficiently	run	many	more	databases	within	the	CDB	architecture	than	outside	of
it.

How	Does	Oracle	Multitenant	Impact	RMAN	Backup	and
Recovery?
Since	you	are	reading	this	book,	you	are	probably	wondering	how	backup	and	recovery
operations	change	with	the	CDB	and	PDB	architecture,	and	in	large	part	they	do	not.	As
you	will	see	in	future	chapters,	you	can	back	up	all	the	databases	of	the	CDB	at	once,	or
you	can	back	up	specific	PDBs	whenever	you	wish.	You	can	back	up	datafiles	and
tablespaces,	as	well	as	perform	all	the	other	backup	operations	you	are	used	to.

Recovery	has	not	really	changed	much	either.	You	can	recover	the	whole	CDB,	or	just
an	individual	PDB,	or	a	tablespace	or	datafile	within	a	PDB.	Not	much	difference	there.
Also	slightly	different	is	that	fact	that	the	redo	logs	for	all	PDBs	within	the	CDB	are
common	to	the	CDB,	so	there	aren’t	individual	online	redo	logs	or	archived	redo	logs	for
the	PDBs.	Therefore,	when	you	restore	a	PDB,	you	will	be	using	the	CDB’s	redo	logs.

The	control	file	is	also	owned	by	the	CDB.	It	now	contains	information	about	all	the
PDBs	in	the	CDB,	including	RMAN-related	backup	information,	as	we’ll	discuss	in	later
chapters.

The	fact	that	the	online	redo	logs	and	the	control	file	are	owned	by	the	CDB	do	make
for	a	couple	of	differences	to	specific	backup	and	restore	processes.	These	differences	are
minor,	and	we	will	point	them	out	in	the	appropriate	chapters	when	we	come	to	them.
Don’t	worry,	though.	You’ll	be	able	to	sleep	quite	soundly	at	night	in	spite	of	these	little
differences.

Now	that	we	have	given	you	a	higher-level	introduction	to	Oracle	Multitenant,	let’s
circle	back	and	look	at	things	in	a	bit	more	detail.

NOTE

Oracle	Multitenant	is	a	separately	licensed	product	that	you	need	to	purchase
if	you	are	going	to	take	advantage	of	its	features.	At	the	time	of	this	writing,	the
normal	Oracle	license	will	allow	you	to	create	a	container	database	with	one
pluggable	database	in	it.	If	you	wish	to	have	more	than	one	pluggable	database	in
your	container	database,	you	need	to	purchase	Oracle	Multitenant.

Administering	Container	Databases
With	respect	to	RMAN	backup	and	recovery,	you	will	need	to	understand	some	of	the
subtle	differences	that	exist	with	respect	to	administering	CDBs	and	their	PDBs.	In	this
section	we	discuss	the	following	topics:

			Starting	and	stopping	the	CDB

			Common	users

Starting	and	Stopping	the	CDB
Starting	and	stopping	the	CDB	is	just	like	starting	and	stopping	a	normal	Oracle	database.
In	this	section	we	demonstrate	how	to	start	and	stop	a	CDB.

Starting	the	CDB
Starting	the	CDB	itself	is	pretty	much	the	same	as	starting	a	non-OM	database,	really.	You
simply	log	into	the	root	of	the	CDB	with	a	user	who	has	the	appropriate	privileges	and
issue	the	startup	command,	as	shown	in	this	example:

All	the	various	options	of	the	startup	command	are	available,	including	startup
nomount	and	startup	mount.	When	you	start	the	CDB,	the	PDBs	may	or	may	not	start
automatically,	depending	on	what	version	of	Oracle	12c	you	are	running	and	the	state
those	PDBs	were	last	in.	Oracle	12.1.0.2	and	later	versions	support	the	automated	opening
of	PDBs	when	the	CDB	is	opened.	We	discuss	opening	and	closing	PDBs	later	in	this
chapter.

Stopping	the	CDB
All	the	various	shutdown	commands	are	available	for	you	to	use	when	shutting	down	a
CDB,	including	shutdown	abort,	shutdown	transactional,	and	shutdown	immediate.
Here	is	an	example	of	shutting	down	a	CDB	with	the	shutdown	immediate	command:

Common	Users
A	common	user	is	a	new	type	of	user	created	at	the	CDB	level	only.	It	is	kind	of	a	super
user	for	the	CDB,	of	sorts,	but	its	access	privileges	can	still	be	finely	controlled.	The
common	user	exists	throughout	the	CDB	and	can	also	be	assigned	to	one	or	more	PDBs,
or	to	all	PDBs.	A	PDB	common	user	is	local	to	that	PDB.

When	the	CDB	is	created,	common	users	are	created	that	allow	the	DBA	to	administer
not	only	the	CDB	but	also	all	PDBs	that	are	part	of	the	CDB.	Although	these	users	are
called	“common,”	they	are	actually	very	powerful	users.	They	have	access	not	only	to	the
CDB	itself,	but	also	to	every	PDB.	The	most	powerful	common	user	is	the	SYS	user.

Common	users	can	log	into	the	CDB	directly	by	setting	the	ORACLE_SID	and	simply
logging	into	the	database,	as	shown	in	the	following	example,	where	we	are	logging	into
the	CDB	CONTDB	as	the	user	c##robert	using	the	sysdba	privilege:

That	looks	pretty	normal—well,	except	for	the	“c##”	business.

Common	users	have	the	same	identity	in	the	root	container	and	in	every	PDB	attached
(or	that	will	be	attached)	to	the	database.	A	common	user	can	log	into	any	container,	but
the	privileges	of	a	common	user	can	be	administered	separately	within	each	PDB.	For
example,	a	common	user	might	have	the	privilege	to	create	a	table	in	one	PDB	but	not	in
another.

You	can	also	create	your	own	common	users	(which	we	will	discuss	in	more	detail
next).	Each	common	user	account	must	be	prefixed	by	the	naming	convention	c##,
followed	by	the	common	user	name	(for	example,	c##robert).	Of	course,	Oracle-supplied
user	accounts	such	as	SYS	and	SYSTEM	are	exempt	from	this	rule.	The	namespace	for	a
given	common	user	exists	across	all	the	containers	of	the	CDB.	Thus,	if	you	create	a
c##robert	user,	that	user	exists	in	all	containers	in	that	database.	This	means	you	cannot
have	a	local	user	c##robert	in	any	individual	PDB.

It	is	often	the	case	that	when	you	are	logged	into	a	CDB	or	any	of	its	PDBs	that	you
will	want	to	know	which	one	you	are	actually	logged	into.	This	is	especially	true	for
administrators	who	may	move	between	different	containers	in	SQL*Plus.	To	find	out
which	container	you	are	in,	you	can	use	the	SQL*Plus	show	con_name	command,	as
shown	here:

In	this	case,	the	user	is	logged	into	a	container	(PDB)	called	CDB$ROOT,	which	is	the
root	container.

Creating	a	Common	User
Creating	a	common	user	is	very	similar	to	creating	a	normal	user.	You	use	the	create	user
command	to	create	the	user.	The	following	rules	apply:

			You	must	be	logged	in	with	a	user	account	that	has	the	following	privileges:
create	user	and	set	container.	The	set	container	privilege	is	new,	and	it	allows	you
to	traverse	containers	using	the	alter	session	set	container	command.	We	show	you
an	example	of	this	in	just	a	moment.

			Your	current	container	must	be	the	root	container	(CDB$ROOT):

If	you	are	logged	in	as	a	privileged	user	and	need	to	change	to	the	CDB$ROOT
container,	you	can	use	the	SQL	command	alter	session	set	container,	as	mentioned
earlier.

			Use	the	create	user	command	to	create	the	common	user	using	the
container=all	option.	Remember	that	the	common	user’s	name	must	start	with	c##
or	C##.

			When	creating	a	common	user,	if	you	define	default	tablespaces,	temporary
tablespaces,	quotas,	and	profiles	when	issuing	the	create	user	command,	those
objects	must	exist	in	all	containers	attached	to	the	CDB.	Otherwise,	the	create	user
command	will	fail.

NOTE

If	you	create	a	schema-level	object	as	a	common	user,	that	object	can	be
shared	across	the	CDB.

Here	is	an	example	of	creating	a	common	user	called	c##robert:

Of	course,	we	still	live	by	the	Oracle	security	rules,	so	when	we	try	to	log	into	the
database	using	this	newly	created	user,	the	following	happens:

As	you	might	have	guessed,	we	need	to	grant	the	create	session	privilege	to	the
common	user	first,	and	then	we	can	log	in:

In	the	previous	example,	we	connected	to	the	root	container	but	not	to	a	PDB.	The
procedure	for	connecting	to	a	PDB	is	a	bit	different,	as	discussed	later	in	this	chapter.

Removing	a	Common	User
Deleting	a	common	user	is	quite	simple:	you	connect	to	the	root	container	as	a	user	with
privileges	to	drop	other	users	and	then	you	issue	the	drop	user	command,	just	as	you
always	have.	The	following	example	drops	the	c##robert	common	user.	The	use	of	the
cascade	option	causes	a	recursive	removal	of	all	objects	that	c##robert	owns.

NOTE

Did	you	notice	that	we	use	the	show	con_name	SQL*Plus	command	a	lot?
With	multiple	PDBs	it’s	even	easier	to	find	yourself	in	the	wrong	place	within	an
Oracle	database.	Therefore,	before	you	run	a	command,	make	sure	you	are	in	the
right	PDB.

The	Pluggable	Database

A	PDB	is	a	logical	collection	of	schema	objects	(tables,	indexes,	users,	and	so	on).	From
the	perspective	of	the	application	and	local	users,	a	PDB	appears	to	be	an	independent
database.	This	section	discusses	the	following	PDB	topics:

			The	PDB	name

			Creating	a	PDB

			Connecting	to	a	PDB

			The	architecture	of	the	pluggable	database

			PDB	performance

			PDB	resource	management

			Naming	PDBs

			PDB	local	users

			Accessing	PDBs

The	PDB	Name
Just	as	a	CDB	has	a	name	(contdb,	in	our	earlier	example),	each	PDB	has	a	unique	name
within	the	context	of	a	CDB.	The	rules	for	naming	PDBs	are	the	same	as	the	rules	for
naming	services,	which	is	important	because	local	users	can	connect	to	an	individual	PDB
only	through	a	service	name.

The	rules	for	naming	a	PDB	are	as	follows:

			The	first	character	must	be	an	alphabetical	character.

			Subsequent	characters	can	be	alphanumeric	or	an	underscore	character.

			PDB	names	are	case	insensitive.	Therefore,	you	cannot	create	a	PDB	called
MYPDB	and	a	PDB	called	mypdb—Oracle	will	not	allow	this.

Creating	a	PDB
We	use	the	phrase	“from	scratch”	to	distinguish	between	two	similar	but	different
processes.	In	this	case	we	are	talking	about	the	process	of	creating	a	PDB	by	using	the
create	pluggable	database	command—specifically	when	the	seed	container	is	used	to
create	the	new	PDB.	This	is,	for	all	practical	purposes,	similar	to	the	create	database
command	in	that	you	are	creating	a	brand-new	entity.	Other	methods	of	creating	PDBs
include	cloning	and	plugging	a	database.	We	will	talk	about	these	options	a	little	later	in
this	section.

During	your	backup	and	recovery	operations,	you	might	need	to	create	an	empty	PDB
at	some	point	in	time.	Sometimes	RMAN	will	create	the	PDB	for	you	during	the
operation,	but	sometimes	you’ll	need	to	do	it	yourself.	You	have	a	great	number	of	options
you	can	use	when	issuing	the	create	pluggable	database	command,	and	we	leave	it	to
you	and	the	Oracle	SQL	Reference	Guide	12c	to	work	out	those	specific	details.

To	get	you	started,	here	is	an	example	of	using	the	create	pluggable	database

command.	In	this	case,	we	are	logged	into	a	running	CDB	as	a	user	with	SYSADMIN
privileges.	We	have	decided	to	call	the	new	pluggable	database	newpdb,	and	we	have
decided	on	the	admin	user	and	the	password	for	the	admin	user.	In	this	case,	the	admin
user	is	like	the	SYS	user;	however,	because	Oracle	prefers	you	not	to	log	in	as	SYS,	you
are	provided	with	a	way	of	defining	an	admin	user	for	the	PDB.	This	user	is	granted	the
role	PDB_DBA.

PDB	Users
As	mentioned	earlier,	common	users	are	created	at	the	root	level	of	the	CDB	and	have	the
potential	to	roam	across	all	attached	PDBs.	Within	the	PDB	you	find	users,	and	their
associated	schemas,	just	like	those	in	a	non-CDB	environment.	The	scope	for	a	local	user
and	that	user’s	associated	schema	and	schema	objects	is	limited	to	the	PDB	that	the	user
name	is	assigned	to.	That	being	said,	if	there	is	a	need	for	a	PDB	user	to	traverse	across
the	CDB	landscape,	this	is	actually	quite	easy,	as	long	as	the	appropriate	security
privileges	are	granted.	This	is	another	benefit	of	a	CDB	environment:	the	cross-sharing	of
data	across	business	units	can	be	much	easier	and	faster,	and	still	remain	as	secure	as	it
ever	was	(and,	frankly,	probably	more	secure).

The	same	local	user	name,	the	schema	name,	and	any	object	names	can	be	created	in
multiple	PDBs	within	the	same	CDB.	Each	is	created	in	its	own	separate	and	distinct	user
namespace.	Here	is	an	example	of	the	creation	of	a	local	user	in	the	PLUG_TEST	PDB:

As	you	can	see	next,	this	local	user	is	truly	a	local	user	because	it	cannot	be	used	to	log
into	the	root	container:

Note	that	we	got	an	error.	This	is	because	the	method	we	are	using	to	log	in	only	allows
us	access	to	the	root	CDB.	Each	of	the	individual	PDBs	is	isolated	from	the	CDB,	and	the
local	users	are	specifically	allocated	to	the	PDB	in	which	they	are	created.	As	a	result	of
this	isolation,	connecting	to	a	PDB	directly	is	a	bit	different;	you	have	to	connect	to	it
using	the	service	that	exists	for	that	PDB,	as	shown	here:

Let’s	look	a	little	bit	more	at	how	to	connect	directly	to	a	PDB	then.

NOTE

If	you	get	a	connection	error,	make	sure	the	PDB	you	are	trying	to	connect	to	is
listed	in	your	tnsnames.ora.	Although	it	will	register	with	the	listener	when	it's
created	or	started,	the	PDB	is	not	automatically	added	to	your	naming	resolution
method	like	tnsnames.ora.

Connecting	to	a	PDB
Each	PDB	has	a	service	name	that	is	created	when	the	PDB	is	created.	If	you	want	to
connect	directly	to	a	specific	PDB	(which	would	be	by	far	the	most	common	access
method	for	users	of	the	PDB),	you	need	to	connect	using	the	TNS	service	name	for	that
PDB.	This	implies	two	major	dependencies.	First,	the	service	name	must	be	registered
with	the	database	listener.	Issuing	the	lsnrctl	status	command	will	settle	that	question.
The	second	requirement,	if	you	are	not	using	the	EZConnect	string,	is	that	you	need	some
form	of	client	resolution.	Of	course,	if	you	are	using	RAC,	then	this	latter	issue	isn’t	a
problem	because	you	will	simply	be	going	to	the	SCAN	listener	to	resolve	the	service
name	you	are	requesting.

The	concept	of	service	names	should	not	be	unfamiliar	to	you—you	use	them	all	the
time	to	make	network	connections	to	databases.	When	you	create	a	normal	database,	or
even	a	CDB,	a	network	service	name	for	that	database	is	created	and	registered	with	the
listener.	The	same	is	true	about	PDBs.	When	the	PDB	is	created,	it	is	assigned	the	same
service	name	as	the	PDB.	That	service	name	is	then	registered	to	the	listener	process.	At
that	point,	you	can	connect	to	the	service	just	as	you	always	would,	using	a	tnsnames.ora
entry,	an	EZConnect	string,	or	whatever	other	method	you	use	to	connect	to	the	database
service.	For	example,	in	our	database	we	have	a	PDB	called	robertpdb,	which	is	open.
When	the	PDB	is	open,	it	automatically	registers	with	the	listener,	as	you	can	see	in	this
sample	output	(which	has	been	cut	for	brevity):

So,	you	can	see	from	this	output	that	both	the	CDB	(contdb)	and	the	service	(plug_test)
are	registered	with	the	service.	Note	that	the	listener	will	continue	to	provide	the	service
for	a	PDB	even	if	it’s	down.	This	allows	an	administrator	to	log	into	the	service	and	open

it,	for	example,	with	a	minimum	of	fuss.

Let’s	look	at	some	examples	of	logging	into	PDBs,	because	you	may	well	need	to	do
this	as	part	of	some	backup	or	recovery	exercise.

In	this	example	we	have	a	database	called	PLUG_TEST	that	we	will	connect	to	using
its	service	name.	When	the	PDB	was	created	and	we	called	it	PLUG_TEST,	Oracle
created	a	service	name	called	PLUG_TEST	at	the	same	time.	Now	that	this	is	done,	all	we
need	to	do	is	start	SQL*Plus	and	log	into	the	PDB	through	its	service	name,	which	we
have	done	in	the	following	example:

You	can	also	use	the	EZConnect	naming	method	to	connect	to	the	PDB	through
SQL*Plus,	as	demonstrated	here:

Looking	at	the	connect	string,	you	can	see	that	we	are	connecting	to	a	service	called
PLUG_TEST.	PLUG_TEST	is	a	service	for	a	PDB	named	PLUG_TEST.	The
PLUG_TEST	PDB	is	attached	to	a	CDB	called	CONTDB.	PLUG_TEST	lives	on	the
database	server	called	bigdata,	and	the	listener	port	that	the	service	is	listening	on	is	1521.

To	successfully	connect	to	a	PDB	using	a	service,	the	following	must	be	true:

			The	main	CDB	is	up	and	running.

			The	PDB	is	open.	The	PDB	might	be	open	in	migrate,	read-write,	read-only,	or
upgrade	form.	In	some	states,	only	users	with	restricted	session	privileges	will	be
able	to	access	the	OM	database	PDBs.	You	can	tell	the	status	of	a	PDB	by	looking	at
the	OPEN_MODE	column	of	the	V$PDBS	view,	as	shown	here:

If	the	PDB	is	open,	you	can	connect	to	it	using	the	service	assigned	to	that	PDB.	The
service	typically	has	the	same	name	as	the	PDB.	Therefore,	in	our	example,	the	service	is
called	PLUG_TEST.	Through	SQL*Plus,	you	can	connect	to	the	PDB	through	the
PLUG_TEST	service,	as	we	did	earlier	using	the	EZConnect	string.

We	showed	you	earlier	that	you	can	see	the	services	registered	with	the	listener.	You
can	see	a	list	of	available	services	for	a	PDB	from	within	the	PDB	by	using	the
DBA_SERVICES	view:

Note	that	if	you	issue	this	query	from	the	root	container,	the	results	look	different:

This	is	because	the	DBA*	views	(and	USER	and	ALL	views)	only	show	data	for	the
container	you	are	currently	in.	We	discuss	this	in	more	detail	later,	but	there	is	a	new	set	of
views	called	the	CDB*	views	that	provide	a	CDB-wide	view	of	things.	Here	we	use	the
CDB_SERVICES	view	from	the	root	container,	and	now	we	can	see	the	service	for
plug_test:

Note	that	we	could	also	have	used	the	view	V$SERVICES	(or	GV$SERVICES	in
RAC)	to	see	the	service.	The	data	in	the	V$	views	is	not	localized	to	information	for	a

specific	PDB.	Here	is	an	example	of	using	V$SERVICES	to	determine	the	service	name.
You	might	need	to	use	V$SERVICES	during	certain	recovery	situations	where	the
database	can	only	be	mounted:

If	you	would	rather	not	use	the	EZConnect	string	(which	may	well	be	the	case),	you
can	put	the	service	information	within	a	tnsnames.ora	file	and	use	that	entry	instead.	Our
tnsnames.ora	entry	for	PLUG_TEST	looks	like	this:

The	service	for	the	PDB	should	have	been	created	when	the	PDB	was	created.	If	the
service	was	not	created,	you	will	need	to	create	the	service	manually,	but	this	should	be	a
rare	occurrence.	If	you	need	to	create	a	service	for	a	PDB	manually,	this	is	documented	in
the	Oracle	Database	Administrator’s	Guide	12c	in	the	section	“Creating,	Modifying,	or
Removing	a	Service	for	a	PDB.”

Earlier	we	mentioned	service	name	collision	at	the	listener.	Although	this	discussion	is
beyond	the	scope	of	this	book,	we	did	want	to	mention	that	there	is	a	way	around	this
problem.	You	can	actually	drop	and	re-create	the	service	for	a	PDB	with	a	different
service	name.	This	is	done	from	within	the	CDB,	and	Oracle	provides	documentation	on
how	to	perform	this	activity	should	you	need	to	do	so.	The	other	way	around	this	problem
is	to	create	a	second	listener,	but	that	listener	would	need	to	be	listening	on	a	different
port,	which	could	more	administratively	more	complex.

Asking	for	Directions:	Determining	Which	PDB	You	Are	In
If	you	need	to	know	which	PDB	you	are	in,	you	can	use	the	show	con_name	SQL*Plus
command,	as	you’ve	seen	frequently	in	this	chapter.	You	can	display	the	container	ID	by
using	the	show	con_id	SQL*Plus	command.

Oracle	also	provides	functions	that	return	the	container’s	ID	based	on	passing	specific
information	to	the	function,	including	the	container	name,	the	container	dbid,	the	container

uid,	and	the	container	guid.	For	example,	if	you	know	the	container	name,	you	can	get	the
container	ID	by	using	the	con_name_to_id	function,	as	shown	here:

There	are	four	functions	in	total:

			CON_NAME_TO_ID			Returns	the	container	ID	based	on	the	container	name

			CON_DBID_TO_ID			Returns	the	container	ID	based	on	the	container	DBID
(found	by	querying	the	DBID	column	of	V$DATABASE)

			CON_UID_TO_ID			Returns	the	container	ID	based	on	the
CONTAINER_UID

			CON_GUID_TO_ID			Returns	the	container	ID	based	on	the
CONTAINER_GUID

You	can	find	the	DBID,	UID,	and	GUID	for	a	container	in	the	V$CONTAINERS	view.

Architecture	of	a	Pluggable	Database
We	have	already	discussed	what	a	PDB	is,	so	now	let’s	talk	about	how	a	PBD	is
physically	manifested.	In	many	ways,	it’s	not	unlike	a	regular	database.	When	you	create	a
normal	database,	you	end	up	with	physical	datafiles	that	act	as	the	persistent	storage
medium	for	that	database.	You	also	have	physical	online	redo	logs	and	control	files	that
are	created.	We	have	already	mentioned	that	these	same	types	of	physical	files	are	created
when	you	create	the	CDB.	Let’s	look	at	how	that	physical	file	architecture	looks.

Let’s	assume	for	the	sake	of	this	discussion	that	we	have	set	the	parameter
DB_CREATE_FILE_DEST	to	a	value	of	/u01/app/oracle/oradata.	Further,	let’s	say	we
allowed	the	Oracle	Database	Configuration	Assistant	to	create	our	database	using	its
default	settings.	Finally,	let’s	assume	that	we	allowed	the	DBCA	to	create	one	PDB	for	us
called	PLUG_TEST.	Where	would	Oracle	place	the	datafiles	of	the	CDB	and	its	PDB?
Let’s	use	the	following	query	and	its	output	to	find	out:

Note	that	this	query	will	run	on	either	a	CDB	or	non-CDB	database.	This	is	because	the
CDB-related	columns	and	views	are	also	created	when	a	non-CDB	database	is	created.
This	makes	it	easier	to	write	reusable	SQL	code	for	tasks	such	as	viewing	the	data
dictionary.

Do	you	recall	earlier	that	we	told	you	that	the	database	considers	CDB_ROOT	to	be	a
container	but	not	a	PDB?	We	have	put	this	information	to	use	here	with	the	preceding
query.	Notice	that	we	used	the	V$CONTAINERS	view	instead	of	the	V$PDBS	view.	If	we
had	used	the	V$PDBS	view,	we	would	have	missed	all	of	the	datafiles	for	CDB$ROOT,
which	would	have	been	a	very	bad	thing!

Looking	at	the	output	you	can	see	that	we	have	three	containers	in	this	database:
CDB$ROOT,	PDB$SEED,	and	PLUG_TEST.	Notice	that	the	CDB$ROOT	and
PDB$SEED	datafiles	are	all	located	in	what	is	pretty	much	the	expected	location	of
database	datafiles	when	using	OFA	(in	this
case,/u01/app/oracle/oradata/CONTDATA/datafile).	The	filenames	follow	the	OFA
naming	convention	that	you	are	pretty	much	used	to.	You	can	also	see	the	various
tablespaces	we	used,	such	as	SYSTEM	and	SYSAUX,	and	the	datafiles	assigned	to	them.

So,	nothing	much	different	there—almost.

Note	that	the	CDB$ROOT	and	CDB$SEED	container	files	are	maintained	in	the	same
directory;	this	is	because	they	are	part	of	the	default	container	database	install.	The
CDB$ROOT	container	is	the	root	container	we	mentioned	already.	The	CDB$SEED
container	is	the	seed	container	Oracle	uses	to	create	new	PDBs.	These	two	containers	and
the	datafiles	assigned	to	their	tablespaces	are	created	every	time	a	CDB	is	created.

Then	there	is	the	PLUG_TEST	PDB,	which	is	quarantined	into	its	own	special
directory.	The	reason	these	files	(which	we	can	see	belong	to	the	SYSTEM	and	SYSAUX
tablespaces	because	of	the	filenames)	are	quarantined	is	to	make	the	individual	PDBs	of	a
database	easier	to	deal	with.	Because	the	datafiles	of	each	PDB	have	their	own	unique
location,	this	provides	us	additional	flexibility	with	respect	to	the	management	of	those
PDBs.	This	also	helps	to	protect	the	other	PDBs	during	restore	operations.	If	they	are
located	in	their	own	specific	directory,	you	are	less	likely	to	overwrite	the	wrong	datafile
during	a	manual	restore	operation.	Of	course,	RMAN	reduces	that	risk	considerably.

Let’s	look	at	where	the	files	of	the	PLUG_TEST	PDB	are	located.	The	initial	file	path
looks	right—/u01/app/oracle/oradata/PLUG_TEST—but	then	we	see	this	crazy	long
number.	What	is	that?	It	is	the	GUID	of	the	individual	PDB.	GUID	stands	for	globally
unique	identifier,	and	each	PDB	is	assigned	a	GUID	when	it	is	created.	This	GUID	keeps
the	PDB	logically	unique	and	is	used	for	a	variety	of	purposes.	In	our	case,	the	GUID	is
used	to	create	a	unique	directory	structure	that	maintains	the	PDB	datafiles.	The	directory
structure	ends	with	the	familiar	datafile	directory	and	then	the	datafiles	associated	with	the
PDB	in	question.

If	you	want	to	know	the	GUID	of	a	PDB,	you	can	find	it	in	the	V$CONTAINERS	and
V$PDBS	views	in	a	column	called	GUID.	Here	is	a	sample	query	using
V$CONTAINERS:

You	have	a	lot	of	control	over	where	the	datafiles	are	created.	You	can	define	them
yourself	when	you	create	the	PDBs,	or	you	can	move	them	later.	There	are	also	optional
database	parameters	such	as	SEED_FILE_NAME_CONVERT	and
PDB_FILE_NAME_CONVERT	that	can	be	used	to	manage	the	file-creation	locations	of
container-related	datafiles.

Notice	that	each	PDB	has	its	own	SYSTEM,	SYSAUX,	and	USERS	tablespace.	The
PDBs	do	not	need	an	undo	or	temporary	tablespace	because	these	objects	are	shared	with
the	CDB.	You	can	create	individual	temporary	tablespaces	inside	of	a	PDB	if	you	wish,
but	you	cannot	create	individual	undo	tablespaces.	As	with	non-CDB	databases,	if	you	are
running	a	RAC	cluster,	you	would	have	an	undo	tablespace	for	each	RAC	database
instance	that	is	running.

PDB	Constraints
Rules,	rules,	rules—we	all	live	by	rules.	Well,	the	same	is	true	with	the	Oracle	CDB	and
PDB	architecture.	We	thought	it	would	be	worthwhile	to	point	out	the	rules	that	might
come	into	play	as	a	part	of	using	RMAN	with	CDBs.

The	first	thing	I	want	to	say	is	that	some	of	the	“rules”	are	in	flux	as	we	write	this	book.
Some	features	in	the	first	release	of	Oracle	Database	12c	(12.1.0.1)	were	available	in	non-
CDB	databases	but	were	not	available	in	CDB-based	databases.	When	release	12.1.0.2
came	out,	the	list	of	unsupported	features	was	reduced,	and	we	expect	to	find	that	all	of
the	features	of	Oracle	Database	12c	non-CDBs	will	be	available	in	PDBs.	That	being	said,
we’re	not	going	to	mention	restrictions	unless	they	have	a	specific	impact	on	backup	and
recovery	of	your	Oracle	Database,	should	it	be	a	multitenant	or	nonmultitenant	database.
These	restrictions	are	only	mentioned	throughout	the	chapter	when	they	become
important.	The	Oracle	Database	Readme	Oracle	Database	12c	Release	1	provides	a
section	on	Oracle	database	features	that	are	not	yet	supported	by	Oracle	Multitenant.	The
list	is	fairly	small	as	of	the	latest	release	of	Oracle	Database	12c.

The	rules	around	movement	of	different	versions	of	PDBs	are	something	you	should	be
aware	of.	Every	CDB	is	running	off	of	a	specific	Oracle	software	version.	That	means
every	PDB	in	that	CDB	must	be	running	that	version	of	Oracle.	This	can	cause	issues
when	plugging	in	new	PDBs,	of	course.

All	PDBs	are	owned	by	the	parent	CDB	SYS	user.	A	given	CDB	can	have	up	to	252
PDBs	plugged	into	it	at	any	one	time.	Each	PDB	is	an	independent	and	isolated	unit	from
any	other	PDB.	Likewise,	PDBs	can	be	unplugged	from	a	given	CDB	by	the
administrator.	The	PDB	can	be	moved	to	a	different	CDB	and	then	plugged	into	that	CDB.
PDBs	can	also	be	replicated	within	a	given	CDB.

You	need	to	be	careful	naming	a	PDB.	A	given	CDB	cannot	have	two	PDBs	with	the
same	name,	and	a	given	listener	can’t	have	two	services	with	the	same	name.	This	means
if	two	CDBs	are	using	the	same	listener,	the	PDB	names	need	to	be	unique	across	those
listeners.	Also,	PDB	names	are	not	case	sensitive.

PDB	Performance
Using	a	CDB	and	consolidating	existing	databases	into	PDBs	within	the	CDB	offers	a
number	of	features—a	major	one	being	the	sharing	of	system	resources	such	as	CPU	and
memory.	You	might	think	that	adding	more	PDBs	will	incur	a	linear	cost	with	respect	to
resources,	but	this	is	not	the	case.	As	shown	in	Figure	4-6,	as	additional	PDBs	are	added,
the	total	memory	requirements	of	the	CDB	do	not	increase	rapidly.	In	fact,	in	many	cases,
using	a	CDB	can	make	much	more	efficient	use	of	system	resources	than	using	individual
databases,	all	with	their	own	database	instances.

FIGURE	4-6.			Memory	utilization	as	you	add	PDBs

PDB	Resource	Management
Now	that	we	have	a	single	database	instance	that	contains	many	databases,	sometimes
concerns	arise	about	possible	performance	impacts	that	might	be	caused	by	other	database
tenants	within	a	given	shared	system.	Oracle	Database	12c	has	improved	the	Oracle
Database	Resource	Manager,	which	can	control	various	resources	within	a	specific	PDB,
including	the	following:

			CPU

			Sessions

			Parallel	server	processes

			Disk	I/O	resources	among	the	PDBs	and	the	CDBs	on	the	system	(if	you	are
running	on	Oracle	Exadata)

With	PDBs,	you	can	divide	the	CPU	into	shares,	with	each	share	defining	how	much
CPU	a	given	resource	is	assured.	This	can	be	helpful	in	a	consolidated	environment	where
you	want	to	be	able	to	assure	your	customer	that	they	will	always	have	access	to	a
minimum	amount	of	CPU	availability.	Also,	you	can	price	your	services	based	on	a
minimum	guaranteed	CPU	allowance.

The	guarantee	of	CPU	is	based	on	the	distribution	of	shares	across	the	CDB.	The	total
number	of	shares	divided	by	the	individual	shares	that	a	PDB	is	assigned	indicates	the
amount	of	guaranteed	CPU	that	the	PDB	will	have	access	to.

For	example,	assume	you	have	the	following	three	PDBs	within	a	CDB	and	your
resource	plan	defines	that	the	PDBs	have	the	indicated	number	of	shares	of	CPU:

			MYPDB:	two	shares

			ORCL:	one	share

			YOURPDB:	one	share

In	this	case,	a	total	of	four	shares	are	allocated	within	all	the	resource	plans.	As	a	result,
MYPDB,	with	two	shares,	is	assured	access	to	50	percent	of	the	CPU.	ORCL	and
YOURPDB	are	each	assured	access	to	25	percent	of	the	CPU	because	they	have	one	share
each.

The	Database	Resource	Manager	also	provides	the	ability	to	define	a	CPU	utilization
limit	for	a	given	PDB.	For	example,	if	you	define	a	utilization	limit	of	50	percent	for	the
ORCL	PDB,	it	still	has	a	guaranteed	25	percent	of	the	CPU	(based	on	its	one	share),	but	it
will	never	be	able	to	use	more	than	50	percent	of	the	CPU	at	any	time.

The	Oracle	Database	Resource	Manager	also	makes	it	possible	for	you	to	define	a
default	directive	for	shares	and	utilization	that	applies	to	PDBs	by	default.	In	that	case,
you	can	simply	plug	in	the	PDB,	and	the	default	directives	of	the	resource	plan	will	take
effect.

Finally,	if	you	own	Exadata,	you	can	use	the	IO	Resource	Manager	(IORM)	in	concert
with	the	Database	Resource	Manager	to	further	manage	the	I/O	impact	of	both	CDB	and
PDB	databases.

CDBs	and	PDBs	and	the	Data	Dictionary
Although	the	data	dictionary	is	important	to	most	DBAs,	if	you’re	involved	in	some
restore	exercise,	it	may	well	be	all	that	stands	between	success	and	failure	in	a	crisis.
Knowing	the	data	dictionary	might	also	make	the	difference	in	meeting	a	recovery	time
objective	(RTO)	or	recovery	point	objective	(RPO).

Most	DBAs	have	used	the	data	dictionary	views	to	some	degree	or	another.	Some	are
more	comfortable	with	graphical	interfaces	such	as	Oracle	Enterprise	Manager,	and	as
such	they	don’t	often	traverse	the	universe	of	views,	tables,	and	memory	structures	that
make	up	the	entirety	of	the	data	dictionary.	Then	there	are	those	who	know	the	data
dictionary	so	well	that	we	have	to	send	them	to	the	DBA	asylum	because	they	are	just	that
scary.

Either	way,	the	introduction	of	Oracle	Multitenant	has	added	quite	a	few	new	data
dictionary	views,	as	you	might	expect.	These	new	data	dictionary	views	generally	come
with	the	prefix	of	CDB_	or	PDB_.	As	these	prefixes	might	suggest,	there	are	views	that
are	specific	to	the	CDBs	and	those	specific	to	the	PDBs.	There	are	also	a	number	of	V$
(and	GV$)	views	that	provide	information	on	the	CDB	and	PDBs	within	it.	So,	let’s	look
at	the	data	dictionary	views	in	a	bit	more	detail.

This	section	covers	the	following	topics:

			The	multitenant	database	data	dictionary

			The	PDB	data	dictionary

			CDB/PDB	administrative	queries

			CDB/PDB	object	administration	data	dictionary	queries

The	Multitenant	Database	Data	Dictionary
Both	the	CDB	and	each	PDB	contain	data	dictionary	views.	This	includes	both	the
standard	DBA,	USER,	and	ALL	data	dictionary	views.	Additionally	there	is	now	a	set	of
views	called	the	CDB	views.	Finally,	there	are	new	and	changed	V$	views	available.	Let’s
look	at	the	CDB	data	dictionary	and	then	the	PDB	data	dictionary	in	a	bit	more	detail.

The	CDB	Data	Dictionary
The	CDB	data	dictionary	is	stored	in	the	CDB$ROOT	container.	It	stores	information
about	the	CDB,	such	as	the	names	of	the	data	dictionary	objects	and	the	metadata	related
to	data	dictionary	views	and	so	on.	The	data	dictionary	in	the	CDB	is	owned	by	the	SYS
user,	as	has	always	been	the	case	with	Oracle	databases.	The	CDB	data	dictionary	data	is
stored	in	the	SYSTEM	tablespace,	just	as	before.

The	biggest	difference	between	the	data	dictionary	in	a	multitenant	database	and	one
that	is	not	is	that	not	all	of	the	data	dictionary	information	is	actually	stored	in	the	data
dictionary	of	the	CDB.	In	fact,	a	great	deal	of	the	data	dictionary	information	is	stored	in
the	PDB.	This	provides	for	a	great	deal	of	efficiency	when	dealing	with	PDBs,	and	Oracle
manages	all	of	the	disparate	data	dictionary	information	for	you	automatically.	We	talk
more	about	that	next	as	we	look	at	the	PDB	data	dictionary.

The	PDB	Data	Dictionary
Each	PDB	also	has	its	own	data	dictionary.	Shockingly,	it’s	owned	by	the	SYS	user	of	the
PDB	and	is	stored	in	the	SYSTEM	tablespace	of	that	PDB.	Remember,	the	CDB	and	each
PDB	has	its	own	SYSTEM	tablespace,	so	each	individual	PDB	has	its	own	unique	and
secure	data	dictionary.

To	help	performance,	Oracle	stores	CDB-	and	PDB-related	data	dictionary	metadata	in
different	places.	Sometimes	the	data	dictionary	information	is	stored	in	the	root	of	the
CDB,	and	sometimes	it’s	stored	in	the	PDB	itself.	This	is	for	a	lot	of	reasons,	including
performance	and	making	it	easy	to	plug	in	or	unplug	individual	PDBs.	For	example,	if	I
don’t	have	to	bother	exporting	out	all	of	the	data	dictionary	views	from	the	CDB	and
importing	them	into	the	PDB,	this	speeds	up	cloning	and	similar	processes.

Generally	the	data	dictionary	within	a	PDB	will	be

			Contained	within	the	PDB	only.

			Metadata	used	in	a	PDB	(like	data	dictionary	view	definitions)	may	actually	be
stored	in	the	PDB	as	a	metadata	link	to	an	object	stored	in	the	root	container.
Therefore,	these	commonly	defined	metadata	objects	do	not	need	to	be	stored	in
more	than	one	place.

			Object	links	in	the	PDB.	Object	links	are	links	to	actual	data	as	opposed	to
metadata.	For	example,	if	you	access	the	AWR	repository	from	within	a	PDB,	that

data	is	actually	stored	in	the	root	container.	There	is	an	object	link	from	the	PDB	to
the	root	container	that	facilitates	access	to	those	views	from	within	the	PDB.

We	can	see	these	different	object	types	in	the	CDB_OBJECTS	view	column
SHARING,	as	shown	here:

The	various	data	dictionary	views	at	both	the	CDB	and	PDB	level	know	where	to	look
for	specific	data	dictionary	information.	If	it’s	stored	in	the	PDB,	it	will	be	collected	from
the	PDB;	otherwise,	it’s	collected	from	the	root	container.

Multitenant	Data	Dictionary	View	Naming	Conventions
At	the	CDB	level	we	still	have	the	standard	set	of	data	dictionary	views	(that	is,	the
DBA_*,	ALL_*,	USER_*,	and	the	V$	views)	that	Oracle	Database	has	included	for	years.
Also,	each	PDB	has	the	same	views	in	it.	When	queried,	these	views	will	always	provide
information	specific	to	the	PDB	you	are	in.	They	do	not	show	information	for	any	other
containers.	Therefore,	if	you	query	USER_TABLES	and	don’t	find	the	information	you
are	looking	for,	make	sure	you	are	in	the	right	container.

Of	course,	administrators	of	the	entire	CDB	(we	call	them	CDB	administrators)	need	to
see	data	dictionary	information	for	the	entire	CDB,	including	all	of	the	PDBs.	To	help	the
CDB	administrator,	Oracle	has	added	a	set	of	new	views	called	container	data	objects
(CDOs).	The	CDO	views	provide	this	overall	view	of	all	CDB	and	PDB	objects.	Using
these	views	from	the	root	container	enables	you	to	see	everything	in	all	containers	of	the
CDB.

The	CDO	views	are	similar	to	the	regular	DBA_*	administrative	views,	but	are
prefixed	with	CDB_	instead	of	DBA_.	So,	now	when	you	are	in	the	root	container	you
will	have	access	to	the	DBA_TABLES	view—which	will	only	show	you	tables	owned	by
the	root	container.	You	will	also	have	a	CDB_TABLES	view	that	shows	you	all	tables	in
the	CDB	plus	all	PDB	tables.

The	difference	between	the	two	views	is	starkly	contrasted	by	a	simple	select	count(*)
query	against	them,	as	you	can	see	here:

The	difference	is	that	the	DBA_OBJECT	view	is	showing	us	objects	for	just	the
container	we	are	in	(in	this	case,	the	root	container).	The	CDB_OBJECTS	view	is
showing	us	the	objects	for	the	root	container	and	any	other	PDB-related	objects	we	might
have	the	rights	to	see.

Additionally,	many	existing	V$	(and	the	associated	GV$)	views	have	been	adjusted	to
reflect	the	new	CDB	and	PDB	database	architecture.	New	V$	views,	such	as
V$CONTAINERS	and	V$PDBS,	have	been	added	to	provide	container-specific
information.	Keep	this	in	mind	because	V$	views	are	often	the	only	views	available	into
the	database	(via	memory	structures	or	metadata	in	the	control	file)	when	the	database
instance	is	started	or	mounted.	There	are	times,	such	as	during	a	recovery,	when	we	only
have	the	V$	views	to	work	with.

If	you	use	AWR	or	ASH,	you	will	be	happy	to	know	that	AWR-	and	ASH-related
views	are	now	adjusted	to	reflect	the	new	OM	architecture.	Most	of	these	new	and
modified	views	include	a	new	column	called	CON_ID	that	identifies	the	container	in
which	the	object	resides.	For	example,	the	V$DATAFILE	view	now	contains	the	CON_ID
column	so	that	you	can	know	to	which	container	the	datafiles	belong.

Figure	4-7	provides	an	example	of	how	the	various	views	all	fit	together	between	PDBs
and	the	CDB.	You	will	see	many	examples	of	the	use	of	these	views	as	you	read	this
chapter.

FIGURE	4-7.			Data	dictionary	view	relationships

PDB	Administration

Now	that	you	have	become	somewhat	acquainted	with	Oracle	Multitenant,	you	can
probably	imagine	that	some	administration	methods	and	commands	have	been	changed	or
added.	We	have	already	discussed	how	to	start	and	stop	a	CDB.	In	this	section	we	show
you	how	to	start	and	stop	individual	PDBs.	We	then	show	you	how	to	make	sure	that	when
the	CDB	is	restarted	that	the	individual	PDBs	return	to	the	state	they	were	in	before	the
restart.	We	then	briefly	touch	on	controlling	the	storage	allocation	limits	of	a	PDB,	as	well
as	the	alter	system	commands	that	can	be	used	to	affect	a	PDB.

Starting	and	Shutting	Down	the	PDB
As	mentioned	in	the	previous	section,	shutting	down	the	entire	CDB	is	kind	of	a	nuclear
reaction	to	something	that	deserves	a	more	tactical	response.	Let’s	use	a	small,	laser-
guided	missile	and	cause	as	little	collateral	damage	as	we	can	rather	than	nuking	the	whole
database.	That	being	said,	the	DBA	has	a	great	deal	of	control	over	the	state	of	the	PDB.
In	this	section	we	discuss	that	control,	including	starting	the	PDB	and	stopping	the	PDB.

It’s	always	nice	to	know	how	to	start	something	up	and	then	how	to	shut	it	down	again.
In	this	section	we	cover	those	topics	from	the	perspective	of	the	PDB.	First,	we	talk	about
starting	up	the	PDB;	then	we	will	talk	about	shutting	down	the	PDB.	Then	we	will	talk
about	how	to	get	PDBs	to	start	up	for	you	automatically	when	you	start	up	the	CDB.

Starting	the	PDB			You	may	already	know	the	name	of	the	PDB	you	want	to	start.	If	you
are	like	us,	though,	when	you	are	dealing	with	tens	of	hundreds	of	PDBs	in	your
organization,	there	are	times	when	you	just	can’t	remember	all	of	their	names.	Therefore,
it’s	nice	to	know	where	to	go	to	get	a	list	of	PDBs	in	your	CDB	database	and	to	see	their
state	so	you	can	make	sure	you	are	opening	the	right	PDB.

We	can	use	the	V$PDBS	view	for	that	information.	Here	is	an	example	of	a	query
against	V$PDBS	that	lists	the	current	PDBs	in	the	database,	their	current	open	mode,	and
whether	they	are	open	in	restricted	session	mode:

This	query	reports	that	the	database	currently	has	two	PDBs:	the	PDB$SEED	container
and	the	PLUG_TEST	container.	The	PLUG_TEST	PDB	is	mounted	and	not	open.	As	you
might	expect,	there	are	several	states	a	PDB	can	be	in.	These	include	the	following:

			Mounted			This	is	essentially	the	state	of	a	PDB	when	it	is	shut	down.

			Read	Only			Any	PDB	in	read-only	mode	will	be	in	this	state.

			Read	Write			Any	PDB	open	for	read-write	operations	will	be	in	this	state.

			Migrate			This	status	indicates	that	a	PDB	needs	to	be	upgraded	to	the	version
of	the	current	CDB.	When	the	database	is	in	migrate	mode,	it	can	only	be	accessed
by	users	with	restricted	session	privileges.

Opening	a	PDB	is	pretty	easy:	you	simply	need	to	connect	to	the	database,	switch	over

to	the	container	you	want	to	start,	and	then	open	the	container.	Optionally,	you	can
connect	to	the	PDB	itself	through	its	service	and	start	it.

Let’s	look	at	an	example.	First,	we	log	into	the	root	container	using	the	SYS	account,
including	the	SYSDBA	privilege.	We	then	use	the	show	con_name	SQL*PLUS	command
to	double-check	that	we	are	currently	logged	into	the	CDB$ROOT	container.	Recall	that
in	a	CDB,	the	CDB$ROOT	container	is	the	main	container:

We	need	to	change	to	the	container	that	we	want	to	start,	which	is	the	PLUG_TEST
container.	We	query	the	V$PDBS	view	to	determine	the	status	of	our	PDBs,	and	we	find
that	PLUG_TEST	is	indeed	mounted,	as	shown	here:

Now,	as	SYS	(or	another	privileged	user),	we	need	to	change	into	the	PLUG_TEST
container	to	open	it.	Only	then	can	we	connect	to	that	container	as	a	regular	user.	We	can
change	the	currently	working	container	from	CDB$ROOT	to	PLUG_TEST	by	using	the
alter	session	command,	as	shown	here:

We	then	simply	use	the	startup	command	to	start	the	PDB:

Consider	here	that	the	CDB	of	the	OM	database	was	already	up	and	running,	but	that
the	PLUG_TEST	PDB	was	not	running.	This	is	important	to	note—just	starting	the	CDB
does	not	automatically	cause	the	PDBs	associated	with	the	CDB	to	open.	You	need	to
make	sure	you	open	those	PDBs	too.	We	will	discuss	automating	PDB	startup	shortly.

Notice	in	the	previous	example	that	the	output	of	the	startup	command	is	pretty	basic.
Because	there	is	no	SGA	to	allocate	or	control	file	to	mount,	all	that’s	left	is	for	the	PDB

to	just	open.

Once	the	PLUG_TEST	database	is	up	and	running,	we	recheck	the	status	of	the
databases	using	the	V$PDBS	view,	ensuring	that	the	PLUG_TEST	PDB	is	indeed	in	read-
write	mode:

Note	that	when	using	the	startup	command	on	a	PDB,	you	have	a	number	of	different
options,	including	the	following:

			startup	force			Forces	an	inconsistent	shutdown	of	the	PDB	and	then	reopens
it	in	read/write	mode.

			startup	restrict			Starts	the	database	and	only	allows	users	with	restricted
session	system	privileges	to	access	the	PDB.

			Startup	open	[read	write|read	only]			Indicates	that	the	PDB	should	be	open
in	read	write	or	read	only	mode.	The	default	on	a	normal	database	is	read	write.	If
the	database	is	a	Data	Guard	database,	the	default	is	read	only.

For	a	user	to	open	a	PDB,	that	user	must	have	one	of	the	following	privileges	granted.
The	user	can	either	be	a	common	user	and	have	the	grant	apply	to	that	common	user,	or	a
local	user	in	the	PDB	with	the	privilege	granted	to	that	local	user.	Here	are	the	privileges:

			SYSDBA

			SYSOPER

			SYSBACKUP

			SYSDG

You	can	also	connect	to	the	PDB	directly	through	its	service	name	as	a	user	with
SYSDBA	privileges	(or	the	other	privileges	we	list	shortly)	and	then	shut	down	the	PDB
from	within	the	PDB.	Note	that	the	PDB	does	not	have	to	be	open	to	be	registered	with	the
listener.	This	happens	automatically	when	the	CDB	is	started.	Here	is	an	example	of
logging	into	the	PDB	using	a	TNS	service	name:

Of	course,	it	would	be	nice	to	be	able	to	open	all	the	pluggable	databases	at	once.	This
can	be	accomplished	using	the	command	alter	pluggable	database	all	open.	For	this
command	to	work,	the	CDB	itself	needs	to	be	open,	and	you	need	to	be	logged	into	the
root	of	the	CDB.

You	can	then	use	the	alter	pluggable	database	command	to	open	specific	PDBs,	as	in
this	example:

Shutting	Down	the	PDB			Shutting	down	the	PDB	is	not	much	different	from	starting	it
up.	You	have	a	couple	of	ways	to	do	this.	First,	you	can	issue	an	alter	session	command	to
change	to	the	correct	PDB	and	then	issue	your	shutdown	command,	as	shown	here:

Note	that	we	issued	the	standard	shutdown	command.	It	is	probably	more	common	to
shut	down	a	PDB	with	the	shutdown	immediate	command.	If	either	the	shutdown	or
shutdown	immediate	command	completes,	then	that	PDB	will	have	been	shut	down	in	a
consistent	manner	and	the	dirty	blocks	associated	with	that	PDB	will	have	been	flushed	to
the	database	datafiles.	Note	that	this	does	not	ensure	that	any	other	part	of	the	database	is
consistent	in	any	way.	You	can	also	use	the	shutdown	abort	command	for	an	immediate
stop	of	the	PDB	that	would	leave	it	in	an	inconsistent	state	and	require	instance-level
recovery	when	it’s	reopened,	just	as	with	any	non-OM	database.

Another	option	is	to	connect	to	the	PDB	through	its	service	name	as	a	user	with
SYSDBA	privileges	(or	the	other	privileges	we	list	shortly)	and	then	shut	down	the	PDB
from	within	the	PDB,	as	in	this	example:

You	can	also	close	the	PDB	from	within	the	PDB	or	from	the	root	of	the	CDB	by	using
the	alter	pluggable	database	command	to	close	pluggable	databases,	as	in	this	example:

For	a	user	to	shut	down	a	PDB,	that	user	must	have	one	of	the	following	privileges
granted.	The	user	can	either	be	a	common	user	and	have	the	grant	apply	to	that	common
user,	or	a	local	user	in	the	PDB	with	the	privilege	granted	to	that	local	user.	Here	are	the
privileges:

			SYSDBA

			SYSOPER

			SYSBACKUP

			SYSDG

Automating	PDB	Startup
Oracle	Database	12c	Release	12.1.0.2	provides	the	ability	to	preserve	the	open-mode	PDB
through	CDB	restarts.	Thus,	if	a	PDB	was	open	when	its	parent	CDB	was	shut	down,	the
PDB	will	be	reopened	when	the	parent	CDB	is	restarted.	This	is	made	possible	through
the	use	of	the	alter	pluggable	database	options	save	state	and	discard	state.	The
individual	states	of	instances	are	maintained	across	individual	nodes	in	a	RAC	cluster.

Here	is	an	example	of	using	the	alter	pluggable	database	command	to	set	the	PDB
PLUG_TEST	into	the	saved	state.	As	a	result	of	this	command	the	PLUG_TEST	PDB	will
return	to	the	same	state	it	was	in	before	the	CDB	restart.

You	can	include	more	than	one	PDB	in	the	command	if	you	wish.	Simply	separate	each
PDB	name	by	a	comma.	You	can	also	save	the	state	for	all	PDBs	by	using	the	alter
pluggable	database	all	save	state	command.	If	you	want	to	discard	the	open	mode	of	a
PDB	after	a	CDB	restart,	then	simply	use	the	alter	pluggable	database	discard	state
command.	You	can	use	the	DBA_PDB_SAVED_STATES	view	to	determine	the	current
saved	state	for	the	PDBs	in	your	CDB	database.

This	is	great	for	normal	HA	operations.	If	a	CDB	is	shut	down	for	some	maintenance
activity,	you	don’t	need	to	worry	about	which	mode	the	individual	PDBs	are	in	when	you
restart	the	CDB.	However,	this	could	be	problematic	in	some	kinds	of	backup	and
recovery	situations,	so	be	mindful	that	if	you	restart	a	CDB,	it’s	possible	that	the	PDB	will
not	be	in	the	state	you	expect	unless	you	check	to	see	if	it’s	configured	to	return	to	the
same	state.

Setting	Storage	Limits	for	a	PDB
You	can	set	storage	limits	for	a	given	PDB	by	using	the	alter	pluggable	database
command	from	within	the	PDB	when	logged	in	as	SYS	or	a	common	user	with	the
appropriate	privileges.	In	the	following	example,	we	set	the	default	storage	for	the	PDB	to
2GB:

You	can	also	reset	the	storage	limits	to	unlimited,	as	shown	here:

Knowing	that	a	PDB	can	be	constrained	by	storage	limits	might	help	certain	restore
issues	if	they	arise.

Using	the	alter	system	Command	from	Within	a	PDB

You	can	use	the	alter	system	command	from	within	a	PDB	to	perform	many	tasks.	The
following	alter	system	commands	are	available	from	within	a	PDB:

alter	system	flush	shared_pool

alter	system	enable	restricted	session

alter	system	set	use_stored_outlines

alter	system	resume

alter	system	check	datafiles

alter	system	kill	session

alter	system	set	initialization_parameter

alter	system	flush	buffer_cache

alter	system	disable	restricted	session

alter	system	suspend

alter	system	checkpoint

alter	system	register

alter	system	disconnect	session

New	Views	Associated	with	PDBs
We	have	already	mentioned	the	CDB	views	related	to	the	entire	CDB.	There	are	also	new
V$	views	that	are	specific	to	OM	databases.	You	have	seen	many	of	them	in	use	already	in
previous	examples	in	this	chapter.	Here	is	a	quick	list	of	those	we	find	the	most	important:

			The	CDB_PDBS	and	DBA_PDBS	views	provide	information	on	the	PDBs	in
the	database,	such	as	their	names	and	their	status.	This	view	is	very	useful	because	it
provides	detailed	state	information	about	the	PDB,	such	as	if	it’s	new,	unplugged,	in
the	process	of	being	converted,	and	a	number	of	other	states.

			The	V$CONTAINERS	view	provides	information	on	the	PDBs,	such	as	the
open	mode	of	the	containers	and	other	information.

			The	V$PDBS	view	provides	information	about	the	individual	PDBs,	such	as
when	they	were	opened,	their	current	open	mode,	and	whether	they	are	open	in
restricted	session	mode.

			CDB_PDB_HISTORY	provides	information	about	the	history	of	a	PDB.

We	discuss	the	question	of	developing	an	overall	backup	and	recovery	architecture	in
several	different	places	throughout	the	book,	including	Chapter	15,	which	is	dedicated	to
that	topic.

Other	CDB-Related	Topics
In	this	section	we	cover	other	OM-related	topics	that	might	have	popped	into	your	head	as

you	have	read	this	chapter.	In	one	case,	we	simply	point	you	to	the	chapter	where	a
particular	topic	is	covered.

Here	is	what	we	address	in	this	section:

			Dropping	a	CDB

			Dropping	a	PDB

			PDB	cloning	and	plugging	and	unplugging	PDBs

So,	let’s	get	to	it!

Dropping	a	CDB
Dropping	a	CDB	is	as	easy	as	using	the	SQL*Plus	or	RMAN	drop	database	command.
This	command	drops	the	CDB	and	all	of	its	children	PDBs.	In	most	cases,	all	of	the
datafiles,	control	files,	and	online	redo	logs	will	be	dropped.	The	archived	redo	logs	are
not	removed.

Dropping	a	PDB
To	drop	a	PDB,	you	use	the	command	drop	pluggable	database.	When	the	PDB	is
dropped,	all	references	in	the	CDB	control	file	are	removed	and	all	datafiles	related	to	the
PDB	are	removed.	Archived	redo	logs	are	not	removed.	You	can	use	the	keep	datafiles
option	of	the	command	to	preserve	the	datafiles	of	the	PDB	if	you	wish.

PDB	Cloning	and	Plugging	and	Unplugging	PDBs
Perhaps	one	of	the	nicest	features	of	the	Oracle	Multitenant	architecture	is	how	easy	it
makes	cloning	PDBs	within	the	parent	CDB,	or	even	to	other	CDBs.	The	ability	to	unplug
a	database	from	one	CDB	and	plug	it	into	another	CDB	is	also	fast	and	convenient.
Because	all	these	operations	are	very	similar	to	the	database-duplication	operations	that
RMAN	performs,	we	will	cover	these	topics	in	Chapter	10,	where	we	discuss	database
duplication.

Summary
In	Oracle	Database	12c,	Oracle	has	come	out	with	an	amazing	new	feature	in	the	form	of
CDBs	and	PDBs.	This	new	feature	certainly	adds	more	complexity	to	the	backup	and
recovery	picture.	In	this	chapter	we	introduced	you	to	the	concept	of	CDBs	and	PDBs	in
preparation	for	additional	discussion	about	them	throughout	the	rest	of	the	book.	The	new
CDB	architecture	is	the	way	of	the	future,	as	Oracle	has	announced	the	removal	of	the	old
Oracle	database	architecture	at	some	point	in	the	future.	Therefore,	now	is	the	time	to	get
onboard	and	learn	about	this	powerful	new	Oracle	Database	feature.

PART
II

RMAN	Configuration,	Backup,	and
Recovery	Essentials

CHAPTER
5

RMAN	Setup	and	Configuration

A
s	with	previous	versions	of	RMAN,	RMAN	in	Oracle	Database	12c	provides	a	lot	of
functionality.	Because	of	all	of	this	functionality,	many	different	options	need
to	be	considered	when	you	are	configuring	RMAN	for	the	first	time.	Also,	as
time	goes	on,	these	configuration	options	might	change	as	your	environment
changes.	For	example,	you	might	implement	a	stand-by	database	in	your

environment,	which	might	require	you	to	modify	the	database	configurations	related	to
RMAN.

Now,	you	can	use	RMAN	right	out	of	the	box	for	the	most	part.	RMAN	will	use	a
number	of	default	settings	in	the	course	of	executing	the	commands	you	give	it.	This	is	not
the	way	to	manage	your	backup	and	recovery	architecture	though,	because	it	would	be
nice	to	have	not	only	recoverable	backups,	but	also	to	have	everything	backed	up	that	you
will	need	to	recover	your	database.

Configurations	are	set	based	on	requirements	that	are	gathered.	You	can	certainly	guess
at	things	such	as	retention,	but	this	is	not	considered	a	good	way	to	keep	your	job.	So,
regardless	of	whether	you	are	using	RMAN	for	the	first	time	or	are	a	long-time	RMAN
user,	I’m	going	to	call	you	out	and	say	that	this	is	probably	a	really	good	time	to	get	up,
take	a	deep	breath,	and	actually	go	talk	to	someone	about	the	important	subject	of	backup
and	recovery.	It’s	also	a	good	time	to	review	existing	SLAs—and	if	they	don’t	exist,	it’s	a
good	time	to	create	them.	We	will	talk	a	lot	more	about	these	kinds	of	things	in	Chapter
25,	where	we	discuss	enterprise	backup	architectures	and	provide	you	with	some	guidance
in	the	form	of	do’s	and	don’ts	when	putting	together	your	backup	infrastructure.

When	we	talk	about	configuring	RMAN,	we	are	talking	about	how	RMAN	behaves.
RMAN	configurations	typically	come	in	two	categories:	the	persistent	preconfigured
settings	and	the	configuration	settings	you	issue	at	run	time	that	are	related	to	a	specific
RMAN	operation	(and	override	the	persistent	settings).	Run-time	settings	can	be	made	in
two	different	forms.	The	first	form	is	to	use	them	as	a	part	of	a	run	block,	which	is	a	set	of
RMAN	commands	run	as	a	single	unit.	Second,	you	can	set	the	run-time	parameter	as	a
part	of	an	individual	RMAN	command	that	runs	independently.

In	this	chapter	we	look	at	initial	RMAN	setup	requirements	and	options.	First,	we	dive
into	Oracle	redo	logs	a	little	deeper	than	we	did	in	Chapter	2.	These	are	critical	structures
in	the	Oracle	database	for	recovery.	Building	on	that	discussion,	we	look	at	putting	the
database	in	ARCHIVELOG	mode,	in	case	you	want	to	do	online	backups.	We	then	look	at
the	basic	RMAN	interface,	so	that	you	can	get	into	RMAN	itself.	Next,	we	discuss
configuring	RMAN	for	database	backup	operations.	Finally,	we	discuss	the	RMAN
recovery	catalog,	including	why	you	might	want	to	use	it	and	how	to	configure	it.

Configuring	Your	Database	to	Run	in
ARCHIVELOG	Mode
Now	that	you	have	learned	about	ARCHIVELOG	mode	and	NOARCHIVELOG	mode	in
Chapter	2	and	learned	how	important	redo	is	to	your	database,	you	probably	understand
why	many	DBAs	run	their	databases	in	ARCHIVELOG	mode.	If	you	are	content	with
running	in	NOARCHIVELOG	mode,	then	much	of	this	section’s	discussion	will	not	apply

to	you.	If	you	are	going	to	run	in	ARCHIVELOG	mode,	you	will	need	to	do	some	basic
configuration,	which	is	the	topic	of	this	section.

First,	if	you	are	running	an	Oracle	Database	12c	container	database,	everything	we	will
be	discussing	with	respect	to	putting	the	database	in	ARCHIVELOG	mode	will	need	to	be
done	by	an	administrative	user	from	the	root	of	the	CDB.	PDBs	within	the	CDB	cannot
run	in	their	own	ARCHIVELOG	mode.

When	running	in	ARCHIVELOG	mode,	you	have	two	choices	in	configuring	where
the	archived	redo	logs	are	copied.	In	fact,	you	can	choose	to	use	both	choices.	The	first
choice	is	to	configure	for	ARCHIVELOG	destination	directories,	and	the	second	is	to
configure	the	Oracle	Fast	Recovery	Area	(FRA).	We	will	discuss	those	two	topics	next.
Afterward,	we	will	discuss	actually	putting	the	database	in	ARCHIVELOG	mode.

ARCHIVELOG	Destination	Directories
When	configuring	ARCHIVELOG	mode,	you	need	to	decide	where	you	want	Oracle	to
create	the	archived	redo	logs.	The	option	that	has	been	available	for	the	longest	is	to	use
archive	log	destination	directories.	To	use	archive	log	destination	directories,	you	set	some
specific	parameters	in	Oracle	to	configure	this	option.	First,	you	use	the
LOG_ARCHIVE_DEST_n	parameter	(where	n	is	a	number	in	the	range	of	1	to	10)	to
define	up	to	ten	different	archive	log	destinations.	These	destinations	can	be	local
directories,	network	directories	(for	example,	NT	folders),	network-attached	storage
(NAS),	or	even	a	defined	database	service	name	if	you	are	using	standby	database/Data
Guard.	Note	that	there	is	no	default	location	defined	for	LOG_ARCHIVE_DEST_n.

If	you	are	using	SPFILES,	you	use	the	alter	system	command	to	set	the
LOG_ARCHIVE_DEST_n	parameter,	as	shown	here:

NOTE

Setting	the	LOG_ARCHIVE_DEST	directory	to	a	directory	location	that	does
not	exist,	or	that	Oracle	cannot	write	to,	is	a	common	mistake.	Just	make	sure	that
after	you	set	the	parameter	and	put	the	database	in	ARCHIVELOG	mode,	you
issue	an	alter	system	switch	logfile	command	to	make	sure	that	ARCH	is	writing
the	archived	redo	logs	properly.

Each	LOG_ARCHIVE_DEST_n	location	can	be	defined	as	either	a	mandatory	or
optional	location.	By	default,	all	LOG_ARCHIVE_DEST_n	locations	are	optional	in
Oracle	Database.	Mandatory	locations	mean	just	that—the	archived	redo	logs	have	to	be
written	to	that	location.	Failure	of	the	ARCH	process	to	write	to	mandatory	locations	will
result	in	suspension	of	database	activities	fairly	quickly	(after	you	have	cycled	through	all
the	online	redo	logs).	Optional	locations	will	have	no	impact	on	database	operations.

Also,	all	LOG_ARCHIVE_DEST_n	locations	are	optional	by	default	(though	one
location	must	always	succeed	because	the	minimum	setting	of
LOG_ARCHIVE_MIN_SUCCEED_DEST	is	1).	The	parameter
LOG_ARCHIVE_MIN_SUCCEED_DEST	indicates	how	many	archive	log	destination
directories	must	have	successful	copies	for	an	online	redo	log	to	be	considered
successfully	archived.	The	default	setting	for	LOG_ARCHIVE_MIN_SUCCEED_DEST
is	1,	and	this	is	the	minimum	setting	for	this	parameter.	Here	is	an	example	of	setting	this
parameter	to	a	value	of	2:

Other	parameters	are	related	to	archived	redo	logs,	the	ARCH	process,	and	the
LOG_ARCHIVE_DEST	series	of	parameters:

			LOG_ARCHIVE_STATE_n			Defines	one	of	two	different	states	for	each
archive	log	destination.	If	set	to	ENABLE,	the	ARCH	process	will	consider	the
destination	associated	with	this	state	as	a	valid	archive	log	destination.	If	set	to
DEFER,	the	ARCH	process	will	not	archive	logs	to	the	related
LOG_ARCHIVE_DEST_n	location.

			LOG_ARCHIVE_FORMAT			Provides	a	template	for	Oracle	to	use	when
naming	archived	redo	logs.	As	Oracle	creates	the	archived	redo	logs,	it	renames
them	in	such	a	way	that	each	of	the	archived	redo	logs	has	a	unique	name	assigned
to	it.	Using	the	LOG_ARCHIVE_FORMAT	parameter,	you	can	manipulate	the
default	naming	standard	as	you	require.	This	parameter	has	no	effect	on	archived
redo	logs	being	created	in	the	FRA.

			LOG_ARCHIVE_START			This	parameter	is	obsolete	in	Oracle	Database
10g	and	later	versions.	Oracle	will	now	start	the	ARCH	process	for	you
automatically.

			LOG_ARCHIVE_MAX_PROCESSES			This	parameter	defines	the	number
of	ARCH	processes	that	Oracle	initially	starts	when	the	database	is	started.

NOTE

If	you	are	running	Oracle	Database	9i	or	earlier,	you	will	need	to	make	sure
you	set	the	LOG_ARCHIVE_START	parameter	to	TRUE	when	configuring	your
database	for	ARCHIVELOG	mode.	This	is	no	longer	required	in	Oracle	Database
10g	and	later.

Each	of	the	different	parameters	mentioned	thus	far	is	defined	in	the	Oracle	Database
12c	Reference	Manual	(which	is	part	of	the	overall	Oracle	documentation),	should	you
need	further	information	on	them.

In	the	following	example,	we	have	a	database	we	want	to	put	in	ARCHIVELOG	mode.
We	create	three	different	archive	log	destination	directories,	including	one	to	a	service
name	that	supports	an	Oracle	standby	database.	We	also	enforce	the	requirements	that	at

least	two	of	these	destinations	must	be	written	to	in	order	for	the	movement	of	the
archived	redo	log	to	be	considered	complete,	and	that	the	standby	database	must	be	one	of
those	two	locations.	Here	is	an	example	of	the	use	of	the	various	database	parameter	file
parameters	related	to	ARCHIVELOG	mode	operations:

In	this	example,	our	first	archive	log	destination	goes	to	d:\oracle\oraarc\robt.	The
second	archive	log	destination	is	to	a	secondary	location	on	the	Z:	drive.	We	have	made
this	an	optional	archiving	location	because	it	is	a	networking	device	(which	may	not	be	all
that	reliable).	The	third	destination	is	to	an	Oracle	Net	service	(probably	a	standby
database)	called	recover1.	This	will	cause	Oracle	to	send	the	archived	redo	logs	through
Oracle	Net	as	they	are	generated.

Proceeding	through	the	example,	by	using	the
LOG_ARCHIVE_MIN_SUCCEED_DEST	parameter,	we	have	indicated	that	the	archived
redo	logs	must	be	successfully	copied	to	at	least	two	different	locations.	The	format	of	the
archived	redo	log	is	defined	with	the	LOG_ARCHIVE_FORMAT	parameter.

The	Fast	Recovery	Area
In	this	section	we	want	to	quickly	introduce	you	to	the	Fast	Recovery	Area	(FRA).	We
will	be	discussing	the	FRA	throughout	the	chapter,	so	we	wanted	to	give	you	some	higher-
level	information	about	the	FRA	at	this	point,	and	later	in	the	chapter	we	will	revisit	the
FRA	to	talk	about	it	in	a	bit	more	detail.	First,	we	introduce	you	to	the	FRA.	We	then
address	some	configuration-	and	monitoring-related	topics.	In	doing	so,	we	will	probably
answer	some	of	the	preliminary	questions	that	might	come	up	as	you	read	further	in	this
book.

The	FRA	allows	you	to	centralize	storage	of	all	recovery-related	files.	The	FRA	can	use
locally	attached	storage,	the	Oracle	Cluster	File	System	(OCFS),	or	Automatic	Storage
Management	(ASM)	features.	Table	5-1	lists	the	file	types	that	can	be	contained	within	the
FRA.	The	FRA	helps	with	the	management	of	overall	disk	space	allocation	and	provides	a
centralized	storage	area	for	all	recovery-related	files.

TABLE	5-1.			File	Types	Found	in	the	Fast	Recovery	Area

One	of	the	unique	things	about	the	FRA	is	that	Oracle	will	manage	the	retention	of
backups	(both	database	and	archivelog	backups)	within	the	FRA	for	you	automatically.
This	means	you	don’t	need	to	perform	any	maintenance	operations	on	backups	within	the
FRA	(such	as	delete	obsolete	to	remove	old	backup	files).	Retention	of	files	in	the	FRA	is
determined	by	the	RMAN	retention	policy,	which	you	define.	The	retention	policy	for	the
FRA	is	set	via	the	RMAN	configure	retention	policy	command.	We	will	discuss	the
RMAN	retention	policy	in	much	more	detail	later	in	this	chapter.

Monitoring	of	the	FRA
As	you	can	imagine,	this	whole	running	out	of	logical	space	and	not	physical	space	can	be
a	troubling	thing	at	times.	If	you	have	not	allocated	enough	disk	space	to	the	FRA
(logically	or	physically),	then	when	you	start	the	Oracle	database,	a	message	is	included	in
the	alert	log	that	indicates	how	much	of	the	FRA	is	currently	in	use.	The	message	will
look	something	like	this:

When	things	go	bad	and	you	run	out	of	space	in	the	FRA,	you	will	get	all	sorts	of
messages	from	both	the	backup	and	the	alert	log.	Here	is	an	example	of	where	a	backup
died	due	to	lack	of	space.	First,	the	alert	log	clearly	tells	us	that	we	have	a	problem	with
the	FRA:

Also,	our	backup	failed	with	this	message:

Note	that	the	total	size	of	the	FRA	is	the	later	number	in	this	error	message.	The
message	also	indicates	another	fact	about	the	FRA—before	RMAN	just	gives	up	on	a
backup	and	fails	from	space	exhaustion,	it	will	try	to	free	up	space	from	the	FRA.

Oracle	monitors	the	space	available	in	the	FRA	used	by	the	database,	and	once	the
amount	of	available	space	in	the	FRA	starts	to	diminish	to	an	unsafe	level,	Oracle
generates	a	warning	in	the	alert	log	and	also	on	the	OEM	console.

The	warning	threshold	is	hit	when	the	FRA	space	is	less	than	15	percent	of	the
DB_RECOVERY_FILE_DEST_SIZE	value.	The	critical	threshold	is	signaled	when	the
FRA	free	space	is	less	than	3	percent	of	reclaimable	space.	These	alerts	appear	in	the
OEM	console	and	in	the	alert	log,	or	you	can	review	the
DBA_OUTSTANDING_ALERTS	view,	as	shown	in	this	example:

In	this	case,	the	FRA	is	89	percent	full	and	a	warning	has	been	generated.	This	warning
will	be	propagated	to	Oracle	Cloud	control,	and	you	can	manage	any	notification	from
there.

There	are	a	number	of	views	available	to	reference	to	monitor	and	manage	the	Fast
Recovery	Area.	One	of	the	best	views,	besides	the	DBA_OUTSTANDING_ALERTS
view	is	the	V$RECOVERY_FILE_DEST	view.	This	view	provides	a	quick	way	to	look	at
how	much	space	is	allocated	to	the	FRA,	how	much	space	has	been	used,	and	if	any	space
is	able	to	be	reclaimed	by	Oracle	should	the	need	arise.	Here	is	an	example	of	a	query
against	the	V$RECOVERY_FILE_DEST	view:

In	this	case,	we	have	an	FRA	that	has	plenty	of	space.	There	is	over	10GB	available	for
use,	and	we	have	only	used	some	229MB	of	that	space.	That’s	not	even	1	percent	of	the
available	space.	There	are	other	views	that	you	can	use	to	look	at	the	FRA-	and	RMAN-
related	operations.	We	will	introduce	those	throughout	this	book.

NOTE

Running	out	of	space	in	the	FRA	can	be	troublesome	if	that	area	is	your	only
archive	log	destination,	as	this	can	cause	your	database	to	eventually	halt.	If	the
FRA	is	going	to	be	your	only	archive	log	destination,	monitor	space	availability
carefully.	We	feel	like	a	minimum	of	two	archive	log	destination	directories	(one
on	a	different	set	of	disks	or	even	on	a	different	server)	is	a	best	practice.	An
Oracle	Data	Guard	server	would	easily	satisfy	this	requirement.

Sizing	the	FRA
Figuring	out	how	much	space	to	allocate	to	the	FRA	can	be	a	bit	challenging.	To	really
produce	a	good	estimate,	you	will	need	to	ask	yourself	the	following:

			How	much	space	will	my	backups	take?	(This	implies	that	you	have	decided
on	what	kind	of	backup	strategy	you	will	be	using.)

			How	many	archived	redo	logs	am	I	generating?

			What	is	my	FRA	retention	period	going	to	be?

			Do	I	need	to	store	backup-related	files	in	some	place	other	than	the	FRA?

			Will	I	be	storing	control	files	and	online	redo	logs	in	the	FRA	and,	if	so,	how
much	additional	space	will	they	need?

For	an	existing	database	that	you	are	moving	over	to	use	RMAN,	it’s	probably	not	too
hard	to	determine	the	answers	to	these	questions.	When	you	have	a	new	database,	it	can	be
difficult	to	impossible	to	determine	the	answers	to	these	questions.	So	many	factors	come
into	play	with	database	backups	that	will	impact	how	much	space	they	require	now—and
how	much	they	might	require	a	year	from	now.	Let’s	look	at	some	ways	you	can	make
educated	guesses	with	a	new	database	and	how	you	can	look	at	existing	data	from	older
databases	to	determine	how	you	should	size	the	FRA.

Educated	FRA	Sizing	Guesses	for	New	Systems			So,	you	start	with	some	educated
guesses.	Sometimes	all	you	can	do	is	guess.	In	creating	your	best	guess,	you	will	want	to
consider	a	number	of	factors:

Note	that	this	table	does	not	factor	in	items	such	as	flashback	logs,	and	we	didn’t	include
sizes	for	the	control	files	since	they	tend	to	be	quite	small	(and	you	will	have	only	one	in
there).	If	you	plan	on	doing	additional	“one-off”	backups	(for	example,	at	the	end	of	the
month),	you	would	need	to	factor	in	that	information.	In	our	case,	based	on	this	analysis,
our	database	will	require	around	69GB	of	FRA	space	for	a	two-week	incremental	backup
strategy.

After	you	initially	allocate	the	FRA	space	to	the	database,	you	should	monitor	the	space
usage	and	adjust	the	size	of	the	FRA	as	required.	We	will	discuss	monitoring	the
utilization	of	the	FRA	later	in	this	chapter.

Educated	FRA	Sizing	Guesses	for	Existing	Systems			If	your	database	is	already
running	and	you	are	converting	to	use	the	FRA,	then	you	probably	already	have	the
information	you	need	to	determine	the	size	of	the	FRA.	The	view
V$RMAN_BACKUP_JOB_DETAILS	will	give	you	pretty	much	all	the	information	you
need	to	make	your	estimate	of	how	much	space	you	need	to	allocate.	This	view	gives	you
a	summary	of	all	RMAN	backups	that	have	been	taken.	It	does	not	reset	itself	when	the
database	is	restarted,	like	many	V$	views	do,	because	its	information	sources	from	the
metadata	in	the	database	control	file.	This	view	is	an	abstracted	view	of	a	given	backup.
When	the	view	is	queried,	the	statistics	of	one	RMAN	backup	“job”	execution	is
presented.

So,	for	example,	say	that	we	issued	one	RMAN	command	to	back	up	the	database	and
all	of	the	archived	redo	logs:

All	of	the	backup	operations	that	occur	because	of	the	execution	of	that	one	command	will
be	considered	one	backup	job.	A	backup	job	may	have	one	or	more	backup	operations
associated	with	it.

In	our	case,	the	command	we	executed	had	three	separate	backup	operations.	The	first
was	a	full	backup,	then	the	backup	of	the	archived	redo	logs,	and,	finally,	the	automated
backup	of	the	control	file	and	database	parameter	file.	After	the	backup,	we	would	then
query	the	V$RMAN_JOB_DETAILS_VIEW	with	this	query:

Here	we	are	just	looking	for	backups	that	started	less	than	24	hours	ago.	Here	is	the
result	of	the	query:

In	this	output	we	see	that	two	backups	have	happened.	Both	were	incremental	backups.
Although	we	don’t	know	if	they	were	level	0	or	level	1	backups	from	this	view,	the
OUTPUT_BYTES_DISPLAY	gives	us	a	pretty	good	idea.	Still,	for	our	purposes,	we
don’t	really	need	that	degree	of	detail;	we	just	need	sizing	information.	This	view	will	also
include	any	archived	redo	log	backup	jobs	and	any	other	kinds	of	jobs.	So,	let’s	look	at
how	we	calculate	the	total	backup	space	required	for	a	14-day	retention	period.	Let’s
assume	that	we	are	already	using	an	incremental	backup	strategy	and	that	these	numbers
are	representative	of	that	strategy	in	use.	So,	it’s	just	a	matter	of	summing	up	the	total
bytes	backed	up	to	get	a	good	estimate	of	how	much	space	we	need.	In	this	case,	we	will
use	the	column	OUTPUT_BYTES	instead	of	OUTPUT_BYTES_DISPLAY	because	that
column	is	a	true	number	column	(so	we	can	do	a	sum	of	the	values).	So,	here	is	our	query:

In	this	case,	we’re	going	to	need	about	26GB	of	space	to	store	all	the	backups.	You

might	have	noticed	that	instead	of	picking	14	days,	we	picked	21	days.	This	is	because	of
the	nature	of	recovery	windows,	which	we	will	discuss	later	in	this	chapter.	For	now,	just
know	that	you	will	need	to	actually	store	21	days’	worth	of	backup	pieces	in	order	to
achieve	a	true	14-day	recovery	window.

Now,	this	does	not	cover	all	the	files	we	will	be	storing	in	the	FRA	and	that	we	need	to
accommodate	space	for.	First	and	foremost	are	the	archived	redo	logs.	These	are	usually
stored	in	the	FRA,	and	we	want	to	make	sure	we	have	plenty	of	room	to	store	those.	The
query	to	determine	the	size	of	the	archived	redo	logs	is	pretty	simple.	We	just	use	the	view
DBA_HIST_LOG	and	summarize	the	size	of	the	archived	redo	logs	in	bytes	over	a	period
of	three	days.	We	can	assume	that	within	three	days	the	archived	redo	logs	will	have	been
backed	up	and	then	deleted	from	the	FRA.	We	have	figured	the	size	of	those	archived	redo
log	backups	previously	(when	we	calculated	the	size	of	all	backups	in	the	last	21	days
earlier).

So,	here	is	the	query	we	are	interested	in:

In	this	case,	we	have	some	524MB	of	redo	logs	backed	up	in	the	last	21	days.	So,	now
we	just	add	up	the	roughly	27GB	of	backups	and	524MB	of	archived	redo	logs,	and	we
have	a	pretty	close	estimate	of	how	big	to	make	the	FRA.	We	might	want	to	proceed	to
calculate	the	size	of	the	online	redo	log	group	members	that	we	would	need	to	store	in	the
FRA.	This	query	will	do	that	trick	for	us:

And,	if	we	really	wanted	to	get	fancy,	we	could	do	something	like	this:

So,	there	is	our	estimate	of	FRA	space	needed	for	a	21-day	retention,	considering	the
current	backup	pattern	and	the	storage	of	archived	redo	logs	and	online	redo	logs.	Oracle
recommends	that	you	add	10	percent	to	this	number,	which	has	been	done	in	this
calculation.

Note	that	this	method	of	sizing	applies	to	both	Oracle	CDB	databases	and	non-CDB
databases.	In	the	case	of	the	CDB,	you	should	log	into	the	root	of	the	CDB	when	running
these	queries.

Playing	Nicely	in	the	FRA			Many	large	database	servers	run	more	than	one	Oracle
database.	Each	of	these	databases	will	have	its	own	backups,	archive	logs,	and	so	on	that
will	be	stored	either	in	the	FRA	or	some	other	storage	location.	These	all	consume	storage
space,	of	course.	On	occasion,	a	single	rogue	database	can	consume	all	the	space	on	that
storage	device.	This	can	impact	all	databases	using	that	storage	device	because	they	will
no	longer	be	able	to	create	archived	redo	logs.	In	cases	like	these,	phones	start	ringing,
threats	are	made,	cars	are	keyed,	and	in	general	the	repercussions	are	not	pleasant.

To	manage	this	problem,	the	FRA	provides	the	ability	to	allocate	a	specific	space	quota
to	each	database.	Thus,	with	an	FRA,	you	can	reduce	the	risk	that	one	database	will
consume	all	archive	log	space	and	negatively	impact	other	databases.	As	a	result,	you	can
freely	exit	the	building	at	night	without	having	to	watch	your	back	for	users	who	might	be
silently	waiting	for	you	to	leave	so	they	can	discuss	how	badly	you	manage	databases.

We	mentioned	earlier	how	to	monitor	the	FRA	for	space	availability.	If	you	find	that
the	FRA	has	run	out	of	space,	you	can	respond	to	the	problem	as	follows:

1.			If	the	problem	is	one	of	insufficient	space	allocation	via	the	parameter
DB_RECOVERY_FILE_DEST_SIZE	and	sufficient	physical	disk	space	exists	to
increase	the	space	allocated	to	the	FRA,	increase	the	size	of	the	parameter.	This	will
immediately	add	space	to	the	FRA.	Of	course,	you	cannot	increase	this	parameter
to	a	value	that	is	greater	than	the	amount	of	space	that	is	physically	available	on	the
file	system.

2.			If	you	need	more	physical	space,	allocate	additional	physical	space	to	the	file
system	and	then	increase	the	size	of	the	DB_RECOVERY_FILE_DEST_SIZE
parameter.	This	parameter	is	dynamic,	so	it	can	be	set	while	the	database	is	running.

3.			If	additional	space	is	not	available,	you	can	move	the	FRA	to	another	file
system	where	more	space	is	available.

4.			You	can	also	make	room	in	the	FRA	by	using	the	RMAN	backup	recovery
area	command	to	move	the	contents	of	the	FRA	to	another	location.	We	will	cover
the	backup	recovery	area	command	and	its	limitations	during	discussions	on
performing	RMAN	backups.

5.			As	a	last-ditch	effort,	physically	remove	older	backup	set	pieces	and/or
archived	redo	logs	from	the	FRA,	and	then	use	the	RMAN	crosscheck	command	to
get	the	database	to	recognize	that	the	files	have	been	removed.	You	can	later	copy
the	files	back	to	the	FRA	and	use	the	RMAN	catalog	command	to	make	them
available	to	the	database	again.	As	an	alternative,	you	can	also	move	the	files	to	a
new	location	and	then	catalog	them	so	their	new	location	will	be	stored	in	the
database	control	file	and	the	recovery	catalog.	Note	that	if	you	do	this,	these	backup
files	will	not	benefit	from	the	features	of	the	FRA	such	as	retention.

NOTE

If	you	find	yourself	queasy	at	the	idea	of	removing	physical	files	from	the	FRA,
your	gut	instincts	are	good.	Essentially	this	means	either	that	your	retention
policy	is	not	correct	or	that	you	have	not	allocated	enough	space	to	support	the
retention	policy	established	for	your	database.	Also,	removing	files	potentially
compromises	the	recoverability	of	your	database,	so	exercise	extreme	caution
when	removing	files.

Setting	Up	the	Fast	Recovery	Area
Two	parameters	are	used	to	define	the	FRA.	The	first	defines	where	the	FRA	is	created.
The	DB_RECOVERY_FILE_DEST	is	used	to	define	the	base	of	the	FRA	location.	From
this	base	location,	RMAN	will	create	additional	directories	that	standardize	the	internal
structure	of	the	FRA.	In	other	words,	you	should	never	need	to	manage	the	directories	in
the	FRA;	Oracle	does	it	for	you.	The	FRA	destination	location	can	be	a	file	system	or	an
ASM	volume.	It	cannot	be	any	location	that	is	an	SBT	location.

You	define	the	quota	of	space	allocated	to	the	database’s	FRA	by	using	the	parameter

DB_RECOVERY_FILE_DEST_SIZE.	The	DB_RECOVERY_FILE_DEST_SIZE
parameter	can	be	a	bit	confusing	at	times.	This	parameter	simply	places	a	logical	cap	on
how	much	physical	space	a	database	may	consume	in	the	FRA	at	any	given	time.	Thus,
the	amount	of	space	defined	by	this	parameter	is	a	logical	limit	and	not	a	physical	limit.

For	example,	you	may	have	a	file	system	called	something	like	/fra	that	has	a	terabyte
of	space	available	to	it.	You	might	also	have	a	consolidated	database	environment	where
you	charge	users	for	how	much	backup	disk	space	they	use	and	all	of	these	databases	have
/fra	set	as	their	FRA	location.	To	control	how	much	space	any	one	of	these	databases	can
consume	in	the	FRA,	you	would	use	the	DB_FILE_RECOVERY_DEST_SIZE	parameter
So,	if	you	set	the	parameter	to	100GB,	that	database	can	only	use	100GB	of	the	1TB	file
system	at	any	time.

If	the	FRA	exceeds	the	space	allocated	to	it,	Oracle	will	try	to	free	space	automatically.
It	will	delete	any	backup-related	files	that	are	no	longer	needed	by	Oracle	based	on	the
retention	criteria	you	have	defined.	These	file	deletions	will	be	recorded	in	the	database
alert	log.	Note	that	we	didn’t	say	that	RMAN	deleted	these	files;	rather,	this	is	a	somewhat
combined	responsibility	of	RMAN	and	Oracle.	If	the	space	becomes	exhausted	during	a
backup,	RMAN	will	trigger	the	file	cleanup.	If	it’s	triggered	by	Oracle	trying	to	copy	over
an	archived	redo	log,	for	example,	then	the	database	will	trigger	the	space	cleanup.

Eventually,	you	will	reach	a	point	where	you	are	out	of	FRA	space	(usually	logically,
but	sometimes	it	can	be	physically	too).	In	this	case	the	following	happens:

			Any	database	backup	will	fail,	indicating	you	are	out	of	space	in	the	FRA.

			An	error	message	will	appear	in	the	alert	log	indicating	that	the	FRA	is	out	of
space.

Also	note	that	when	you	start	the	database,	Oracle	reports	the	amount	of	free	space
available	in	the	FRA	in	the	alert	log.	But	don’t	forget,	these	out-of-space	conditions	are	all
logical	conditions—which	are	a	result	of	exceeding	the	amount	of	space	allocated	to	the
FRA	through	the	parameter	DB_RECOVERY_FILE_DEST_SIZE.	It	is	entirely	possible
that	you	have	more	than	enough	physical	space	available	on	the	underlying	storage
device(s).

To	set	up	the	FRA,	you	will	want	to	configure	the	following	parameters:

Note	that	you	must	specify	the	DB_RECOVERY_FILE_DEST_SIZE	parameter	before
you	specify	the	DB_RECOVERY_FILE_DEST	parameter.	Failure	to	do	so	will	result	in
an	ORA-32001	error	message.	In	a	similar	fashion,	you	must	disable	the
DB_RECOVERY_FILE_DEST	parameter	before	you	reset	the
DB_RECOVERY_FILE_DEST_SIZE	parameter.	Leaving
DB_RECOVERY_FILE_DEST	empty	will	disable	the	FRA.	Here	is	an	example	of
disabling	the	FRA	by	resetting	the	DB_RECOVERY_FILE_DEST	parameter:

If	you	are	running	an	Oracle	CDB,	you	would	configure	the	FRA	when	logged	in	as	an
administrative	user	of	the	CDB.

Oracle	allows	you	to	archive	to	both	the	FRA	and	to	one	or	more	additional	locations
through	the	use	of	the	LOG_ARCHIVE_DEST_n	parameters.	One	case	when	you	would
want	to	do	this	is	if	you	were	configuring	standby	databases	and	you	still	wanted	to	take
advantage	of	the	features	of	the	FRA.

To	configure	both	FRA	and	archive	log	destination	directories,	you	set	the	standard
FRA	parameter	DB_RECOVERY_FILE_DEST,	defining	the	location	of	the	FRA.	You
will	also	define	the	various	LOG_ARCHIVE_DEST_n	parameters	that	are	required.	By
default,	when	a	LOG_ARCHIVE_DEST_n	parameter	is	defined,	that	location	will	be	used
instead	of	the	FRA.	To	get	Oracle	to	use	the	FRA	when	a	LOG_ARCHIVE_DEST_n
parameter	is	set,	you	need	to	define	an	additional	LOG_ARCHIVE_DEST_n	parameter
for	the	FRA.	Typically,	this	will	be	LOG_ARCHIVE_DEST_10,	and	you	will	use	the
Oracle-supplied	constant	USE_DB_RECOVERY_FILE_DEST	to	indicate	that	this

destination	is	the	FRA.	Here	is	an	example	where	we	configure	Oracle	to	use	the	FRA	and
a	regular	archive	log	destination	directory:

Note	that	in	some	cases,	Oracle	will	not	set	this	default	value	when	using	the	FRA.

In	this	example,	the	ARCH	process	will	now	create	archived	redo	logs	in	both
LOG_ARCHIVE_DEST_1	and	LOG_ARCHIVE_DEST_10,	which	is	the	FRA.

Fast	Recovery	Area	Views
We	have	seen	most	of	the	views	that	are	available	to	help	you	manage	the	FRA.	These
views	include	the	following:

			DBA_OUTSTANDING_ALERTS

			V$RECOVERY_FILE_DEST

			V$	RECOVERY_AREA_USAGE	(Note	that	this	changed	from
V$FLASH_RECOVERY_AREA_USAGE	in	Oracle	Database	12c.)

Also,	columns	are	available	in	several	other	views	that	help	you	to	manage	the	FRA.
Let’s	look	at	each	of	these	views	and	columns	in	more	detail.

The	DBA_OUTSTANDING_ALERTS	View			As	files	are	added	to	or	removed	from	the
FRA,	records	of	these	events	are	logged	in	the	database	alert	log.	You	can	check	the	new
DBA	view,	DBA_OUTSTANDING_ALERTS,	for	information	on	outstanding	issues	with
the	FRA.	Note	that	there	is	somewhat	of	a	lag	between	the	time	a	space-related	issue
occurs	and	when	the	warning	appears	in	the	DBA_OUTSTANDING_ALERTS	view.

The	following	is	an	example	where	the	FRA	has	run	out	of	space	and	is	posting	an	alert
to	the	DBA_OUTSTANDING_ALERTS	view.	You	would	need	to	deal	with	this	situation
quickly	or	risk	the	database	coming	to	a	complete	halt.	In	this	case,	we	used	the	alter
system	command	to	increase	the	amount	of	space	allocated	to	the	FRA.

The	V$RECOVERY_FILE_DEST	View			The	V$RECOVERY_FILE_DEST	view
provides	an	overview	of	the	FRA	that	is	defined	in	your	database.	It	provides	the	size	that
the	FRA	is	configured	for,	the	amount	of	space	used,	how	much	space	can	be	reclaimed,
and	the	number	of	files	in	the	FRA.	In	the	following	example,	we	can	see	that	the	increase
in	space	to	the	FRA	to	800MB	has	been	recorded	(SPACE_LIMIT).	However,	we	still
have	used	too	much	space	(SPACE_USED),	and	the	FRA	is	still	full.

One	nice	thing	about	Oracle	is	that	it	manages	the	FRA	space	for	us	as	much	as	it	can,
and	if	there	is	reclaimable	space	available,	it	will	free	it	as	required.	Note	that	in	the
previous	query,	Oracle	indicated	we	were	out	of	FRA	space.	Did	you	notice	the
SPACE_RECLAIMABLE	column,	though?	This	column	indicates	that	there	is
reclaimable	space	available.	This	is	space	that	is	taken	up	by	archived	redo	logs	or	backup
set	pieces	that	are	no	longer	needed	by	virtue	of	whatever	retention	criteria	we	have
selected	(we	will	discuss	retention	criteria	and	setting	those	criteria	later	in	this	chapter).
When	Oracle	needs	space	in	the	FRA	(say,	for	example,	we	force	a	log	switch),	it	will
remove	any	files	that	are	reclaimable	and	free	up	space.	In	the	next	query,	we	can	see	that
this	has	occurred.	After	we	ran	the	previous	query,	which	indicated	we	were	out	of	FRA
space,	we	forced	a	log	switch.	This	caused	Oracle	to	reclaim	space	from	the	FRA	for
reuse,	and	it	then	was	able	to	write	out	the	archived	redo	log.	We	can	query	the
V$RECOVERY_FILE_DEST	view	and	see	that	this	has	indeed	occurred:

The	V$RECOVERY_AREA_USAGE	View			The	V$RECOVERY_AREA_USAGE
view	provides	more	detailed	information	on	which	types	of	files	are	occupying	space	in
the	FRA.	This	view	groups	the	file	types	and	then	provides	the	percentage	of	space	that	is
used	by	each	file	type,	the	percentage	of	the	total	FRA	reclaimable	space	that	comes	from
that	group,	and	the	number	of	files	in	the	FRA	that	come	from	that	group.	Here	is	a	query
of	the	V$RECOVERY_AREA_USAGE	view:

In	this	example,	we	notice	a	few	things:

			We	are	over	our	defined	space	allocation	(the	PERCENT_SPACE_USED	of
all	the	rows	exceeds	100	percent).	This	is	probably	because	the	size	of	the	FRA	was
recently	changed	and	Oracle	has	not	yet	reclaimed	enough	space	to	bring	the	total
used	below	100	percent.

			The	backup	set	pieces	are	consuming	most	of	that	space,	and	23.22	percent	of
that	space	is	reclaimable.

			The	archived	redo	logs	consume	only	17	percent	of	the	space	allocated	to	the
FRA,	and	even	if	we	were	to	remove	all	of	the	archived	redo	logs,	we	would	not	free
up	enough	space	to	bring	the	FRA	under	the	amount	of	space	allocated	to	it.

Other	Views	with	FRA	Columns			The	column	IS_RECOVERY_DEST_FILE	can	be
found	in	a	number	of	Oracle	Database	V$	views,	such	as	V$CONTROLFILE,
V$LOGFILE,	V$ARCHIVED_LOG,	V$DATAFILE_COPY,	V$DATAFILE,	and
V$BACKUP_PIECE.	This	column	is	a	Boolean	that	indicates	whether	the	file	is	in	the
FRA.

Another	column,	BYTES,	can	be	found	in	the	V$BACKUP_PIECE	and
RC_BACKUP_PIECE	(an	RMAN	recovery	catalog	view)	views.	This	column	indicates
the	size	of	the	backup	set	piece	in	bytes.

NOTE

Manually	removing	fixed	files	from	the	FRA	can	have	unexpected
consequences.	Oracle	does	not	immediately	detect	the	removal	of	these	files,	and
thus	the	space	is	not	reclaimed.	If	you	end	up	manually	removing	files	(or	lose	a
disk	perhaps),	use	the	RMAN	crosscheck	command	along	with	the	delete
command	to	cause	Oracle	to	update	the	current	control	file	information	on	the
FRA.	The	folks	at	Oracle	recommend	that	you	not	manually	remove	files	managed
by	Oracle	if	at	all	possible.

Other	Fast	Recovery	Area	Features

The	alter	database	add	logfile	and	alter	database	add	standby	logfile	commands	create
an	online	redo	log	member	in	the	FRA	if	the	OMF-related	parameter
DB_CREATE_ONLINE_LOG_DEST_n	is	not	set.	The	alter	database	drop	logfile	and
alter	database	rename	file	commands	also	support	files	in	the	FRA.	The	nice	thing	about
using	these	OMF-related	features	is	that	Oracle	will	manage	the	physical	files	for	you.
Therefore,	if	you	drop	an	online	redo	log	group,	and	the	physical	files	of	that	group	were
created	by	Oracle	based	on	the	setting	of	DB_CREATE_ONLINE_LOG_DEST_n,	Oracle
will	remove	those	physical	files	for	you.

During	database	creation,	Oracle	can	use	the	FRA	to	store	the	database	control	file	and
online	redo	logs.	If	the	OMF-related	parameter	DB_CREATE_ONLINE_LOG_DEST_n
is	defined,	the	control	file	and	redo	logs	will	be	created	in	those	locations	but	will	not	be
created	in	the	FRA,	even	if	the	FRA	is	defined.	If
DB_CREATE_ONLINE_LOG_DEST_n	is	not	defined	but	DB_CREATE_FILE_DEST	is
defined,	the	control	file	and	online	redo	logs	will	be	created	in	the	location	defined	by
DB_CREATE_FILE_DEST.	If	DB_RECOVERY_FILE_DEST	is	also	defined,	a	copy	of
the	control	file	and	online	redo	logs	will	get	created	there	as	well.	The	result	is	a
multiplexed	online	redo	log.	Finally,	if	only	DB_RECOVERY_FILE_DEST	is	defined,
the	control	file	will	get	created	in	that	location.	If	none	of	these	parameters	is	defined,	the
control	file	and	online	redo	logs	will	be	created	in	a	default	location,	which	is	OS	specific.

An	additional	use	of	the	FRA	has	to	do	with	Flashback	Database–related	features.	We
discuss	Oracle’s	Flashback	Database	features	in	more	detail	in	Chapter	16.

The	FRA	and	ASM
RMAN	supports	the	use	of	Automatic	Storage	Management	(ASM)	for	the	storage	of
RMAN	backups.	What	is	ASM?	ASM	is	a	disk	management	tool	that	eliminates	the	need
for	the	DBA	to	manage	the	physical	files	associated	with	a	given	database.	ASM	is
somewhat	like	the	logical	volume	groups	you	might	be	used	to	in	Unix.	ASM	uses	ASM
disk	groups,	which	are	logical	units	of	storage.	Physical	disks	are	assigned	to	an	ASM	disk
group,	providing	the	overall	storage	capability	of	that	ASM	disk	group.	ASM	disk	groups
can	exist	on	previously	allocated	file	systems	or	on	raw	disks.	Combined	with	OCFS,
clustered	servers	can	share	ASM	disks	in	RAC	configurations.	Having	configured	ASM
and	having	defined	the	various	disk	groups,	you	can	then	assign	datafiles,	control	files,
online	redo	logs,	and	various	RMAN	backup	files	to	the	ASM	disk	groups.

ASM	offers	a	number	of	features,	including	load	balancing,	data	redundancy,	and	easy
addition	and	removal	of	new	disks	to	the	ASM	disk	groups.	It	is	beyond	the	scope	of	this
book	to	discuss	configuration	of	ASM	in	general.	However,	be	aware	that	RMAN	does
support	ASM	disk	groups	should	you	wish	to	use	them.	Additionally,	features	of	ASM
since	11.2	provide	extra	tuning	of	the	input	and	output	buffers	that	RMAN	uses.

If	you	are	using	ASM,	you	can	configure	the	FRA	such	that	it	will	be	created	in	the
ASM	file	system,	as	shown	in	this	example:

In	this	case,	Oracle	will	use	the	ASM	disk	volume	ASMV01	for	the	FRA.	We	can	then
use	RMAN	to	back	up	to	the	FRA.	We	discuss	backups	in	Chapter	7.

Should	You	Use	the	FRA?
We	think	the	idea	behind	the	FRA	is	a	good	one.	We	also	like	to	copy	those	backups	to
some	other	media,	such	as	tape,	so	we	can	send	them	offsite	for	disaster-recovery	purposes
(nothing	like	a	good	flood,	bomb,	or	tornado	to	make	your	disaster-recovery	planning
seem	really	important).

We	also	like	the	FRA	for	the	archived	redo	logs,	but	we	also	like	the	idea	of	copying
archived	redo	logs	to	more	than	one	location	(and	more	specifically,	to	more	than	one
disk).	Keep	in	mind	that	the	archived	redo	logs	are	critical	to	database	recovery,	and	if	you
lose	one,	all	the	others	after	that	one	are	pretty	much	worthless.	Therefore,	we	tend	to
configure	our	databases	using	FRA	and	at	least	one	other	archive	log	destination	that	is	on
a	different	disk.	This	means	that	we	use	the	LOG_ARCHIVE_DEST_n	parameters	to
configure	the	database	to	use	both	the	FRA	and	another,	separate	file	system	to	store	our
archived	redo	logs.

Another	benefit	of	the	FRA	we	like	is	the	implementation	of	space	quotas.
Consolidation	is	one	of	the	big	things	we	have	seen	happening	in	the	last	few	years,	and	it
does	not	seem	to	be	slowing	down.	As	a	result,	more	databases	are	sharing	the	same
server.	This	causes	situations	where	one	database	has	consumed	all	of	the	physical	disk
space	with	archived	redo	logs.	This	causes	problems	not	only	for	the	database	that	filled
up	the	archived	redo	log	destination	directory,	but	also	for	all	the	other	databases	on	the
system.	By	using	a	quota	system,	you	can	limit	one	database’s	ability	to	impact	others.

Therefore,	we	strongly	recommend	that	you	use	the	FRA,	as	does	Oracle.	Using	the
FRA	is	part	of	the	Oracle	MAA–recommended	architecture.

Switching	Between	ARCHIVELOG	Modes
Once	you	have	configured	the	database	to	run	in	ARCHIVELOG	mode,	you	can	switch	it
between	NOARCHIVELOG	and	ARCHIVELOG	mode	quite	easily.	To	put	the	database
in	ARCHIVELOG	mode,	you	must	first	shut	down	the	database	in	a	consistent	state	using
one	of	these	commands:	shutdown,	shutdown	immediate,	or	shutdown	transactional.
Once	the	database	has	been	cleanly	shut	down,	mount	the	database	by	issuing	the	startup
mount	command.	Once	the	database	is	mounted,	issue	the	command	alter	database
archivelog	to	put	the	database	in	ARCHIVELOG	mode.	You	can	then	open	the	database
with	the	alter	database	open	command.

If	you	wish	to	take	the	database	out	of	ARCHIVELOG	mode,	reverse	the	process.	First
shut	down	the	database.	Once	the	database	has	been	shut	down,	mount	the	database	by
issuing	the	startup	mount	command.	Once	the	database	is	mounted,	issue	the	command
alter	database	noarchivelog	to	put	the	database	in	NOARCHIVELOG	mode.	You	can
then	open	the	database	with	the	alter	database	open	command.

If	You	Created	Your	Database	with	the	Oracle	Database
Configuration	Assistant
If	you	created	your	database	with	the	Oracle	Database	Configuration	Assistant	(ODBCA),
it	is	likely	that	Oracle	has	configured	much	of	RMAN	for	you.	ODBCA	will	configure	the

database	in	ARCHIVELOG	mode,	configure	the	FRA,	and	even	offer	you	the	chance	to
schedule	RMAN	backups.	For	smaller	installations,	this	may	well	be	all	that	is	needed,
and	you	will	not	need	to	worry	about	any	other	basic	RMAN	configuration	issues.	Still,
it’s	a	good	idea	to	be	aware	of	all	the	options	that	RMAN	offers.	For	example,	encryption
of	backups	is	not	enabled	when	you	create	a	database	with	the	ODBCA,	and	you	might
want	to	enable	that	feature.

RMAN	Workshop:	Put	the	Database	in	ARCHIVELOG
Mode
Workshop	Notes
As	with	all	the	workshops,	please	do	not	run	this	workshop	in	a	production
environment.	Some	of	the	steps	could	be,	at	the	very	least,	disruptive	in	a	production
environment,	if	not	downright	destructive.

For	this	workshop,	you	need	an	installation	of	the	Oracle	software,	as	well	as	a
database	that	is	up	and	running	in	NOARCHIVELOG	mode.	To	make	sure	the
database	is	in	NOARCHIVELOG	mode,	log	in	as	SYS	and	issue	the	following
command:

If	the	response	to	the	previous	query	is	ARCHIVELOG,	the	database	is	in
ARCHIVELOG	mode.	If	you	wish	to	take	it	out	of	ARCHIVELOG	mode,	we
provide	instructions	on	how	to	do	that	just	after	the	end	of	this	workshop.

Before	you	start	the	workshop,	determine	where	you	want	the	Fast	Recovery
Area	to	reside.	You	will	also	need	to	decide	where	a	second	archive	log	destination
directory	will	be	because	this	workshop	will	have	you	archiving	to	two	locations.

Step	1.			Configure	both	the	FRA	and	a	separate	archive	log	destination	for	the
archived	redo	logs.	First,	set	your	environment	for	your	Oracle	12c	database	and
then	log	in	as	a	user	with	SYSDBA	or	SYSBACKUP	privileges.	Then,	set	the	FRA
parameters	DB_RECOVERY_FILE_DEST_SIZE	and
DB_RECOVERY_FILE_DEST:

Step	2.			Now,	define	two	archive	log	destination	directories,	one	of	which	will	be

the	FRA.	Set	the	database	parameter	file,	and	set	the	LOG_ARCHIVE_DEST_1
parameter	so	that	it	is	pointing	to	a	predefined	file	system	that	will	be	our	first
archive	log	directory.	Since	we	are	configuring	LOG_ARCHIVE_DEST_1	and	we
want	to	use	the	FRA,	we	need	to	set	the	LOG_ARCHIVE_DEST_10	parameter	to
point	to	the	FRA	by	using	the	parameter	USE_DB_RECOVERY_FILE_DEST.	Use
the	show	parameter	command	to	verify	that	the	settings	are	correct:

Step	3.			Shut	down	the	database:

Step	4.			Mount	the	database:

Step	5.			Put	the	database	in	ARCHIVELOG	mode:

Step	6.			Open	the	database:

Although	it	is	not	part	of	the	workshop,	the	process	of	taking	the	database	out	of
ARCHIVELOG	mode	is	as	simple	as	reversing	the	process	described	in	the	workshop.

Shut	down	the	database,	restart	the	database	instance	by	issuing	the	startup	mount
command,	and	put	the	database	in	NOARCHIVELOG	mode	by	issuing	the	command
alter	database	noarchivelog.	Note	that	you	are	not	required	to	shut	down	the	database	in
a	consistent	manner	when	moving	from	ARCHIVELOG	mode	to	NOARCHIVELOG
mode.	Here	is	an	example	of	switching	back	into	NOARCHIVELOG	mode:

Finally,	you	should	do	a	backup	of	the	database	once	you	have	completed	either	task.
You	can	look	at	Chapter	2	for	a	quick-and-dirty	way	of	doing	a	backup	at	this	point.
Starting	in	Chapter	7,	we	really	give	RMAN	backups	some	detailed	treatment.

The	Oracle	Database	Fault	Diagnosability
Infrastructure
Oracle	Database	11g	introduced	the	Fault	Diagnosability	Infrastructure.	We	cover	the
various	features	associated	with	the	new	Fault	Diagnosability	Infrastructure	throughout
this	book.	This	infrastructure	is	designed	to	help	prevent,	detect,	diagnose,	and	resolve
problems	such	as	database	bugs	and	various	forms	of	corruption.	With	respect	to	backup
and	recovery	operations,	with	or	without	RMAN,	the	information	contained	within	the
infrastructure	can	be	very	helpful	in	determining	what	has	failed	and	how	to	correct	for
that	failure.

What	are	the	purposes	of	the	Fault	Diagnosability	Infrastructure?	The	purposes	are
several-fold:

			The	ability	to	quickly	diagnose	a	problem	(first-failure	diagnosis)

			Providing	means	of	preventing	problems	before	they	occur

			Limiting	the	impact	and	damage	of	problems	that	have	been	detected

			Reducing	the	time	it	takes	to	diagnose	and	resolve	a	problem

			Improving	the	interaction	experience	you	have	with	Oracle	Support

The	ADR	and	Related	Fault	Diagnosability	Infrastructure
Components
The	Fault	Diagnosability	Infrastructure	is	made	up	of	a	number	of	different	components.
Many	of	these	have	been	around	for	a	while,	and	others	are	brand	new.	These	components
include	the	following:

			The	Automatic	Diagnostic	Repository	(ADR)	and	the	content	contained	within
it

			The	Incident	Packaging	Service

			The	SQL	Test	Case	Builder

			Various	views	used	to	support	the	Fault	Diagnosability	Infrastructure

			The	alert	log

			Trace	files,	dump	files,	and	core	files

			DDL	and	debug	logs

			Enterprise	Manager	Support	Workbench

			The	ADRCI	command-line	utility

In	this	section	we	address	the	main	components	in	more	detail,	and	we	discuss	how	to
configure	the	ADR.

The	Automatic	Diagnostic	Repository	(ADR)
This	Fault	Diagnosability	Infrastructure	centers	around	a	file-based	repository	called	the
Automatic	Diagnostic	Repository,	or	ADR.	Within	the	ADR	the	new	diagnostic
infrastructure	stores	various	files	related	to	the	status,	health,	and	well	being	of	the
database.

The	Fault	Diagnosability	Infrastructure	really	kicks	into	high	gear	when	certain	critical
kinds	of	database	issues	occur	(such	as	an	ORA-0600	error).	The	issues	that	trigger	a
response	are	those	that	have	a	high	probability	of	causing	an	interruption	in	service.	By
trapping	them	on	their	first	occurrence,	the	DBA	can	begin	root-cause	analysis	much
sooner	than	was	previously	possible.	Thus,	the	DBA	has	an	opportunity	to	get	ahead	of	the
problem	before	it	can	really	cause	a	much	broader	set	of	systematic	issues.	When	a
problem	occurs,	a	record	of	that	event,	along	with	diagnostic	data	(such	as	trace	files),	is
maintained	in	the	ADR.	Since	this	information	is	stored	outside	of	the	database,	it	is	not	a
problem	collecting	it	should	the	database	be	down.

You	can	find	a	number	of	logs	and	files	in	the	ADR	that	may	come	in	handy	when
trying	to	diagnose	your	database	problem.	These	include	the	following:

			The	database	alert	log			This	log	maintains	a	record	of	major	events	that
occur	in	the	database	such	as	startup	and	shutdown,	critical	failure	events,	and
informational	records	that	can	be	used	to	diagnose	database	problems.	The	database
alert	log	is	maintained	in	both	text	and	XML	format	in	the	ADR.

			The	DDL	log			This	log	is	new	in	Oracle	Database	12c.	It	provides	a	record	of
all	DDL	events	that	occur	in	the	database.	You	need	to	enable	DDL	logging	before
this	log	file	will	be	populated.	To	do	so,	set	the	ENABLE_DDL_LOGGING
parameter	to	TRUE.	The	default	for	this	parameter	is	FALSE.

			The	debug	log			This	log	is	new	in	Oracle	Database	12c	and	it	provides	a	log
file	of	events	that	occur	in	the	database	that	were	unusual	but	did	not	impact	the
state	of	the	database	itself.	Many	of	these	events	were	originally	recorded	to	the
database	alert	log	and	now	are	recorded	in	the	debug	log.

			Trace	files			These	files	are	stored	in	the	ADR	infrastructure.	Trace	files	are
important	tools	that	you,	and	Oracle	Support,	can	use	to	review	and	see	what	a	given
Oracle	Database	process	is	doing,	or	was	doing.	They	are	very	helpful	when	you’re
trying	to	troubleshoot	a	database	failure.	They	are	also	useful	during	database
performance	tuning.

The	files	listed	here	are	the	ones	that	are	most	commonly	used	by	the	DBA.	There	are
many	other	types	of	files	in	the	ADR,	such	as	core	files,	dump	files,	a	health	check	result
file,	and	the	like.	We	will	discuss	configuring	the	ADR	repository	in	the	Oracle	database
later	in	this	chapter.

The	Incident	Packaging	Service
When	problems	are	detected	(as	with	the	ORA-0600	incident	suggested	earlier),	a	service
called	the	Incident	Packaging	Service	(IPS)	gathers	the	diagnostic	information	stored	in
the	ADR	and	also	determines	which	files	are	needed	by	Oracle	for	diagnosis	of	the
problem.	ADR	will	then	package	those	files	into	a	single	.zip	file	(called	an	incident
package	or	just	package)	that	can	be	sent	to	Support.	This	process	simplifies	the	support
process	significantly.

These	packages	are	also	stored	in	the	ADR.	You	can	easily	add,	remove,	and	change
the	files	in	these	packages	before	you	send	them	to	Oracle	if	you	wish	(for	example,	you
might	want	to	scrub	some	of	the	data	contained	in	these	files).	Once	you	are	ready,	the	file
can	be	sent	to	Support	to	help	them	in	their	problem	diagnosis	(thus	saving	you	lots	of
time	chasing	down	these	files	in	disparate	directory	structures	filled	with	hundreds	of
different	files,	as	you	had	to	do	in	the	past).

The	Database	Support	Workbench
Using	a	related	tool,	the	Database	Support	Workbench,	you	can	proceed	to	open	Oracle
Database	service	requests	(SRs)	with	Oracle	Support,	sending	them	the	diagnostic
information	that	was	collected	and	packaged	to	provide	them	with	significant	information
as	to	the	nature	of	the	problem.	This	can	reduce	the	time	it	takes	for	you	and	Support	to
request	and	send	diagnostic	information,	thus	reducing	the	time	it	takes	to	resolve	a
problem.	The	easiest	method	of	accessing	the	Database	Support	Workbench	is	through
Oracle	Cloud	Control—but	you	can	also	access	it	though	the	adrcli	command-line
interface.

The	SQL	Test	Case	Builder

Another	tool	in	the	Fault	Diagnosability	Infrastructure	is	the	SQL	Test	Case	Builder.	This
tool	provides	a	way	to	build	a	reproducible	test	case	for	a	given	problem.	The	SQL	Test
Case	Builder	gathers	the	information	needed	about	a	given	problem	and	provides	Oracle
with	the	significant	information	it	needs	to	be	able	to	reproduce	the	problem.	Since	it	is
sometimes	difficult	to	reconstruct	the	exact	conditions	of	a	problem,	the	SQL	Test	Case
Builder	can	be	a	significant	aid	when	trying	to	reproduce	a	problem.

Fault	Diagnosability	Infrastructure–Related	Data	Dictionary	Views
The	Fault	Diagnosability	Infrastructure	collects	and	provides	a	great	deal	of	information.
This	information	typically	is	accessed	and	acted	upon	from	Oracle	Cloud	Control.
However,	the	infrastructure	also	provides	a	number	of	data	dictionary	views	that	allow
you	to	look	at	the	current	state	reported	by	the	Fault	Diagnosability	Infrastructure.

Here	are	some	of	the	available	views	that	tie	into	the	Fault	Diagnosability
Infrastructure:

			DBA_OUTSTANDING_ALERTS			This	view	provides	the	ability	to	see	any
alerts	that	are	currently	active	within	the	Fault	Diagnosability	Infrastructure.	For
example,	earlier	when	we	wanted	to	see	if	the	FRA	was	running	out	of	space,	we
used	this	view.	It	was	the	Fault	Diagnosability	Infrastructure	that	provided	the
information	we	were	seeing.

			V$DIAG_INFO			This	view	provides	various	information	about	the	ADR.
This	is	a	denormalized	view	that	contains	individual	records	for	various	pieces	of
reportable	information	from	the	ADR	and	then	the	data	related	to	that	piece.	As	of
Oracle	Database	12c	this	view	provides	11	specific	pieces	of	information,	including
the	active	problem	and	incident	count,	the	various	diagnostic	directory	locations	for
different	ADR	components,	the	location	of	the	ADR	base,	and	whether	the	ADR	is
enabled	(which	it	is	by	default).

			V$DIAG_CRITICAL_ERROR			This	view	simply	presents	the	various	ORA
errors	that	are	considered	critical	and	creates	an	automated	incident	package.

			V$DATABASE_BLOCK_CORRUPTION			This	view	can	be	populated	by
the	Oracle	health	checkers	or	by	an	RMAN	backup	or	validation.	In	either	case,
corrupted	database	blocks	are	displayed	in	this	view.	This	can	be	quite	helpful	to	the
DBA	when	trying	to	perform	block-level	media	recovery,	which	is	discussed	in
Chapter	9.

			V$CORRUPT_XID_LIST			Provides	information	on	corrupted	undo
segments,	which	often	is	a	result	of	a	corrupted	transaction.	Oracle	tries	to	recover
these	corrupted	transactions	automatically.	If	it	cannot	correct	the	corruption,	the
V$CORRUPT_XID_LIST	view	is	populated	with	the	transaction	information.	The
response	to	the	corruption	is	dependent	on	the	nature	of	the	corruption	and	is	beyond
the	scope	of	this	book.	If	you	see	records	in	this	view,	you	should	open	a	support
ticket	with	Oracle.

			V$HM_RUN			Provides	a	list	of	health	checks	that	have	run	in	the	past	and
the	status	of	that	run.

			Various	V$HM_*	views			These	views	provide	information	on	the	health
checks	that	are	run	by	Oracle.	The	types	of	health	checks,	the	parameters	used	when
the	individual	health	checks	are	executed,	and	the	findings	and	recommendations	of
the	health	check	runs	are	all	listed	in	various	V$HM	views.

			For	example,	you	can	find	the	specific	execution	of	a	health	check	using	the
V$HM_RUN	view.	Once	you	find	the	health	check	run	you	wish	to	report	on,	you
can	run	the	PL/SQL	program	DBMS_HM.GET_RUN_REPORT	to	generate	a
detailed	report	on	that	specific	health	check	run.	Here	is	an	example	of	doing	just
this:

You	can	see	in	this	output	that	the	database	was	suffering	from	some	major	datafile
losses.	Since	the	health	checks	run	on	a	scheduled	basis,	it’s	very	possible	that	the	health
checks	will	pick	up	on	a	missing	datafile	before	your	users	will	experience	the	results	of
that	missing	datafile—especially	if	the	data	file	is	not	frequently	accessed.	Similar	health
checkers	exist	for	various	types	of	database	corruptions,	both	logical	and	physical.

In	Oracle	Database	12c	(and	earlier	versions)	the	ADR	contains	many	different	file
areas	you	will	be	interested	in	with	respect	to	backup	and	recovery.	The	database	alert	log
is	contained	in	this	directory	structure,	as	are	all	database-related	trace	files	and	trace	files
from	other	Oracle	components,	such	as	the	listeners	that	will	be	running.

NOTE

Oracle	seems	to	be	moving	more	log	files	and	diagnostic	information	to	the
ADR	as	time	goes	on.	For	example,	in	12.1.0.2	Oracle	moved	some	Oracle
Clusterware–related	files	to	the	ADR.	The	bottom	line	is	that	if	your	Oracle-
related	log	files,	or	other	diagnostic-related	data,	does	not	seem	to	be	getting
created	in	the	previously	normal	places,	check	to	see	if	that	information	has
moved	to	a	directory	in	the	ADR.

Other	Oracle	Database	tools	are	associated	with	this	framework.	This	includes	tools
such	as	the	Database	Support	Workbench	mentioned	earlier.	There	are	also	a	number	of
health	checkers	that	attempt	to	be	proactive	about	database	health.	The	health	checks	run
on	a	regular	basis,	trying	to	actively	find	certain	things	like	corruption	of	the	data
dictionary,	undo	and	redo	corruption,	data	block	corruption,	and	other	database-related
problems	that	tend	not	to	surface	without	causing	a	failure.	Also,	when	a	problem	is
detected	and	an	incident	created,	certain	health	checkers	may	run	automatically	as	part	of
building	an	incident	package	so	that	the	root	cause	might	be	more	easily	detected.

Finally,	within	this	diagnostic	framework	is	the	Database	Recovery	Advisor.	This	tool
uses	the	ADR	data	to	help	determine	what	kind	of	failure	the	database	is	experiencing,	and
then	based	on	that	information	it	will	analyze	the	problem,	suggest	a	resolution,	and	then
optionally	execute	the	resolution	for	you.	We	discuss	these	various	components
throughout	the	chapters	of	this	book—so	keep	an	eye	out	for	them!

Configuring	the	Fault	Diagnosability	Infrastructure
For	the	purposes	of	setting	up	the	Fault	Diagnosability	Infrastructure	for	an	Oracle
database,	what	we	are	concerned	with	in	this	chapter	is	the	setting	of	the	new	parameter
DIAGNOSTIC_DEST,	which	defines	the	root	of	the	ADR	and	deprecates	several	other
parameters,	including	USER_DUMP_DEST,	CORE_DUMP_DEST,	and
BACKGROUND_DUMP_DEST.	As	a	result,	if	you	create	a	new	Oracle	database	with	the
DBCA,	you	will	not	find	the	alert	log	or	user	trace	files	where	you	previously	would	have
expected	them.

Before	we	discuss	configuring	the	ADR,	you	should	know	that	the	process	of

configuring	does	not	change	if	you	are	running	Oracle	Multitenant	in	Oracle	Database
12c.	The	ADR	structure	remains	the	same	because	it	stores	information	at	the	grain	of	the
CDB,	not	at	the	grain	of	the	PDB.	That	being	said,	if	a	session	connected	to	a	PDB	raises
an	error	that	the	ADR	records,	it	will	still	be	recorded	in	the	ADR—it	simply	won’t	be
recorded	in	a	directory	that	is	specific	to	that	PDB.	Rather	it	will	be	created	in	the
directories	that	are	at	the	level	of	the	CDB	itself.	Even	trace	files	are	listed	at	the	CDB
level,	so	if	you	enable	SQL	tracing	in	a	PDB,	the	resulting	trace	file	will	have	the	name	of
the	CDB	in	the	filename,	not	the	name	of	the	PDB.

By	default,	the	DIAGNOSTIC_DEST	parameter	is	set	to	$ORACLE_BASE.	If
$ORACLE_BASE	is	not	set,	the	parameter	is	set	to	the	value	of	$ORACLE_HOME.	The
root	directory	of	the	ADR	directory	structure	starts	with	a	directory	called	diag,	under
which	is	a	subdirectory	that	references	the	product	type.	For	example,	for	the	database,	the
product	is	called	rdbms.	Under	rdbms	is	a	directory	for	each	database,	followed	by	a
directory	for	each	individual	instance.

For	example,	if	$ORACLE_BASE	is	/u01/oracle,	the	database	name	is	mydb,	and	the
database	instance	is	mydb1,	then	the	structure	of	the	ADR	directory	for	that	database	will
be	/u01/oracle/diag/rdbms/mydb/mydb1.	This	directory	structure	is	called	the	ADR	home,
and	each	instance	has	its	own	ADR	home.	If	you	are	using	RAC,	you	can	either	use	shared
storage	for	ADR	or	individual	storage	on	each	node.	We	would	recommend	shared	storage
in	a	RAC	environment	because	you	can	see	the	aggregate	diagnostic	data	from	any	node.
Also,	a	shared	ADR	allows	for	more	robust	recovery	options	for	the	Data	Recovery
Advisor.	However,	the	truth	is	that	we	usually	see	ADRs	stored	on	local,	nonshared
storage	most	of	the	time.

Under	this	directory	structure	will	be	a	number	of	other	directories.	Here	are	some	of
the	most	common	ones:

			Alert			This	is	the	location	of	the	XML-formatted	alert	log.

			cdump			This	is	the	location	of	the	core	dumps	for	the	database.

			Trace			This	directory	contains	trace	files	generated	by	the	system,	as	well	as	a
text	copy	of	the	alert	log.

			Incident			This	directory	contains	multiple	subdirectories,	one	for	each
incident.

Figure	5-1	provides	a	diagram	of	the	ADR	Base	structure.

FIGURE	5-1.			ADR	base	structure

The	view,	V$DIAG_INFO,	provides	information	on	the	various	ADR	locations,	as	well
as	information	related	to	ADR,	such	as	active	incidents.	Here	is	an	example	of	a	query
against	the	V$DIAG_INFO	view:

The	RMAN	Command	Line
The	first	step	in	using	RMAN	is	learning	how	to	start	the	RMAN	client.	The	client	is	used
to	configure	RMAN	and	to	perform	both	online	and	offline	backup	and	restore	operations.
Because	using	the	RMAN	command	line	is	fundamental	to	almost	everything	we	will	be
doing	in	this	book,	we	need	to	spend	some	time	learning	how	to	use	it.

Connecting	via	the	RMAN	Command	Line
There	are	two	different	ways	to	get	to	RMAN.	The	first	is	from	the	command	line,	and	the
second	is	by	using	OEM	(Oracle	Enterprise	Manager).	We	will	deal	with	the	OEM
interface	in	more	detail	in	Chapter	14.	Most	of	the	examples	you	will	see	in	this	book,
however,	will	be	done	using	the	command-line	interface.	We	figure	that	if	you	can	do
something	from	the	command	line,	you	can	do	it	from	anywhere.	In	this	section,	we	look
at	how	to	connect	to	databases	with	the	RMAN	command	line	and	also	how	to	use	the
connect	command.

The	RMAN	Command-Line	Parameters
You	can	start	RMAN	from	the	OS	prompt	simply	by	typing	the	command	rman.	Once
you	have	started	the	RMAN	command	interpreter,	you	can	perform	whatever	operations
you	might	need	to	perform.	Often,	it’s	much	easier	to	get	some	of	the	preliminary	work
done	by	using	command-line	parameters.	Therefore,	when	we	start	RMAN,	we	can	pass
several	command-line	parameters.	You	can	use	the	command-line	parameters	to	connect
RMAN	to	the	database	you	are	going	to	back	up	(known	as	the	target	database),	to	the
recovery	catalog,	or	for	a	number	of	other	tasks.	Table	5-2	provides	a	list	of	the	command-

line	parameters,	the	data	type	for	the	argument	of	the	parameter	(if	there	is	one),	and	the
purpose	of	the	parameter.

TABLE	5-2.			RMAN	Command-Line	Parameters

Starting	RMAN	and	Connecting	to	the	Target	Database
Probably	the	most	common	way	to	start	RMAN	is	to	indicate	what	target	database	you
wish	to	connect	to.	For	example,	if	we	wanted	to	connect	to	the	orcl	database	as	our	target,
we	would	set	the	Oracle	environment	to	point	to	the	orcl	instance	(using	.oraenv,	for
example,	or	setting	ORACLE_SID	correctly).	Once	that	is	done,	starting	RMAN	is	as
easy	as	this:

In	this	case,	the	orcl	database	will	need	to	have	a	user	called	backup	that	has	either
SYSDBA	or	SYSBACKUP	privileges,	as	we	discussed	earlier.	If	you	prefer	to	use	an
Oracle	Net	service	name,	you	would	modify	the	connection	string	to	look	like	this:

Of	course,	in	this	case	the	database	listener	needs	to	be	up	and	running	for	you	to
connect	using	an	Oracle	service.

You	will	see	many	examples	of	the	use	of	RMAN	command-line	parameters
throughout	the	chapters	of	this	book.

NOTE

The	=	sign	between	the	command-line	parameter	and	the	value	of	that
parameter	is	optional.	Also,	if	you	are	running	Oracle	Database	Real	Application
Clusters,	you	can	connect	to	only	one	instance	of	that	cluster.	However,	you	can
easily	spread	your	backups	across	multiple	nodes	of	your	RAC	cluster,	which	we
demonstrate	in	Chapter	18.

If	you	are	running	Oracle	Multitenant	databases,	you	may	want	to	be	able	to	connect
directly	to	a	PDB.	In	this	case,	you	will	need	to	use	the	service	name	for	that	PDB	in	the
RMAN	connect	string,	as	shown	here:

Note	that	you	cannot	connect	directly	to	a	container	database	when	using	RMAN,	and
you	cannot	use	the	alter	session	set	container	command	from	the	RMAN	client	to	change
to	a	given	PDB.	If	you	try,	you	will	get	the	following	error:

RMAN	Connection	Privileges
In	versions	prior	to	Oracle	Database	12c,	RMAN	would	always	connect	as	SYSDBA	to
the	target	database.	Thus,	the	user	you	used	to	log	into	the	database	needed	to	have
SYSDBA	privileges.	You	can	still	follow	this	model,	but	SYSDBA	privileges	are	very
powerful	and	should	not	be	assigned	without	serious	consideration	to	the	security
requirements	of	your	database.

Because	SYSDBA	is	so	powerful,	there	is	now	a	new	administrative	privilege,	starting
in	Oracle	Database	12c,	called	SYSBACKUP.	This	privilege	can	be	assigned	to	any
common	user	(users	created	using	c##)	or	to	any	user	within	a	given	PDB.	Because
common	users	can	be	assigned	privileges	based	on	specific	containers,	they	need	to	have
SYSBACKUP	privileges	on	the	root	container	for	full	database	backup	privileges.	If	they
only	have	SYSBACKUP	privileges	on	a	PDB,	they	can	only	back	up	that	PDB	(which	can
be	problematic	because	they	can	back	up	a	PDB	but	can’t	perform	archived	redo	log
backups	from	a	PDB).

The	SYSBACKUP	privilege	provides	specific	administrative	privileges	needed	to	back
up	and	recover	the	database,	while	restricting	privileges	that	are	not	needed.	For	example,
if	you	log	into	the	database	as	a	user	with	SYSBACKUP	privileges,	that	user	will	not	have

the	ability	to	create	other	user	accounts,	because	that	privilege	is	not	required	to	perform
backup	and	restore	operations.	For	example,	the	SYSBACKUP	privilege	does	not	provide
the	ability	to	create	users	within	the	database.

RMAN	Command-Line	Help
If	you	forget	the	command-line	arguments	to	RMAN	(and	somehow	manage	to	leave	this
book	and	your	documentation	at	home),	there	is	a	way	to	get	RMAN	to	display	the	valid
command-line	parameters.	Simply	start	RMAN	with	an	invalid	parameter.	As	you	can	see
in	the	following	example,	RMAN	will	return	an	error,	but	will	also	provide	you	with	a	list
of	valid	command-line	parameters	(we	removed	some	of	the	errors	at	the	bottom	of	the
listing	for	brevity):

RMAN	also	offers	the	checksyntax	parameter,	which	provides	the	ability	to	check	the
RMAN	commands	you	want	to	issue	for	errors.	Here	is	an	example	of	the	use	of	the
checksyntax	parameter:

Note	that	a	lot	can	be	divined	from	RMAN	error	messages.	Often,	within	the	message,
you	can	see	that	RMAN	is	expecting	a	particular	keyword	or	phrase.

NOTE

There	is	a	bug	in	some	versions	of	Oracle	Database	12c	where	the
checksyntax	option	does	not	work	correctly	for	all	RMAN	commands	issued.

RMAN	Client	Compatibility
When	using	the	RMAN	client,	you	will	want	to	consider	the	compatibility	of	that	client
with	the	target	database	to	which	you	are	connecting.	You	will	also	need	to	consider	the
compatibility	of	the	recovery	catalog,	which	we	will	discuss	in	more	detail	in	Chapter	9.

Table	5-3	provides	guidelines	on	RMAN	compatibility	between	the	target	and	auxiliary
databases	and	the	RMAN	client.

TABLE	5-3.			RMAN	Client	and	Database	Version	Compatibility	Matrix

Note	in	Table	5-3	that	the	rules	somewhat	changed	in	Oracle	Database	12c.	It	used	to
be	that	you	could	use	older	RMAN	client	versions	with	more	recent	target	and	auxiliary
database	versions.	This	has	changed	in	Oracle	Database	12c—you	must	use	the	same
version	of	the	RMAN	executable	as	the	version	of	the	target	or	auxiliary	database.	There
is	no	indication	at	the	time	of	the	writing	of	this	book	as	to	whether	Oracle	will	allow	you
to	use	an	older	version	of	the	12.1	RMAN	executable	with	newer	versions	of	the	12.1
database,	as	has	previously	been	allowed.

RMAN	is	stored	in	the	$ORACLE_HOME/bin	directory,	and	this	directory	should	be
in	the	PATH	on	which	the	OS	Oracle	is	running.	If	you	have	several	ORACLE_HOME
directories,	you	will	want	to	be	cautious.	Make	sure	that	the	OS	PATH	is	pointing	to	the
correct	ORACLE_HOME	before	you	start	RMAN.	If	you	do	not	set	the	PATH	correctly,
you	could	be	using	the	wrong	ORACLE_HOME	directory.	Also,	be	cautious	that	there	is
not	some	other	rman	executable	in	the	path	before	the	RMAN	executable.	For	example,
an	rman	command	in	some	versions	of	Unix	sometimes	ends	up	running	instead	of
RMAN	because	it	comes	first	in	the	path.	In	cases	like	this,	you	will	need	to	adjust	the
path,	or	you	may	need	to	change	to	the	$ORACLE_HOME/bin	directory	and	run	rman
directly	from	that	location.

Typically,	RMAN	will	generate	an	error	if	you	are	using	an	incompatible	client	version.
You	can	use	OS-level	utilities	(such	as	export|grep	ORACLE_HOME	on	Linux)	to
determine	whether	you	are	using	the	correct	ORACLE_HOME,	or	you	can	check	the
banner	of	the	RMAN	client	when	you	execute	it.

Using	the	RMAN	connect	Command
If	you	start	RMAN	and	realize	that	you	either	have	not	connected	to	the	correct	database
or	wish	to	connect	to	a	different	database	(target,	catalog,	or	auxiliary),	you	can	use	the
connect	command	to	change	which	database	RMAN	is	connected	to.	To	change	to
another	target	database,	use	the	connect	target	command.	To	change	to	a	different
recovery	catalog,	use	the	connect	catalog	command.	To	connect	to	a	different	auxiliary

database,	use	the	connect	auxiliary	command.	To	connect	to	a	PDB	in	a	multitenant
database,	you	would	connect	using	the	service	name	of	the	PDB.	Here	are	some	examples
of	the	use	of	the	connect	command:

Executing	Oracle	SQL	Commands	from	the	RMAN	Client
In	versions	of	RMAN	before	Oracle	Database	12c	you	could	run	SQL	commands	from	the
RMAN	prompt	by	using	the	sql	keyword,	as	seen	in	this	example:

The	problem	with	this	was	that	you	would	not	see	the	resulting	output	of	the	SQL
command,	nor	could	you	be	sure	if	it	actually	worked.

In	Oracle	Database	12c	you	can	now	run	most	SQL	commands	from	the	RMAN
prompt	natively—without	the	RMAN	SQL	parameter	being	required.	Here	is	an	example:

So,	now	we	can	actually	see	the	results	of	our	SQL	statements	when	we	execute	them
from	the	RMAN	command	line.	This	means	we	can	issue	queries	against	the	data
dictionary	views	like	V$DATAFILE	without	having	to	switch	back	and	forth	between
SQL*Plus	and	RMAN.	This	is	very	convenient	indeed!

Note	that	Oracle	Database	12c	provides	a	backup	privilege	called	the	SYSBACKUP
privilege.	You	grant	and	use	the	SYSBACKUP	privilege	just	like	you	do	the	SYSDBA
privilege.	When	granted	this	privilege,	a	backup	administrator	can	log	into	the	database	to
perform	backup	and	recovery	operations.	However,	the	SYSBACKUP	privilege	is	limited
in	its	abilities	to	do	other	things,	such	as	query	the	database.	This	provides	an	added	level
of	security	you	can	use	to	protect	your	database.

Exiting	the	RMAN	Client
When	you	are	done	with	RMAN,	it’s	time	to	get	out	of	the	client.	RMAN	offers	two
commands:	quit	and	exit.	These	commands	will	return	you	to	the	OS	prompt.	RMAN	also
allows	you	to	shell	out	to	the	OS	with	the	host	command.	Here	are	some	examples:

Configuring	the	Database	for	RMAN	Operations
Now	that	you	know	how	to	start	RMAN,	we	need	to	deal	with	some	configuration	issues.
While	it	is	possible	to	just	fire	up	RMAN	and	do	a	backup,	it’s	a	better	idea	to	deal	with
some	configuration	questions	before	you	do	so.	First,	you	need	to	set	up	the	database	user
RMAN	will	be	using.	Next,	you	can	configure	RMAN	to	use	several	settings	by	default,
so	we	will	look	at	those	settings	as	well.

Setting	Up	the	Database	User
We	mentioned	security	earlier,	and	it’s	important.	In	the	past,	it	wasn’t	uncommon	for
DBAs	to	just	use	the	SYS	account	to	perform	RMAN	backups.	This	is	a	bad	idea	from	a
security	point	of	view—and	if	you	are	doing	that,	please	stop.

If	you	are	using	versions	of	Oracle	previous	to	Oracle	Database	12c,	you	will	simply
need	to	create	some	user	account	that	is	dedicated	to	backup	operations	and	assign	the
SYSDBA	privilege	to	that	account.	We	strongly	recommend	that	you	lock	down	this
account	as	much	as	possible.

You	could	use	login	triggers	that	check	the	user	context	settings	with	the	sys_context
function.	For	example,	the	sys_context('USERENV',	'HOST')	output	would	identify	the
host	from	which	the	RMAN	client	is	connecting.	We	could	then	build	a	logon	trigger	that
checks	the	environment	and	validates	it	against	approved	hosts.	A	very	basic	logon	trigger
might	look	like	this:

So,	if	we	try	to	logon	from	an	invalid	host,	we	get	the	following	error:

If	you	want	to	lock	down	your	database	using	logon	triggers	and	more	complex	context
checking,	you	should	look	at	the	Oracle	Database	Security	Guide.	In	it,	you	will	find	a
wealth	of	information	that	can	help	you	create	logon	triggers	for	locking	down	your
database.

So,	we	have	made	it	clear	that	you	really	should	create	a	special	account	from	which	to
run	backups.	In	the	following	workshop,	we	walk	you	through	that	process.	Note	that	the
workshop	will	provide	steps	relevant	to	both	multitenant	and	nonmultitenant	databases.

RMAN	Workshop:	Create	the	Target	Database	RMAN
Backup	Account
Workshop	Notes
For	this	workshop,	you	need	an	installation	of	the	Oracle	software	and	a	database
that	is	up	and	running.	You	also	need	administrative	privileges	on	this	database.

Step	1.			Determine	the	user	account	name	that	you	want	to	use,	and	create	it	with
the	database	create	user	command.	In	the	case	of	nonmultitenant	databases,	the
command	would	look	like	this:

In	the	case	of	multitenant	databases,	you	would	need	to	use	a	common	account
(prefixed	with	c##),	as	shown	in	this	example:

Step	2.			Grant	the	sysdba	privilege	to	the	BACKUP_ADMIN	user.	We	will	use	the
SYSBACKUP	privilege	in	these	examples.	If	you	are	running	a	version	of	the
database	earlier	than	Oracle	Database	12c,	you	will	need	to	replace	the
SYSBACKUP	privilege	with	the	SYSDBA	privilege.	Here	is	an	example	of	granting
the	SYSBACKUP	privilege	to	the	BACKUP_ADMIN	account	within	the
nonmultitenant	database:

And	here	is	an	example	of	doing	so	when	dealing	with	a	multitenant	database:

NOTE

If	you	created	your	database	with	the	dbca,	you	were	offered	an	option	to	set
up	automated	daily	backups.	If	you	selected	this	option,	Oracle	will	do	some
initial	RMAN	configuration	for	you	(it	will	configure	the	FRA,	for	example).

Although	this	RMAN	configuration	is	sufficient	for	databases	that	are	not	of
consequence,	if	you	are	managing	databases	that	are	mission	critical,	you	should
still	follow	the	steps	outlined	in	this	chapter	and	ensure	that	your	database	is
properly	configured	for	RMAN	operations.

So,	what	happens	if	you	try	to	connect	RMAN	to	an	account	that	is	not	properly
created?	The	following	error	will	occur:

Now	that	we	have	created	the	user	and	granted	that	user	the	required	privileges,	we	are
a	step	closer	to	being	ready	to	use	RMAN.	Still,	we	have	some	RMAN	default	settings	we
need	to	configure,	so	let’s	look	at	those	next.

Setting	Up	Database	Security
We	need	to	discuss	briefly	the	differences	between	connecting	to	RMAN	on	the	local
server	and	connecting	to	it	via	Oracle	Net.	Security	has	changed	a	little	over	the	various
versions	of	Oracle	Database,	but	the	basics	are	still	pretty	much	the	same.	When	you
connect	to	an	Oracle	database	to	perform	backups,	you	will	use	one	of	four	main	ways	of
connecting:

			Via	an	OS-authenticated	account

			Via	a	username	and	password	if	OS	authentication	is	not	permitted

			To	a	database	or	the	root	of	a	CDB	via	Oracle	Net

			To	a	PDB	of	a	CDB	via	Oracle	Net

Using	a	local	connection	via	OS	authentication	is	probably	the	least	secure	of	all	the
connection	methods.	Anyone	logged	onto	the	database	server	could	directly	connect	to	the
database	without	any	credentials	required.	In	this	case,	you	simply	log	into	an	account	that
is	set	up	for	Oracle	operations	and	then	log	into	RMAN	directly,	as	seen	here:

In	this	case,	if	you	are	logged	on	using	a	privileged	OS	user	account,	you	do	not	need
to	do	anything	beyond	the	two	steps	in	the	preceding	RMAN	Workshop.	How	do	you
know	whether	your	user	account	is	a	privileged	one?	It	depends	on	the	OS	you	are	using.
If	you	are	using	Unix,	there	is	generally	a	Unix	group	called	dba	(though	it	may	be	called
something	else).	This	group	is	created	before	the	Oracle	Database	software	is	installed,
and	the	Oracle	software	is	associated	with	this	group	when	it’s	installed.	If	your	Unix	user
account	is	assigned	to	this	group,	you	will	be	able	to	connect	to	a	target	database	without
any	additional	work,	unless	the	database	is	configured	to	not	allow	OS	authenticated

connections.	Other	operating	systems	have	other	ways	of	providing	OS	authentication.

Databases	can	be	configured	not	to	allow	user	authentication.	In	this	case,	you	can	still
do	RMAN	local	connections	simply	by	authenticating	into	the	database	using	the
username	and	password,	as	shown	here:

In	this	case	the	password	is	clear	text	of	course,	which	is	a	problem.	This	is	why	using
OEM	to	schedule	backups	is	a	much	better	solution	than	using	CRON	jobs,	which	can
have	clear-text	passwords	in	them	if	OS	authentication	is	required.	There	are	ways	to
encrypt	these	clear-text	passwords	in	Linux	and	other	forms	of	Unix.	OS	utilities	such	as
aesutil	(aes)	and	base64	encoding	are	examples.

If	you	are	using	Oracle	Enterprise	Manager	or	are	connecting	to	databases	with	RMAN
over	Oracle	Net,	you	will	need	to	use	a	Net	service	name	for	the	database	to	which	you
will	be	connecting.	You	can	use	this	method	if	you	are	connecting	to	a	regular	database
and	the	root	container	of	a	multitenant	database.	You	must	use	this	method	to	connect	to	a
PDB	of	a	multitenant	database.	Here	is	an	example	of	using	RMAN	when	connecting	to	a
network	service:

If	you	are	using	this	connection	method,	you	need	to	make	sure	that	the	database
listener	(and	the	SCAN	listeners	if	you	are	using	Clusterware)	are	up	and	running.

Create	the	Password	File
If	you	are	going	to	use	the	remote	authentication	method	via	a	service,	you	will	need	to
create	a	database	password	file.	This	password	file	provides	the	ability	for	remote	users
connecting	to	the	database	to	authenticate	when	using	Oracle	Net	services.	To	create	the
Oracle	password	file,	you	use	the	Oracle	utility	orapwd.	This	command	takes	three
parameters:

			file			The	password	filename

			password			The	password	for	the	sys	user

			entries			Any	number	of	entries	to	reserve	for	additional	privileged	Oracle	user
accounts

The	password	file-naming	standard	is	determined	by	the	OS	platform.	For	example,	in
Unix	or	Linux,	it’s	orapwsid,	where	sid	is	the	database	name.	In	Windows,	the	password
file	takes	the	naming	standard	of	PWDsid.ora,	where	sid	is	your	database	name.

Here	is	an	example	of	the	creation	of	a	password	file;	in	this	case,	we	are	creating	a
password	file	for	a	Windows	database	called	robt:

So,	now	that	we	have	created	the	password	file,	we	need	to	configure	the	database	to
use	it,	which	will	allow	us	to	do	remote	backups	via	Oracle	Net.

Configure	the	Database	to	Use	the	Password	File

By	default,	an	Oracle	database	is	not	configured	to	use	the	password	file	(unless	you	have
used	the	ODBCA	to	create	your	database).	To	configure	the	database,	edit	the	parameter
file	(init.ora)	in	your	favorite	editor,	or	follow	the	upcoming	instructions	if	you	are	using
an	SPFILE.	The	parameter	we	are	interested	in	is	REMOTE_LOGIN_PASSWORDFILE.
This	parameter	can	be	set	to	one	of	three	values	in	an	Oracle	database:

			none			The	default	value.	In	this	case,	Oracle	will	ignore	the	password	file,	and
only	local	privileged	logins	will	be	recognized	for	sysdba	access.

			shared			This	parameter	indicates	that	multiple	databases	can	use	the	same
password	file.	When	in	this	mode,	only	the	SYS	user	account	password	can	be
stored.

			exclusive			This	parameter	indicates	that	the	password	file	is	used	by	only	one
database.	In	this	mode,	the	password	file	can	contain	passwords	for	several
privileged	Oracle	accounts.	This	is	the	recommend	mode	of	operation,	particularly
when	running	RMAN.	If	you	wish	to	connect	RMAN	to	your	database	from	a
remote	client,	you	must	use	this	parameter	setting.

If	you	are	using	an	SPFILE	instead	of	a	text-based	parameter	file,	use	the	alter	system
command	to	modify	this	parameter	setting:

Finally,	the	REMOTE_LOGIN_PASSWORDFILE	parameter	is	not	dynamic,	so	you
cannot	change	it	with	the	database	up	and	running.	Instead,	you	will	have	to	change	the
SPFILE	(using	the	scope=spfile	parameter	of	the	alter	system	command)	and	then	shut
down	the	database	and	restart	it.

Setting	the	CONTROL_FILE_RECORD_KEEP_TIME
Parameter
When	configuring	your	database	for	RMAN,	you	should	consider	how	long	you	wish
backup	records	to	be	stored	in	the	control	file.	This	includes	records	of	full	database
backups	and	of	specific	datafile,	control	file,	parameter	file,	and	archive	log	backups.	The
database	parameter	CONTROL_FILE_RECORD_KEEP_TIME	is	defined	in	days	(the
default	setting	is	7).	Therefore,	by	default,	Oracle	will	maintain	RMAN	backup	and
recovery	records	for	seven	days.	You	can	set	this	parameter	to	any	value	between	0	and
365	(days).

This	parameter	can	have	a	number	of	operational	database	impacts.	First,	it	directly
impacts	the	size	of	the	database	control	file,	because	as	RMAN	backups	occur,	records
relating	to	these	backups	are	stored	in	the	control	file.	As	records	are	saved	in	the	control
file,	the	control	file	might	well	run	out	of	space.	In	this	case,	Oracle	will	expand	the
control	file	to	accommodate	the	storage	of	the	required	number	of	backup	records.	Setting
this	parameter	to	0	will	disallow	any	control	file	growth,	but	has	the	negative	effect	of
making	the	RMAN	backup	history	retention	period	uncertain.

We	suggest	that	you	set	CONTROL_FILE_RECORD_KEEP_TIME	to	a	value	no	less
than	your	selected	database	backup	retention	period.	Otherwise,	you	risk	having	database
backups	available	on	your	backup	media	without	related	backup	records	available	in	the

control	file.	This	can	cause	serious	complications	if	you	need	to	recover	these	older
backups	for	some	reason!

One	important	thing	to	keep	in	mind	is	that	the	more	records	you	keep	in	the	control
file,	the	more	impact	that	RMAN	operations	on	the	control	file	can	have	on	the	database.
If	you	are	going	to	do	a	large	number	of	backups	(including	archived	redo	logs),	we
strongly	suggest	that	you	use	a	recovery	catalog	and	keep	the	number	of	records	being
stored	in	the	control	file	to	a	reasonable	number	(say,	30	to	60	days).

CAUTION

There	are	a	number	of	places	where	incorrectly	set	file	retention	can	cause
your	backup’s	retention	strategy	to	fail.	These	include	incorrectly	setting
CONTROL_FILE_RECORD_KEEP_TIME,	RMAN	retention	policies,	and
retention	policies	on	your	tape	vendor	products.	Make	sure	all	retention	policies
are	aligned	so	you	don’t	wake	up	someday	and	find	you	are	unable	to	restore	your
backups.

Configuring	RMAN	Default	Settings
RMAN	allows	you	to	perform	automated	database	backup	and	recovery,	as	you	will	see	in
later	chapters.	To	support	this	feature,	RMAN	allows	you	to	define	default	values	for	a
number	of	settings,	such	as	channel	configuration.	In	this	section,	we	look	at	the
configuration	of	default	RMAN	settings.	Of	course,	if	you	can	configure	something,	you
will	want	to	be	able	to	change	that	configuration,	and	even	to	remove	it	completely	if
required.	We	will	look	at	that,	too.	So,	what	will	be	the	benefit	of	all	of	this	configuration
work?	It	will	make	the	process	of	actually	doing	backups	much	easier	in	the	end.	First,	we
quickly	examine	the	configure	command	in	RMAN	and	all	that	it	provides	us.	Then,	we
look	at	several	of	the	different	defaults	you	might	want	to	configure	by	using	the
configure	command.

Setting	and	using	the	default	parameters	is	important.	It’s	a	way	to	standardize	RMAN
configurations	and	ensure	that	they	are	consistently	used.	This	reduces	the	possibility	of
error	when	more	than	one	person	is	performing	RMAN	backups.

Throughout	this	section,	we	use	a	number	of	terms	that	you	might	not	yet	be	familiar
with	because	they	are	covered	in	later	chapters.	Many	of	the	terms	were	introduced	in
Chapter	2,	though	others	may	not	be	quite	clear	to	you	yet.	That’s	okay,	because	to	use
RMAN,	none	of	the	default	configuration	options	are	really	required.	We	suggest	that	you
skim	this	section	to	get	a	feel	for	the	various	default	values	you	can	set,	and	then,	after	you
have	read	later	chapters,	return	here	and	reread	this	section.	At	that	point,	you	will	be
ready	to	decide	what	defaults	you	want	to	apply	to	your	Oracle	database.

When	you	configure	a	default	setting	in	RMAN,	you	will	need	to	connect	to	the
database	just	as	you	would	when	doing	a	backup.	If	you	are	connecting	to	a	multitenant
database,	you	will	need	to	connect	to	the	root	container	of	the	database	and	not	a	PDB.

You	cannot	configure	default	values	when	connected	to	a	PDB.

Introducing	the	configure	Command
RMAN	provides	the	configure	command,	which	allows	you	to	define	default	values	to	be
applied	when	executing	backup	and	recovery	sessions.	Using	the	configure	command,
you	can	make	changes	to	the	default	values	of	the	various	parameters	that	are	persistent
until	cleared	or	changed	again.	The	ability	to	customize	default	configuration	settings
allows	you	to	execute	automated	RMAN	operations.	The	following	are	several	of	the
different	settings	you	can	configure:

			A	default	device	type,	such	as	disk	or	SBT	(system	backup	tape),	to	use	for
RMAN	jobs.

			The	number	of	channels	that	are	automatically	allocated	when	performing
automated	backup	and	restore	jobs.

			A	tablespace	exclusion	policy	to	configure	specific	tablespaces	to	be	excluded
during	full	database	backup	operations.

			The	maximum	size	for	any	given	backup	piece	and	the	size	of	any	backup	set
when	doing	an	automated	backup.

			You	can	set	backup	optimization	to	default	to	ON	or	OFF.	Backup
optimization	eliminates	duplicate	backups	of	identical	datafiles	(for	example,	those
associated	with	read-only	tablespaces)	and	archived	redo	logs.

			The	default	filename	for	the	snapshot	control	file	(refer	to	Chapter	3	for	more
details	on	the	snapshot	control	file).

			The	default	setting	for	automated	backups	of	the	control	file	can	be	configured
either	ON	or	OFF.

			You	can	configure	the	default	format	for	the	control	file,	backup	output	files,
and	the	default	device	on	which	to	create	these	backups.

			The	default	filenames	for	files	of	an	auxiliary	database.

			A	default	retention	policy,	which	determines	which	backups	and	copies	are
eligible	for	deletion	because	they	are	no	longer	needed.

			The	default	encryption	value	and	the	associated	encryption	algorithm.

			The	default	compression	algorithm	to	use	if	compression	is	to	be	used.

			A	deletion	policy	for	archived	redo	logs.

Each	configurable	setting	has	a	default	value	assigned	to	it.	The	defaults	are	stored	in
the	database	control	file	(as	are	any	configured	values).	This	is	true	even	if	you	are
connecting	to	a	recovery	catalog.	You	can	see	the	currently	configured	values	for	the
various	RMAN	parameters	by	using	the	show	command.	Any	nondefault	RMAN-
configured	settings	are	also	listed	in	the	V$RMAN_CONFIGURATION	database	view.
Here	are	some	examples	of	the	show	command’s	use:

Configuring	Various	RMAN	Default	Settings
This	section	looks	at	setting	RMAN	defaults.	First,	let’s	look	at	configuration	of	channel
default	settings.	You	can	configure	channels	in	different	ways.	You	can	configure	defaults
for	all	channels	with	the	configure	channel	device	type	command,	or	configure	defaults
for	specific	default	channels	with	the	configure	channel	n	device	type	command.

You	can	clear	channel	defaults	for	all	channels	with	the	configure	channel	device	type
clear	command,	and	clear	channel	defaults	for	specific	default	channels	with	the
configure	channel	n	device	type	clear	command.	Note	that	you	can	only	clear	the	entire
configured	setting;	you	cannot	clear	a	parameter	within	a	setting.	Therefore,	a	command
like

(which	we	will	go	into	more	detail	on	shortly)	is	legal	because	it	clears	the	whole
configuration	and	resets	it	to	the	default.	On	the	other	hand,	a	command	like

is	not	valid	because	you	are	trying	to	clear	a	parameter	(backup	type)	of	the	device	type
configuration	rather	than	the	entire	configuration.

When	you	issue	the	configure	command,	Oracle	displays	the	previous	configuration
settings,	followed	by	the	new	configuration	setting.	Now,	let’s	look	at	some	of	the	ways
you	can	use	the	configure	command	to	automate	the	backup	and	restore	process	with
RMAN.

Examples	of	Using	the	configure	Command
This	section	presents	some	examples	of	using	the	configure	command	to	define	default
values.	In	this	section,	we	cover	a	number	of	topics	revolving	around	the	configure
command,	including	the	following:

			Configuring	channel	default	settings

			Configuring	backup	set–related	settings

			Configuring	RMAN	logging

			Using	the	format	string

			Configuring	default	automated	backups	of	the	control	file	and	the	SPFILE

			Configuring	default	retention	policies

			Configuring	default	levels	of	encryption

			Configuring	archive	log	deletion	policies

Configuring	Channel	Default	Settings
When	you	allocate	a	channel	with	the	allocate	channel	command,	you	can	specify	the
assigned	names	to	the	channels	you	allocate.	For	example,	the	allocate	channel	d1	device
type	disk	command	will	create	a	channel	called	d1.	When	automated	channels	are
allocated,	Oracle	assigns	default	names	to	these	channels.	These	default	names	depend	on
the	type	of	default	device	used.	The	following	table	provides	an	example	of	the	default
name	format	that	will	be	used:

The	number	of	channels	that	are	automatically	allocated	depends	on	the	default	level	of
parallelism	defined	(which	we	will	discuss	later	in	this	chapter).

The	nice	thing	about	configuring	things	in	RMAN	is	that	we	can	tell	RMAN	what	to	do
by	default	when	we	issue	a	command.	For	example,	we	can	configure	RMAN	to	always
do	a	backup	to	disk	or	to	do	a	backup	to	an	SBT	device.	This	seems	like	a	pretty	basic
configuration	setup,	and	it	is.	In	this	case,	we	use	the	configure	command	to	cause	the
channels	that	will	be	allocated	during	a	RMAN	backup	to	be	allocated	to	disk:

Keep	in	mind	that	we	are	setting	defaults	here.	When	default	device	types	are
configured,	Oracle	will	use	that	default	channel	unless	you	override	the	default	using	the
backup	command	with	the	device	type	parameter,	or	if	you	use	the	allocate	channel
command	within	a	run	block	(run	blocks	are	discussed	in	Chapter	7).	Maintenance
channels	for	delete	commands	and	auxiliary	channels	for	duplicate	operations	will	also
be	automatically	allocated.

Once	we	have	configured	a	default	device	type,	we	can	configure	defaults	for	the
specific	type	of	backup	that	should	occur	when	that	device	is	used.	For	example,	when
doing	backups	to	disk,	we	have	two	principal	options	on	how	the	backups	are	created.	We
can	opt	to	have	Oracle	back	up	the	database	by	default	using	the	standard	Oracle	backup
set/backup	set	piece	methodology	(see	Chapter	3),	or	we	can	have	it	default	to	using
image	copies,	also	called	mirrored	copies	(see	Chapter	3).	You	can	also	indicate	that
backup	sets	should	be	compressed	by	default	and	indicate	the	degree	of	parallelism	(which
represents	the	number	of	channels	that	will	be	allocated	for	that	backup).	Here	are
examples	of	configuring	for	these	different	options:

If	we	wanted	to	reset	these	device	configurations	to	the	default,	we	would	use	the

configure	device	type	command	with	the	clear	option,	as	shown	here:

Note	that	individual	parameters	of	a	given	configure	command	cannot	be	changed
using	the	clear	command.	For	example,	this	command	will	fail:

One	word	about	compression,	which	was	a	new	feature	of	RMAN	in	Oracle	Database
10g:	Compression	provides	real	compression	of	your	Oracle	backup	sets,	not	unlike	ZIP
compression.	This	can	make	your	backup	sets	much	smaller.	Of	course,	the	compression
itself	consumes	resources	and	will	make	the	backups	take	longer	to	complete	or	restore.

Now,	let’s	look	at	an	example	of	configuring	the	number	of	channels	to	be	allocated
during	an	automated	backup	or	recovery	operation.	Also,	in	this	example	we	have	set	the
default	level	of	parallelism	for	disk	operations	to	two.	Thus,	if	you	start	an	automated
backup,	two	channels	will	be	allocated	to	perform	the	backup	in	parallel.

NOTE

Generally,	you	should	set	the	default	level	of	parallelism	to	the	number	of	tape
drives	you	will	be	backing	up	to.	When	using	disks,	some	trial	and	error	might	be
called	for.	Because	disks	have	multiple	heads	and	may	be	stripped,	it	may	be	that
multiple	channels	will	result	in	better	throughput.	Test	parallelism	to	your	disks
and	act	accordingly	on	the	results.

Several	options	are	available	when	configuring	channels.	With	the	maxpiecesize
parameter,	you	can	control	the	size	of	a	backup	set	piece.	You	can	control	the	maximum
number	of	files	that	RMAN	can	open	at	one	time	with	the	maxopenfiles	parameter.	The
rate	parameter	allows	you	to	throttle	RMAN	and	to	control	the	rate	at	which	a	backup
occurs	in	bytes,	kilobytes,	megabytes,	or	gigabytes	per	second.

In	this	example,	we	put	all	these	options	to	use.	We	limit	channel	1	to	creating	each
individual	backup	piece	at	a	maximum	size	of	100MB,	and	we	limit	RMAN	to	opening	a
maximum	of	eight	files	on	this	channel.	Finally,	we	have	constrained	the	channel	such	that
it	cannot	have	a	throughput	of	more	than	100MB.

NOTE

Don’t	get	confused	about	the	difference	between	the	maxpiecesize	parameter

and	the	maxsetsize	parameter:	maxpiecesize	limits	the	size	of	the	individual
backup	set	pieces	and	has	no	impact	on	the	overall	cumulative	size	of	the	backup.
The	maxsetsize	parameter,	on	the	other	hand,	can	and	will	limit	the	overall	size	of
your	backup,	so	use	it	carefully!

If	we	had	wished	to	limit	all	channels,	we	could	have	issued	the	command	slightly
differently:

So,	why	might	we	want	to	change	the	maximum	size	that	a	given	backup	set	piece	can
be?	First,	we	might	have	some	specific	file	size	limitations	that	we	have	to	deal	with.
Tapes	can	only	handle	so	much	data,	and	some	disk	file	systems	have	limits	on	how	large
a	given	datafile	can	be.

We	might	also	want	to	set	a	tape	device	as	the	default	device	for	all	channels,	along
with	some	specific	parameter	settings.	In	this	case,	our	configure	command	might	look
like	this:

When	using	the	configure	command,	you	may	find	that	you	need	to	clear	a	given
configuration	so	that	you	can	use	the	default.	To	do	this,	use	the	configure	command	with
the	clear	option.	In	this	example,	we	are	clearing	out	the	default	options	set	for	default
channel	1:

Configuring	Backup	Set–Related	Settings
You	may	wish	to	configure	a	default	maximum	size	for	an	entire	backup	set,	in	which	case
you	would	use	this	slightly	modified	syntax	(it	is	followed	by	an	example	of	resetting	this
value	back	to	the	default,	which	is	unlimited):

CAUTION

Be	careful	when	using	maxsetsize	to	limit	the	size	of	the	entire	backup	that	is
being	created.	While	your	database	might	be	smaller	than	the	maxsetsize	defined
initially,	it	could	quickly	grow	beyond	the	maxsetsize,	causing	your	database
backups	to	fail.

As	you	will	see	in	later	chapters,	you	can	configure	the	backup	process	to	create
duplexed	backups;	in	other	words,	multiple	copies	of	the	backup	can	be	created	at
different	locations.	You	can	also	configure	database	default	settings	such	that	automatic
backups	will	be	duplexed	using	the	configure	command.	Here	is	an	example	where	we
have	defined	that	all	backups	to	disk	by	default	will	be	duplexed,	with	two	copies:

You	may	wish	to	exclude	specific	tablespaces	during	an	automated	backup,	which
Oracle	allows	you	to	do	with	the	configure	command.	Here	is	an	example	of	excluding	a
tablespace	by	default:

The	configure	command	allows	you	to	enable	or	disable	backup	optimization.	When
enabled,	backup	optimization	will	cause	Oracle	to	skip	backups	of	files	that	already	have
identical	backups	on	the	device	being	backed	up	to.	Here	is	an	example	of	configuring
backup	optimization:

Note	that	for	optimization	to	occur,	you	must	have	enabled	it.	In	addition,	you	must
issue	the	backup	database	or	backup	archivelog	command	with	the	like	or	all	option.
Alternatively,	you	can	use	the	backup	backupset	all	command	(more	information	on
these	types	of	backups	is	provided	in	later	chapters).	Finally,	you	can	disable	the	setting
for	backup	optimization	by	using	the	force	parameter	of	the	backup	command.

Configuring	RMAN	Logging
The	output	from	an	RMAN	operations	is	stored	in	two	views:	V$RMAN_OUTPUT,
which	is	sourced	from	the	control	file	of	the	database,	and	RC_RMAN_OUTPUT,	which
is	available	in	the	RMAN	recovery	catalog.	The	default	logging	period	is	seven	days.

In	Oracle	Database	12c,	you	can	indicate	how	long	you	wish	to	maintain	the	output
from	a	given	RMAN	session	by	using	the	configure	rman	output	to	keep	for	n	days
command.	In	this	case,	n	represents	in	integer	that	indicates	how	many	days	you	wish	to
keep	the	output.	You	can	disable	RMAN	logging	by	using	a	0,	in	which	case	no	logging
will	occur	by	default.	You	can	use	the	configure	rman	output	clear	command	to	reset
RMAN	logging	to	the	configured	default.

The	records	in	the	RMAN	V$	logging	view	won’t	disappear	immediately	when	you
reset	the	logging—even	beyond	the	default	seven-day	retention	period.	This	is	because
Oracle	does	not	clear	out	the	V$	view	until	it	reaches	the	end	of	the	space	allocated	in	the
control	file	for	those	records	(the	RC	view	is	cleared	immediately).	Only	then	are	the
records	deleted.	Therefore,	you	cannot	really	use	the	configure	rman	output	clear	to
“scrub”	the	data	from	the	V$RMAN_OUTPUT	view.	If	you	need	to	do	that	for	some
reason,	you	would	need	to	re-create	the	control	file.	That	seems	like	an	awful	lot	of	work.

Perhaps	a	better	option	to	clearing	the	circular	reuse	section	of	the	control	file	is	to	use
the	dbms_backup_restore.resetcfilesection	procedure.	For	example,	the	command	exec
sys.dbms_backup_restore.resetcfileSection(28)	will	remove	all	job-related	entries	from
the	control	file.	The	result	is	that	the	V$RMAN_BACKUP_JOB_DETAILS	view	will	be

emptied	until	the	next	RMAN	backup	is	executed.

Configuring	Snapshot	Control	File	Settings
We	discussed	the	snapshot	control	file	in	Chapter	2.	This	file	is	a	point-in-time	copy	of	the
database	control	file	that	is	taken	during	RMAN	backup	operations.	The	snapshot	control
file	ensures	that	the	backup	is	consistent	to	a	given	point	in	time.	Thus,	if	you	add	a
tablespace	or	datafile	to	a	database	after	the	backup	has	started	(assuming	an	online
backup,	of	course),	that	tablespace	or	datafile	will	not	be	included	in	the	backup.
Sometimes	it	is	desirable	to	have	RMAN	create	the	backup	control	file	in	a	location	other
than	the	default	location.	In	this	event,	you	can	use	the	configure	command	to	define	a
new	default	location	for	the	snapshot	control	file:

Note	that	Oracle	does	not	create	the	snapshot	control	file	in	the	FRA	even	if	the	FRA	is
configured.	Also	note	in	this	example	that	we	include	the	name	of	the	database	(or
database	instance	if	running	RAC)	to	ensure	the	snapshot	control	filenames	are	unique.

Using	the	Format	String
Note	in	previous	examples	that	in	several	places	we	defined	one	or	more	disk	locations
and	filename	formats.	This	is	known	as	the	format	string	specification.	You	will	see	the
format	string	specification	used	a	great	deal	in	this	book,	and	you	will	often	use	it	when
working	with	RMAN	unless	you	are	using	the	FRA.	The	FRA	uses	Oracle’s	own	file-
naming	conventions,	so	using	a	format	string	when	backing	up	to	the	FRA	is	not
recommended	or	required	(and	can	cause	problems	with	file	maintenance).	Because	the
FRA	is	the	default	location	for	backups,	there	is	no	need	to	configure	a	backup	device	to
point	to	the	FRA.	You	may	need	to	configure	channels	for	other	reasons,	but	do	not
configure	them	such	that	they	have	a	format	string	pointing	to	the	FRA.

The	format	string	is	platform	independent	(though	directory	structures	will	be	platform
specific).	A	format	string	on	Windows	will	look	pretty	much	the	same	on	Unix	or	on	any
other	platform.	For	example,	if	we	were	using	a	Unix	system,	our	format	string	might	look
like	this:

NOTE

Oracle	will	not	manage	your	backup	files	if	you	use	the	FORMAT	parameter,
even	if	you	are	backing	up	to	the	FRA,	because	the	backup	is	not	managed	by
Oracle.	If	the	FORMAT	parameter	is	used,	the	retention	policy	will	not	apply	to
those	backups.	If	FORMAT	is	not	used,	OMF	names	are	used,	and	the	files	are

created	in	the	FRA.	Do	not	use	the	FORMAT	option	when	backing	up	to	the	FRA.

The	format	string	is	used	a	lot	in	the	configure	command.	You	will	also	see	it	in	other
RMAN	commands	such	as	the	backup,	restore,	and	allocate	channel	commands.	RMAN
offers	several	syntax	elements	associated	with	the	format	string	specification.	These
elements	are	placeholders	that	will	cause	RMAN	to	replace	the	format	string	with	the
associated	defined	values.	For	example,	the	%U	syntax	element	in	the	previous	example
tells	RMAN	to	substitute	a	system-generated	unique	identifier	for	the	filename.	%U	then
keeps	each	backup	filename	unique.	Table	5-4	lists	the	valid	syntax	elements	and	gives	a
quick	description	of	their	use.

TABLE	5-4.			Format	String	Specification	Descriptions

Configuring	Default	Automated	Backups	of	the	Control	File	and	the
SPFILE
RMAN	in	Oracle	Database	10g	and	later	offers	the	ability	to	back	up	the	control	file	and
the	database	parameter	file,	and	you	can	configure	these	backups	to	take	place	by	default.
You	should	always	configure	control	file	autobackups	if	you	are	not	using	a	recovery
catalog	(and	really	even	if	you	are	using	one).	In	fact,	this	configuration	is	considered	so
important	that	in	Oracle	Database	12c	control	file	backups	are	enabled	by	default	when
backing	up	a	CDB	database.	Control	file	backups	are	not	enabled	when	backing	up	a	non-
CDB	database.

Again,	you	can	use	the	configure	command	to	configure	this	automated	backup
process	to	happen	automatically	during	a	backup.	Here	is	an	example	of	configuring
automated	backups	of	these	important	database	files	and	an	example	of	turning	off	the
default	configuration:

In	Oracle	Database	12c,	when	autobackup	of	the	control	and	parameter	files	is
configured,	the	following	rules	apply:

			The	control	file	and	SPFILE	will	be	automatically	backed	up	with	each
RMAN	backup	or	copy	command	issued.

			If	a	run	block	is	used,	then	the	control	files	and	SPFILE	will	be	backed	up	at
the	end	of	the	run	block	unless	the	last	command	in	the	run	block	is	a	backup
command	or	a	copy	command.

			If	the	database	is	in	ARCHIVELOG	mode,	a	control	file	autobackup	will
occur	after	any	structural	change	occurs.	This	backup	will	always	be	to	disk.	You
can	use	the	command	configure	controlfile	autobackup	for	device	type	disk	to
indicate	a	nondefault	disk	location	for	the	control	file	autobackup.	Here	is	an
example	of	the	use	of	this	specific	command:

Control	file	autobackups	deserve	a	bit	more	mention.	Control	file	autobackups	will
back	up	the	database	control	file	and	the	server	parameter	file	each	time.	During	a	backup
operation,	the	first	channel	that	was	allocated	will	be	the	one	that	writes	the	control	file
autobackup	during	a	backup.	Also,	the	Oracle	RDBMS	will	automatically	back	up	the
control	file	during	database	structure	changes	that	impact	the	control	file.	These	changes
might	include	adding	a	new	tablespace,	altering	the	state	of	a	tablespace	or	datafile	(for
example,	bringing	it	online),	adding	a	new	online	redo	log,	renaming	a	file,	adding	a	new
redo	thread,	and	so	forth.

Control	file	autobackups	(those	related	to	the	automatic	backup	of	the	control	file	after
database	changes	are	made—not	control	file	autobackups	as	a	part	of	an	RMAN
operation)	can	only	be	to	disk,	because	tape	is	not	supported.	These	backups	can	get	a	bit
large	(since	the	control	file	contains	a	history	of	many	of	the	past	backups),	so	make	sure

you	allocate	enough	disk	space	to	the	backup	directory.	In	spite	of	the	additional	space
that	will	be	required,	these	backups	can	be	incredibly	handy	to	have	for	recovery.	Finally,
be	aware	that	if	the	backup	fails	for	any	reason,	the	database	operation	itself	will	not	fail.

Note	that	starting	in	Oracle	Database	11gR2	that	the	write	of	the	automatic	control	file
backups	does	not	occur	immediately.	Since	it’s	likely	that	more	than	one	structural	change
could	happen	within	a	given	period	of	time	(for	example,	the	creation	of	three	tablespaces
within	just	a	few	moments	to	accommodate	new	partitions),	Oracle	does	not	write	a
backup	control	file	for	each	atomic	operation.	Rather,	it	will	write	the	control	file
autobackup	after	a	few	minutes,	writing	just	one	control	file	autobackup	rather	than
several,	which	can	consume	a	large	amount	of	disk	space.

Also,	in	previous	versions	of	the	database,	messages	related	to	control	file	autobackups
would	be	stored	in	the	alert	log	of	the	database.	In	Oracle	Database	12c,	control	file
autobackup	messages	are	now	stored	in	the	trace	file	of	one	of	the	MMON	background
slave	processes	(Mmmm	processes).

NOTE

You	need	to	know	the	DBID	of	the	database.	You	should,	as	a	part	of	your
initial	setup	and	configuration	of	RMAN,	note	the	DBIDs	of	the	databases	you
will	be	backing	up	and	save	that	list	somewhere	safe.	The	DBID	of	the	database	is
available	from	the	V$DATABASE	view	in	the	DBID	column.	The	DBID	of	the
database	is	also	displayed	when	you	start	RMAN	and	connect	to	a	target
database.	It’s	possible	to	figure	out	the	DBID	of	a	database	by	looking	at	the
backup	set	piece	filename,	though.	We	will	discuss	that	in	more	detail	in	Chapter
8.

Configuring	Default	Retention	Policies
So,	how	long	do	you	want	to	keep	your	database	backups?	RMAN	enables	you	to
configure	a	backup	retention	policy	by	using	the	configure	retention	policy	command.	If
you	configure	a	retention	policy	and	are	using	the	FRA,	then	RMAN	and	Oracle	will
automatically	remove	backups	when	they	become	obsolete.	If	you	are	not	using	the	FRA,
configuring	a	retention	policy	will	not	cause	backups	to	be	deleted	automatically,	but	will
cause	expired	backup	sets	to	appear	when	the	report	obsolete	command	is	executed.	See
Chapter	12	for	more	on	report	obsolete.

There	are	really	three	kinds	of	retention	policies	in	Oracle:	recovery	window	based,
redundancy	based,	and	none.	Let’s	look	at	each	of	these	in	more	detail	next.

Recovery	Window–Based	Retention	Policies			The	recovery	window–based	retention
policy	is	designed	to	ensure	that	your	database	can	be	recovered	to	a	specific	point	in	time.
For	example,	if	you	wanted	to	make	sure	you	can	recover	your	database	back	to	any	point
in	time	up	to	three	days	ago	(assuming	you	were	running	in	ARCHIVELOG	mode,	of
course),	you	would	set	a	recovery	window–based	retention	policy	of	three	days.	The

command	to	configure	such	a	retention	policy	would	be	as	follows:

Note	that	the	recovery	window–based	retention	criteria	can	result	in	backups	actually
being	maintained	longer	than	the	stated	recovery	window.	For	example,	if	your	recovery
window	is	three	days,	but	your	last	full	backup	was	five	days	ago,	then	that	backup	will
remain	valid	until	it	is	no	longer	needed	to	restore	your	database.	Even	if	you	back	up
your	database	today,	five	days	later,	the	backup	that	is	five	days	ago	is	still	needed	because
it	is	the	only	source	of	recovery	back	to	day	3.	Figure	5-2	provides	a	graphical
demonstration	of	this.

FIGURE	5-2.			Recovery	window	maintaining	older	backups

Now	that	we	have	configured	our	retention	policy,	let’s	see	which	previous	backups	are
reported	to	be	obsolete:

In	this	example,	we	have	two	backup	sets	and	two	related	backup	pieces	that	are
obsolete	based	on	our	backup	retention	policy.	Additionally,	we	have	an	archived	redo	log
that	is	ready	to	be	removed	as	well.	If	these	backups	are	in	a	defined	FRA	(which	these
are),	Oracle	will	remove	them	as	required.	If	you	are	not	using	an	FRA,	or	if	these
backups	were	created	before	you	converted	to	using	an	FRA,	you	will	need	to	use	the
delete	obsolete	command	to	remove	them.	More	information	on	the	delete	obsolete
command	can	be	found	in	Chapter	12,	and	an	example	is	provided	here,	too:

Note	in	the	preceding	example	that	the	system	will	ask	you	to	confirm	that	you	really
want	to	remove	the	objects	that	are	slated	to	be	removed.	If	any	of	the	listed	objects	are
not	available	to	be	removed,	you	will	need	to	run	the	crosscheck	command	(discussed	in
Chapter	11).	Otherwise,	each	item	listed	as	deleted	in	the	delete	obsolete	output	will	be
deleted	by	Oracle.

Redundancy-Based	Retention	Policies	This	kind	of	retention	policy	is	based	on	the	total
number	of	backups	maintained	by	RMAN	and	is	more	typically	used	if	you	are	backing	up
your	database	infrequently.	This	is	the	default	retention	policy,	with	a	default	value	of	1.	If
you	were	to	set	this	value	to	3,	Oracle	would	consider	the	last	three	backups	as	current,
and	any	other	backups	would	be	considered	obsolete.	Here	is	an	example	of	configuring	a
redundancy	retention	policy	of	3:

Note	in	the	output	that	RMAN	displays	both	the	old	and	new	settings	for	the	retention
policy.

No	Retention	Policy	If	you	want	to	disable	the	retention	policy,	you	use	the	command
configure	retention	policy	to	none,	and	no	retention	policy	will	be	applicable.	Use	the
configure	retention	policy	clear	command	to	reset	the	retention	policy	to	the	default
value,	which	is	a	redundancy	of	1.

NOTE

If	you	are	using	a	tape	management	system,	it	may	have	its	own	retention
policy.	If	the	tape	management	system’s	retention	policy	conflicts	with	the	backup
retention	policy	you	have	defined	in	RMAN,	the	tape	management	system’s
retention	policy	will	take	precedence,	and	your	ability	to	recover	a	backup	will	be
in	jeopardy.

Configuring	Default	Levels	of	Encryption
RMAN	can	create	encrypted	backups	starting	with	Oracle	Database	10g	Release	2.	During
the	backup,	the	backup	sets	are	encrypted	as	they	are	created.	When	the	backups	are
restored,	Oracle	will	decrypt	the	backup	sets.	In	this	section,	we	discuss	the	different
modes	of	encryption	that	are	available	when	doing	RMAN	backups.	Then	we	will	look	at
how	to	configure	RMAN	so	that	it	can	use	encryption.

Modes	of	Encryption			Oracle	offers	three	different	encryption	modes:

			Transparent	mode			Transparent	mode	encryption	(TDE)	requires	no	DBA
interaction.	To	use	this	mode,	you	must	have	configured	the	Oracle	Encryption
Wallet.

			Password	mode			Password	mode	encryption	requires	that	a	password	be
supplied	when	creating	backups	to	be	encrypted	or	when	restoring	backups	that
were	encrypted	when	they	were	created.	The	password	is	supplied	by	using	the
command	set	encryption	on	identified	by	password	only	in	your	RMAN	backup
scripts.	This	is	the	encryption	mode	we	will	use	in	this	text.

			Dual	mode			Dual	mode	backups	can	be	restored	either	by	password	or	by	the
presence	of	the	Oracle	Encryption	Wallet.	This	makes	offsite	restores	of	backups
easier	because	the	install	of	the	Oracle	Encryption	Wallet	is	not	required.	To	create	a
dual	mode	encrypted	backup,	you	use	the	set	encryption	on	identified	by
password	command	(note	that	the	only	keyword	is	missing).

Oracle	Database	12c	supports	encryption	for	either	an	entire	nonmultitenant	database
or	individual	PDBs.	Additionally,	you	can	choose	to	encrypt	specific	tablespaces	at	the
database,	CDB,	or	PDB	level.	Note	that	as	of	Oracle	12.1.0.2,	there	is	no	way	to	encrypt	a
specific	PDB	except	at	the	tablespace	level	of	that	PDB.	If	you	are	using	a	later	version	of
RMAN	and	you	are	using	CDB/PDBs,	you	might	want	to	check	whether	anything	with
respect	to	support	for	encryption	has	been	added.

Use	the	configure	command	to	configure	various	persistent	settings	related	to	RMAN
encryption	of	backups.	You	can	use	the	RMAN	configure	command	to	indicate	the
following:

			Whether	all	database	files	should	be	encrypted

			Whether	specific	tablespaces	should	be	encrypted

			Which	of	the	available	encryption	algorithms	should	be	used	to	encrypt	your
backups

If	you	are	using	Oracle	Encryption	Wallet–based	security,	you	only	need	to	set	the

persistent	RMAN	settings	required	by	the	configure	command.	If	you	wish	to	use
password	mode	encryption	or	dual	mode	encryption,	you	need	to	configure	the	persistent
security	defaults	with	the	configure	command,	and	then	use	the	set	command	when
starting	your	backups	to	set	the	correct	password	for	the	backup.	RMAN	does	not
persistently	set	the	backup	password,	so	it	must	be	entered	for	each	RMAN	backup	or
recovery	session.	The	set	command,	and	how	to	use	it	during	backups,	is	covered	in	much
more	detail	in	Chapter	9.	In	the	following	command,	we	configure	and	enable	backup
encryption	for	the	entire	database.	Notice	that	if	we	have	not	configured	the	Oracle
Encryption	Wallet,	any	subsequent	backups	will	fail	unless	we	use	the	set	command	to
establish	an	encryption	password	for	the	session	(we	are	jumping	the	gun	just	a	bit,	but	we
provide	an	example	of	using	the	set	command	to	set	the	backup	password	in	the
appropriate	context).

Archived	redo	log	backups	are	backed	up	using	encryption	if	the	following	are	true:

			The	set	encryption	on	command	is	in	effect	at	the	time	that	the	backup	of	the
archived	redo	logs	is	occurring.

			Encryption	has	been	configured	for	the	entire	database,	or	for	at	least	one
tablespace	of	the	database.

The	configure	command	also	provides	the	ability	to	determine	the	encryption
algorithm	you	wish	to	use.	The	available	algorithms	can	be	seen	in	the
V$RMAN_ENCRYPTION_ALGORITHMS	view,	as	shown	in	this	example:

Knowing	the	algorithms	available,	we	can	now	configure	the	default	encryption
algorithm	we	want	to	use,	as	shown	here:

You	can	also	configure	encryption	for	the	database	as	a	whole	(including	any	PDBs	if
you	are	using	Oracle	Multitenant)	or	specific	tablespaces	within	the	backup	by	using	the
configure	command	with	the	encrypt	for	tablespace	option.	You	can	encrypt	tablespaces
in	a	non-CDB	or	a	tablespace	in	the	root	container	in	a	CDB	using	this	method.	Here	is	an
example	of	configuring	encryption	for	the	entire	database	and	then	turning	encryption	off:

If	you	wish	to	configure	a	specific	tablespace,	use	the	following:

If	you	are	using	Oracle	Multitenant,	you	can	configure	encryption	for	a	tablespace	in	a
PDB.	In	this	example,	we	encrypt	the	tablespace	users	in	the	PDB	plug_test:

Simply	repeat	these	commands	using	the	off	keyword	instead	of	on	to	turn	off
encryption.	You	can	also	use	the	clear	keyword	to	reset	the	configuration	to	its	default.

NOTE

RMAN	does	not	back	up	any	of	the	keystores	(such	as	the	auto-open	wallet	or
the	encryption	keystores).	You	will	need	to	back	these	up	with	your	OS-based
backup,	which	should	be	used	to	back	up	the	OS,	all	ORACLE_HOME
directories,	and	any	other	critical	directories	that	contain	configuration	files.

If	you	are	using	TDE,	you	will	have	to	ensure	that	the	wallet	is	open	before	executing
your	backups;	otherwise,	the	backup	will	fail.	Oracle	Database	12c	provides	for	auto-login
wallets,	which	eliminate	the	requirement	of	opening	the	wallet	when	opening	the	database
or	backing	it	up.	If	you	are	using	an	auto-login	wallet,	you	do	not	need	to	worry	about
opening	the	wallet	before	doing	a	backup	or	a	restore.	The	wallet	should	already	be
opened,	and	the	backup	or	recovery	should	be	normal.

We	are	often	asked	how	RMAN	treats	encrypted	data	during	a	backup.	The	following
table	provides	you	with	information	on	the	different	possibilities:

Configuring	Archive	Log	Deletion	Policies
You	can	configure	RMAN	to	manage	your	archived	redo	log	deletion	policy	for	you.	By
default,	Oracle	applies	the	configured	backup	retention	policy	to	the	archived	redo	logs.	In
Oracle	Database,	you	can	also	configure	a	separate	deletion	policy	for	archived	redo	logs.
This	policy	will	get	applied	to	archived	redo	logs	in	both	the	FRA	and	in	those	stored
outside	the	FRA.	Only	those	in	the	FRA	will	be	removed	by	Oracle,	however.	If	logs	are
in	the	FRA,	Oracle	will	try	to	keep	them	as	long	as	possible,	only	removing	them	when
additional	space	is	required.	If	you	are	using	a	non-FRA	location,	you	will	need	to	use	the
delete	obsolete	or	delete	archivelog	command	to	remove	archived	redo	logs	marked	as
obsolete.	In	this	example,	we	use	the	configure	command	to	configure	an	archive	log
deletion	policy.	In	this	case,	all	archived	redo	logs	that	are	backed	up	three	times	will	be
eligible	for	removal:

In	versions	of	Oracle	before	Oracle	Database	11g,	the	archived	redo	log	deletion	policy
applied	only	to	archived	redo	logs	being	applied	on	a	standby	database.	In	these	versions,
you	could	configure	RMAN	to	mark	archived	redo	logs	as	eligible	for	removal	after	they
have	been	applied	to	a	mandatory	standby	database	by	using	the	configure	archivelog
deletion	policy	to	applied	on	standby	command.	In	this	case,	once	the	archived	redo	log
has	been	successfully	applied	to	a	mandatory	standby	database	location,	it	is	eligible	for

removal	from	the	FRA	by	Oracle.	This	functionality	remains	in	Oracle	Database	11g	and
later.

One	thing	to	mention	about	archived	redo	logs	and	container	databases:	RMAN-
archived	redo	log	operations	on	a	CDB	database	need	to	be	done	in	the	root	container.	If
you	try	to	back	up	archived	redo	logs	from	within	a	PDB,	for	example,	that	backup	job
will	fail.

If	You	Are	Using	Shared	Servers
If	you	are	using	Oracle’s	Shared	Servers	option	(known	as	Multi-Threaded	Server,	or
MTS,	in	previous	Oracle	versions),	you	have	to	configure	a	dedicated	server	for	use	with
RMAN	because	RMAN	cannot	use	a	Shared	Servers	session	to	connect	to	the	database.	If
you	are	using	a	Shared	Servers	architecture,	refer	to	Chapter	5	of	the	Oracle	Database
Backup	and	Recovery	Advanced	Users	Guide	(11g	Release	2)	for	more	information	on
how	to	configure	RMAN	for	use	with	the	Oracle	Database	Shared	Servers	option.

Essentially,	you	must	configure	a	dedicated	connection	in	Oracle	Net	for	your	server	by
using	the	SERVER=dedicated	syntax,	as	shown	in	this	example	(note	that	Oracle	Net
configurations	vary	greatly,	so	what	may	be	required	of	you	might	differ):

Summary	of	RMAN	Configuration	Tasks
We	have	thrown	a	great	deal	of	information	at	you	in	this	chapter.	With	the	introduction	of
Oracle	Multitenant,	the	RMAN	picture	can	get	even	more	murky	at	times.

To	try	to	help	you	filter	through	all	we	have	discussed	in	this	chapter,	we	thought	it
would	be	good	to	summarize	the	main	tasks	you	will	need	to	perform	to	get	set	up	to	do
database	backups	with	RMAN.	We	also	provide	a	few	suggestions	along	the	way.	Each	of
the	steps	listed	here	has	detailed	instructions	included	earlier	in	this	chapter:

1.			Determine	whether	you	wish	to	run	the	database	in	ARCHIVELOG	mode	or
NOARCHIVELOG	mode.	Configure	the	database	accordingly.	In	most	cases,	we
would	recommend	ARCHIVELOG	mode	because	it	provides	a	large	number	of
recovery	options.

2.			Create	a	recovery	catalog	(see	Chapter	6).

3.			Configure	and	use	the	FRA.

4.			Set	up	a	separate	database	user	account	(not	sys)	for	use	with	RMAN.	Assign
this	account	SYSBACKUP	privileges	if	you	are	running	Oracle	Database	12c;
otherwise,	you	will	need	to	provide	the	account	with	SYSDBA	privileges.

5.			In	the	database	parameter	file,	set	the
CONTROL_FILE_RECORD_KEEP_TIME	parameter	to	a	number	of	days

equivalent	to	or	greater	than	the	number	of	days	you	wish	to	ensure	that	RMAN-
related	backup	metadata	is	stored	in	the	database	control	file.

6.			Configure	the	retention	criteria	for	your	FRA.

7.			If	you	are	backing	up	to	tape,	make	sure	you	coordinate	your	backup-
retention	criteria	with	your	tape	administrators.

8.			If	you	are	using	shared	servers,	set	up	a	dedicated	server	address	for	RMAN
to	connect	to.

9.			Using	RMAN,	connect	to	the	target	database	to	ensure	that	the	database	is	set
up	correctly	(error	messages	will	appear	if	your	RMAN	account	is	not	correctly	set
up).

10.			Use	the	configure	command	to	establish	your	default	RMAN	values.	In
particular,	consider	configuring	the	following:

			Configure	the	default	degree	of	parallelism	for	tape	or	disk	backups.	Set	it
to	a	default	value	equivalent	to	the	number	of	disks	or	tape	drives	you	will	be
backing	up	to.	If	you	are	backing	up	to	a	SAN	with	many	disk	drives,	consider
using	parallel	channels	to	back	up	to	those	disk	devices.

			If	you	are	using	Oracle	Real	Application	Clusters,	make	sure	you
configure	channels	in	a	way	that	you	can	take	advantage	of	the	CPUs	on	the
database	nodes	of	the	clusters.	See	Chapter	18	for	more	detailed	information	on
using	RMAN	with	RAC.

			Configure	automatic	channels	and	device	types.	The	number	of	channels
you	configure	should	equal	the	degree	of	parallelism	you	have	configured.
Configure	as	many	channels	as	you	have	individual	devices,	and	configure	the
same	number	of	channels	as	you	have.

			Configure	automated	control	file/database	parameter	file	autobackups	if
they	are	not	already	configured	by	default	(for	the	CDB	of	a	multitenant
database).

			If	you	own	ASO	(Advanced	Security	Option,	which	is	the	license	required
to	use	encryption),	configure	an	auto-open	wallet	to	make	RMAN	backups	on
encrypted	tablespaces	easier	to	perform.

11.			Configure	the	retention	policy	as	required.	Make	sure	this	retention	policy
is	in	sync	with	any	other	retention	policies,	such	as	those	associated	with	tape
management	systems.	Also,	if	required,	consider	retention	criteria	for	your
archived	redo	logs.

12.			Configure	RMAN	for	control	file	and	SPFILE	automatic	backups.

13.			Before	you	use	it	for	production	database	backups,	test	your	RMAN
configuration	by	doing	a	backup	and	recovery,	as	demonstrated	in	later	chapters.

Other	Backup	and	Recovery	Setup	and

Configuration	Considerations
Finally,	let’s	consider	the	other	backup	and	recovery	implications	of	your	database.
RMAN	will	not	back	up	certain	things	that	you	need	to	consider	as	a	part	of	your	overall
backup	and	recovery	strategy	planning.	These	include	such	things	as	the	base	Oracle
RDBMS	software	and	the	parameter	files	(tnsnames.ora,	names.ora,	sqlnet.ora,	and	so	on).
You	need	to	make	plans	to	back	up	and	recover	these	files	as	a	part	of	your	overall	backup
and	recovery	planning.

You	also	need	to	consider	your	disaster	planning	with	regard	to	RMAN	and	non-
RMAN	backups.	How	will	you	protect	these	backups	from	flood,	fire,	and	earthquake?	In
advance	is	a	very	good	time	to	consider	these	questions,	not	when	the	fire	is	burning	two
flights	below!

Finally,	Chapter	15	provides	a	good	overall	architectural	discussion	on	implementing
RMAN	backup	and	recovery	in	the	enterprise.	This	chapter	provided	guidance,	best
practices,	and	recommendations	that	you	will	want	to	consider	when	architecting	your
enterprise	backup	solution.	Remember	that	the	best	solutions	are	the	ones	that	scale	easily.
In	Chapter	15	we	try	to	help	you	pull	your	backup	and	recovery	architecture	together	into
a	single,	scalable,	backup	and	recovery	solution	that	requires	minimal	care	and	feeding.

Summary
Whew!	We	have	covered	a	great	deal	of	ground	in	this	chapter,	and,	indeed,	there	are
several	things	you	need	to	do	before	you	start	using	RMAN.	First,	we	described	how	to	set
up	the	database	in	ARCHIVELOG	mode,	if	that	is	what	you	wish	to	do.	Next,	we	looked
at	the	RMAN	command	line	and	at	how	to	configure	your	database	for	use	with	RMAN,
including	setting	up	the	password	file	and	configuring	a	user	account	for	use	with	RMAN.
We	also	looked	at	configuring	RMAN	default	settings.	We	strongly	suggest	you	take
advantage	of	this	feature	in	RMAN,	because	it	can	make	your	life	much	easier.	Finally,	we
provided	you	with	a	summary	of	RMAN	configuration	tasks	and	talked	about	other
backup	and	recovery	considerations.

CHAPTER
6

The	RMAN	Recovery	Catalog

O
racle	maintains	all	the	metadata	related	to	RMAN	operations	in	the	RMAN	repository
RMAN	repository	is	always	stored	in	the	control	file	of	the	target	databases.
However,	in	most	cases	we	will	also	want	to	store	this	metadata	in	a	database.
The	name	of	the	database	where	we	store	RMAN-related	metadata	is	called	the
RMAN	recovery	catalog.

RMAN	does	not	require	the	recovery	catalog	for	most	operations.	There	are	a	few
operations	that	the	recovery	catalog	makes	easier,	and	there	are	very	few	things	that
require	a	recovery	catalog	(such	as	cases	where	you	want	to	store	backups	for	more	than	a
year).	Because	the	recovery	catalog	serves	as	a	central	repository	for	all	RMAN	metadata,
it	is	an	enterprise-based	solution,	as	opposed	to	you	having	to	access	each	individual
control	file	for	each	database	in	your	environment.

In	this	section,	first	we	look	at	what	the	recovery	catalog	is	and	when	you	need	to	use
it.	Then,	we	look	at	how	you	create	a	recovery	catalog	both	in	a	nonmultitenant
environment	and	an	Oracle	Multitenant	environment.	We	discuss	various	administrative
activities	related	to	the	recovery	catalog	such	as	registering	databases,	upgrading	catalogs,
and	merging	catalogs.	We	also	look	at	the	RMAN	virtual	recovery	catalog,	stored	scripts,
and	other	recovery	catalog–related	features.	So,	let’s	get	going!

What	Is	the	Recovery	Catalog?
The	recovery	catalog	is	an	optional	component	of	RMAN	that	stores	historical	backup
information	from	RMAN	backups.	Unlike	the	database	control	file’s	RMAN	information,
the	recovery	catalog	data	is	not	purged	on	a	regular	basis.	Therefore,	the	RMAN	metadata
in	the	recovery	catalog	tends	to	be	more	comprehensive	and	to	date	further	back	than	the
historical	information	in	the	control	file.	Using	a	recovery	catalog	does	have	a	few
additional	benefits	over	just	using	the	database	control	file:

			You	must	use	a	recovery	catalog	if	you	want	to	use	stored	RMAN	scripts.

			You	want	to	use	the	keep	forever	option	when	performing	an	RMAN	backup.

			You	must	use	a	recovery	catalog	if	you	are	using	one	or	more	standby
databases.

			You	must	use	a	recovery	catalog	if	you	are	using	a	split-mirror	backup	model.

			A	recovery	catalog	offers	a	single,	enterprise-wide	repository	of	RMAN
information.	This	provides	an	easier	and	more	flexible	central	repository	of
enterprise	backup	information.

			A	recovery	catalog	allows	more	flexibility	when	you	are	doing	reporting
because	you	can	report	on	the	target	database	at	a	time	other	than	the	current	time.

			With	a	recovery	catalog,	certain	default	database	RMAN	channel
configuration	information	will	still	be	maintained	without	you	needing	to	manually
recover	it	in	the	event	of	a	control	file	failure.

If	you	are	an	old	hand	at	RMAN,	you	may	have	noticed	some	bulleted	items	missing
here.	First,	since	version	10g,	Oracle	Database	has	easily	supported	recovery	through

resetlogs	without	a	recovery	catalog.	Also,	if	you	are	using	control	file	autobackups
(which	we	strongly	suggest),	the	need	for	a	recovery	catalog	for	control	file	recoveries	is
pretty	much	removed.

NOTE

If	you	are	not	going	to	use	a	recovery	catalog,	keep	a	record	of	your	database
DBIDs.	Although	this	is	not	required	and	you	can	work	around	it,	having	the
DBIDs	for	your	databases	will	make	recovery	operations	much	easier.

Should	you	use	a	recovery	catalog?	What	are	the	best	practices	revolving	around	a
recovery	catalog?	Let	me	answer	the	first	question	with	a	resounding	yes.	Unless	you	are
only	managing	one	or	two	databases,	never	have	to	do	any	database	cloning,	and	are	a
master	of	the	RMAN	command	line,	it	would	be	considered	a	best	practice	to	use	a
recovery	catalog.	After	you	read	this	chapter,	it	should	be	pretty	obvious	why	that	is,	but
in	short	it	provides	an	easy	way	to	maintain	all	of	your	RMAN	backup	metadata.	It	adds
functionality	to	RMAN	that	is	not	normally	available.	A	recovery	catalog	also	eases	some
restore	operations	(like	control	files)	and	other	operations.	Although	RMAN	does	not
depend	on	a	recovery	catalog,	the	benefits	of	having	one	make	it	a	best	practice.

Of	course,	adding	a	recovery	catalog	means	adding	another	moving	part	to	the	whole
infrastructure.	Therefore,	it	does	add	a	certain	amount	of	risk	of	failure.	If	you	try	to
connect	to	a	recovery	catalog	and	the	network	is	down,	or	if	the	recovery	catalog	is	not
listed	in	whichever	Oracle	Net	naming	resolution	you	use	(such	as	tnsnames.ora),	then	the
attempt	to	connect	to	the	recovery	catalog	will	fail,	and	RMAN	will	generate	an	error	like
this	one:

If	you	create	the	recovery	catalog	user	(as	we	will	demonstrate	later	in	this	chapter)	and
do	not	proceed	to	create	the	recovery	catalog	schema	or	register	the	database	with	the
recovery	catalog,	then	an	interesting	thing	happens.	In	this	case,	RMAN	will	connect	to
the	recovery	catalog	just	fine,	but	when	you	try	to	start	the	backup,	the	backup	will	fail,
indicating	that	the	recovery	catalog	schema	does	not	exist,	as	shown	in	this	example:

So	in	this	case,	the	login	is	successful	and	the	failure	does	not	occur	until	you	attempt
an	RMAN	operation.	All	of	this	really	boils	down	to	another	best	practice,	and	that	is
monitoring	your	backups	and	making	sure	they	are	successful.	In	light	of	that	best
practice,	we	recommend	that	you	use	Oracle	Enterprise	Manager	Cloud	Control	to
schedule	and	monitor	all	of	your	backup	jobs.

Additionally,	a	recovery	catalog	is	an	essential	part	of	a	Data	Guard	backup
environment	and	split-mirror	backups.	In	these	configurations,	when	you	back	up	the
database	from	the	backup	host,	the	recovery	catalog	is	considered	the	most	current
information,	so	it	is	the	brains	behind	the	strategy	and	becomes	a	single	point	of	failure	if
not	maintained	properly.	The	bottom	line	is	that	you	need	to	decide	for	yourself	whether
your	environment	calls	for	a	recovery	catalog.

When	connecting	to	RMAN,	you	must	use	the	catalog	command-line	parameter	to
indicate	that	you	want	RMAN	to	connect	to	a	recovery	catalog.	By	default,	RMAN	uses
the	nocatalog	option,	which	indicates	that	a	recovery	catalog	will	not	be	used.	After	using
the	catalog	parameter,	indicate	the	user	ID	and	password	of	the	recovery	catalog	schema
that	contains	the	recovery	catalog	objects.	Here	is	an	example	of	connecting	to	the
recovery	catalog	by	using	the	RMAN	command	line:

This	method	works	when	connecting	to	a	recovery	catalog	in	a	regular	Oracle	database	or
if	the	recovery	catalog	is	in	a	PDB	of	a	multitenant	database.	Obviously,	we	need	a
recovery	catalog	user	to	which	we	can	connect,	so	let’s	address	that	next.

Creating	the	Recovery	Catalog	Owning	Schema	in	a
Nonmultitenant	Database
As	you	might	expect,	some	setup	is	required	before	we	can	actually	connect	to	the

recovery	catalog.	First,	we	need	to	create	the	recovery	catalog	user	and	grant	it	the
appropriate	privileges.	Then,	we	need	to	connect	to	it	and	create	the	recovery	catalog
schema	objects.	Let’s	look	at	each	of	these	steps	next.

Configuring	the	Database	for	the	Recovery	Catalog
The	recovery	catalog	database	should,	if	possible,	exist	on	its	own	database.	However,	in
our	experience,	many	sites	use	an	active	database	as	the	recovery	catalog	database,	which
is	fine	as	long	as	you	take	precautions	when	backing	up	that	database.

Oracle	makes	the	following	suggestions	with	regard	to	space	allocations	for	a	recovery
catalog	database	that	would	maintain	recovery	catalog	records	for	one	year:

Creating	the	Recovery	Catalog	User
Generally,	the	recovery	catalog	should	reside	in	its	own	database,	because	the	recovery
catalog	is	pretty	useless	if	it	is	in	the	same	database	you	are	trying	to	recover.

When	you	connect	to	a	recovery	catalog	from	RMAN,	you	will	not	use	the	SYSDBA	or
SYSBACKUP	privilege	during	that	connection.	Therefore,	the	recovery	catalog	schema
does	not	need	such	privileges.	Nor	does	it	need	the	sweeping	privileges	available	from	the
DBA	group.	The	only	privilege	that	is	really	needed	is	the
RECOVERY_CATALOG_OWNER	privilege.

The	following	RMAN	Workshop	provides	a	set	of	detailed	instructions	on	creating	the
recovery	catalog	user	account.

RMAN	Workshop:	Create	the	Recovery	Catalog	User
Account
Workshop	Notes
For	this	workshop,	you	need	an	installation	of	the	Oracle	software.	You	also	need	to
identify	a	database	in	which	to	create	the	recovery	catalog	schema.	You	need
administrative	privileges	in	this	database	to	create	the	recovery	catalog	user	account.
Finally,	determine	the	name	and	password	you	will	assign	to	the	recovery	catalog
user	account.	You	will	need	a	tablespace	for	the	recovery	catalog	schema	objects.
We	suggest	that	you	size	the	tablespace	at	about	30MB	to	start.	In	this	lab	we	use	a

tablespace	called	catalog.

Also,	we	use	an	account	called	dbadmin	to	create	the	recovery	catalog	owning
account.	Here	is	what	we	did	to	create	the	dbadmin	account:

And	here	is	how	we	created	the	catalog	tablespace:

Step	1.			Create	the	recovery	catalog	user.	In	this	step	we	log	into	the	database	using
the	dbadmin	account.	This	account	has	the	privileges	we	need	to	create	the	recovery
catalog	owner.	We	will	create	the	recovery	catalog	owner,	making	sure	to	assign	it	to
the	tablespace	CATALOG	that	we	created	earlier.

You	need	to	log	into	the	database	with	a	user	that	has	the	ability	to	create	other
users	and	has	the	ability	to	grant	the	role	RECOVERY_CATALOG_OWNER	to	the
schema	you	will	create.	When	creating	the	recovery	catalog	user,	make	sure	you	do
not	use	the	SYSTEM	tablespace	as	the	default	tablespace	for	that	user.	Hopefully,
you	have	already	identified	a	default	tablespace	for	your	database.	If	not,	now	would
be	a	good	time	to	do	so.

Assign	the	recovery	catalog	tablespace	that	you	have	created	(as	suggested	in
“Workshop	Notes”)	to	this	schema	as	its	default	tablespace.	Also,	assign	the
recovery	catalog	user	to	an	unlimited	quota	on	the	recovery	catalog	tablespace.	Here
is	an	example	of	this	operation	creating	a	catalog-owning	user	called	rcat_user.	We
logged	into	an	account	called	admin	after	setting	our	Oracle	environment	properly.
We	assume	that	the	admin	account	has	create	session	and	create	user	privileges.
Additionally,	it	needs	to	have	been	granted	the	role
RECOVERY_CATALOG_OWNER	with	admin	privileges.	Note	that	because	the
admin	account	has	been	granted	these	specific	privileges,	we	don’t	need	to	use
SYSDBA	to	connect	to	the	database:

Step	2.			Grant	the	recovery_catalog_owner	role	to	the	recovery	catalog	user,	as
shown	in	this	example,	where	we	grant	recovery_catalog_owner	to	the
RCAT_USER	user:

NOTE

The	recovery	catalog	user	account	is	somewhat	of	a	privileged	database
account.	Therefore,	secure	it	as	you	would	sys	or	system.

Creating	the	Recovery	Catalog–Owning	Schema	in	a
Multitenant	Database
With	Oracle	Database	12c	and	a	multitenant	database,	you	will	need	to	create	the	catalog-
owning	schema	differently	than	you	did	with	a	nonmultitenant	database.	The	differences
are	not	that	great,	but	you	should	make	sure	you	are	comfortable	with	the	basics	of	how
Oracle	Multitenant	works.	Chapter	4	provides	a	good	primer	on	Oracle	Multitenant
databases,	so	if	you	are	not	comfortable	with	the	concepts	associated	with	Oracle
Multitenant,	you	might	want	to	review	Chapter	4	before	you	proceed	through	this	next
section.

Creating	the	Recovery	Catalog	PDB
Before	we	can	create	the	RMAN	recovery	catalog	user,	we	need	to	create	the	PDB	that
will	own	the	recovery	catalog.	In	a	multitenant	database	we	create	a	PDB	specifically	for
the	recovery	catalog.	Just	as	having	a	database	in	a	nonmultitenant	environment	dedicated
to	the	recovery	catalog	is	important	and	considered	a	best	practice,	so	too	is	having	a	PDB
dedicated	to	the	recovery	catalog.

In	this	example	we	are	creating	a	recovery	catalog	PDB.	The	CDB	is	called	contdb,	and
we	will	create	a	PDB	within	that	CDB	called	rcatpdb.	Note	that	we	are	not	using	SYS
again	or	connecting	as	SYSDBA.	This	is	in	keeping	with	best	practices.	In	this	case	we
have	created	an	administrative	account	called	superman,	and	it	has	the	privileges	needed
to	create	a	PDB:

Exciting!	We	have	created	our	recovery	catalog	PDB	along	with	the	tablespace	we	need
to	create	our	recovery	catalog	schema.	Note	that	we	could	have	granted	the	robertadm	user
the	DBA	role	if	we	wanted	to.	The	syntax	is	included	here	but	commented	out,	in	keeping
with	best	practices.	We	want	the	robertadm	to	only	have	the	privileges	it	needs	to
administer	this	PDB.	We	will	talk	more	about	that	in	a	moment.

Let’s	discuss	the	create	pluggable	database	statement	for	a	moment.	Note	that	we
have	defined	an	admin	user	called	robertadm.	(Yes,	the	password	is	a	simple	one;	I	do	that
just	so	you	don’t	see	my	real	uber-complex	passwords.	You	should	always	use	complex
passwords	when	creating	user	accounts,	of	course!)	Note	the	roles=(dba)	syntax,	which
grants	the	DBA	role	to	the	robertadm	user	account.	If	we	didn’t	grant	him	that	role,	the
admin	user	would	not	be	able	to	do	anything	in	the	PDB.	So,	don’t	let	the	keyword	admin
user	fool	you—all	it’s	really	doing	is	creating	a	user	account.	Unless	you	grant	the	admin
user	a	role,	such	as	DBA,	you	won’t	be	able	to	connect	using	that	admin	user.	That	being
said,	you	will	still	be	able	to	connect	to	the	PDB	using	SYS,	and	then	you	can	grant
privileges	and	roles	to	the	admin	user	that	way.

It’s	a	best	practice	to	not	grant	the	admin	user	any	roles,	and	instead	log	in	after
creating	the	PDB	and	grant	the	admin	user	only	the	specific	privileges	it	needs.	Because
it’s	also	a	best	practice	to	not	log	into	a	PDB	or	a	CDB	using	sys,	you	should	grant	the
admin	user	sufficient	privileges	to	perform	the	administrative	functions	you	think	that	user
will	need	to	perform.	Functions	such	as	the	creation	of	a	user,	a	tablespace,	and	the	like
are	privileges	that	would	be	needed.	From	a	security	perspective,	the	best	practice	is	to
assign	the	user	the	least	number	of	privileges	needed.	That	might	take	some	trial	and	error,
but	it	beats	being	hacked	into	and	having	a	highly	privileged	user	account	being	abused.

Notice	that	when	we	created	the	PDB	we	also	created	a	tablespace	in	the	PDB	called
rcat.	This	is	the	tablespace	into	which	we	will	be	putting	our	recovery	catalog	objects.	It’s
just	kind	of	nice	to	go	ahead	and	create	it,	and	assign	it	as	the	default	tablespace,	when
you	create	the	PDB.

NOTE

We	could	also	have	connected	to	the	CDB	using	a	TNS	connection	string	like
this:

When	the	PDB	was	created,	a	service	was	created	for	that	PDB,	and	it	should	have
registered	with	the	listener.	You	will	still	need	to	configure	whatever	naming	resolution
method	you	are	using	(for	example,	tnsnames.ora)	so	that	the	new	service	will	be	reflected
in	it	and	you	can	connect	to	it.

Now	that	we	created	the	PDB,	we	should	go	ahead	and	grant	the	admin	user	the	roles	it
will	need	to	assign	to	the	recovery	catalog	user	we	will	create	shortly.	The	admin	user	will
need	the	following	grants	at	a	minimum:

			Create	user.

			Create	session.	(Technically	the	RECOVERY_CATALOG_OWNER	role	will
give	you	create	session	privileges,	but	I	like	to	explicitly	grant	it	anyway	in	the	case
of	admin	users.)

			A	grant	to	the	RECOVERY_CATALOG_OWNER	role	with	admin	privileges.

Here	is	an	example	of	granting	those	privileges	to	the	robertadm	account	in	the	newly
created	rcatpdb	PDB:

Notice	in	this	example	that	we	start	out	logged	into	the	root	of	the	CDB.	We	then	use
the	alter	session	command	to	make	the	rcatpdb	the	current	container.	The	reason	we	did
this	was	to	be	able	to	use	an	account	with	sufficient	privileges	to	issue	the	grants	that	we
need	to	issue	to	the	admin	user	of	the	PDB.	We	could	have	also	connected	directly	to	the
rcatpdb	PDB	as	the	sys	user	using	the	SYSDBA	privilege,	but	we	already	know	that	we
don’t	log	in	as	SYSDBA	unless	we	need	to	do	so.	We	then	grant	the	privileges	that	the
robertadm	account	will	need	in	the	rcatpdb	to	create	the	recovery	catalog	owner.

NOTE

When	we	connected	to	the	database	to	create	the	PDB,	we	did	not	use	the
SYSDBA	privilege.	This	is	because,	in	accordance	with	best	practices,	we	have
limited	the	rights	of	the	superman	user	to	only	the	specific	administrative
privileges	that	we	need	it	to	have	in	order	to	perform	most	normal	administrative
activities.	We	did	not	grant	that	user	the	SYSDBA	role.	In	fact,	it	was	not	even
granted	the	DBA	role.	This	is	the	application	of	least	privilege	in	action.

Creating	the	Recovery	Catalog	in	a	PDB	with	a	Local	User
Now	that	we	have	created	the	PDB	that	we	will	use	to	store	the	recovery	catalog	and

configured	the	admin	user	for	that	PDB,	we	need	to	create	a	user	that	will	own	the
recovery	catalog	schema.	We	can	choose	from	two	options	here:

			Creation	of	a	common	user

			Creation	of	a	local	user

If	you	are	not	sure	what	the	difference	between	the	two	user	types	is,	go	brush	up	on
the	topic	in	Chapter	4	real	quick	and	then	come	back.	We	will	wait	for	you.

The	best	practice	is	to	create	a	local	user	for	the	recovery	catalog	owner	in	the	PDB.	In
general	we	think	that	using	local	users	to	own	any	schema	in	a	PDB	is	a	best	practice.	We
also	think	that	the	proliferation	of	common	users	is	a	bad	practice	and	should	be	avoided.
Here	is	an	example	of	the	creation	of	a	local	user	and	granting	that	user	the	role	that	it
needs	to	create	the	recovery	catalog	called	RECOVERY_CATALOG_OWNER:

That	being	said,	there	may	be	a	case	for	the	use	of	a	common	user	when	dealing	with
the	recovery	catalog.	If	you	have	more	than	one	recovery	catalog	PDB,	it	might	make
sense	to	create	a	common	user	and	give	that	common	user	privileges	in	both	PDBs.	Of
course,	you	can	also	create	the	same	local	user	name	in	both	PDBs	and	kind	of	meet	the
same	goal.	The	benefit	you	get	with	the	common	user	is	that	you	only	need	to	remember
one	password,	rather	than	two,	three,	or	more—depending	on	how	many	recovery	catalogs
you	want	to	have.

The	creation	of	the	local	user	is	pretty	straightforward.	We	simply	log	into	the	PDB
using	an	administrative	account	that	has	the	privileges	to	create	users	and	grant	them	the
RECOVERY_CATALOG_OWNER	role.	Then	we	use	the	create	user	command	to	create
the	user	and	the	grant	command	to	grant	the	user	the	RECOVERY_CATALOG_OWNER
role.	The	RECOVERY_CATALOG_OWNER	role	includes	the	create	session	privilege,
so	we	don’t	need	to	grant	that	here.

Finally,	we	will	need	to	grant	our	user	unlimited	quota	(or	some	quota)	on	the	rcat
tablespace	so	that	it	can	create	objects	in	that	tablespace.	Here	is	an	example	of	doing	just
that,	where	the	PDB	is	called	rcat:

We	have	now	created	a	local	user	in	the	recovery	catalog	PDB	that	we	will	use	when
we	create	the	recovery	catalog	schema,	which	we	will	do	later	in	this	chapter.

Creating	the	Recovery	Catalog	in	a	PDB	with	a	Common	User
Creating	the	recovery	catalog	with	a	common	user	is	almost	the	same	as	creating	one	with
a	local	user.	In	this	case,	we	will	assume	the	rcatpdb	PDB	has	already	been	created,	as
demonstrated	earlier	in	this	chapter.	Once	the	PDB	is	created,	we	would	create	the
common	user	that	we	want	to	own	our	recovery	catalog	schema.	To	do	this,	we	need	to	log
into	the	root	of	the	CDB,	as	shown	here:

Once	we	are	logged	in,	we	will	create	the	common	user	c##backup_user,	as	shown	in
this	example:

This	creates	the	c##backup_user	in	the	root	of	the	CDB	and	in	all	of	the	connected
PDBs,	and	in	any	PDB	that	will	be	connected	to	the	CDB	later.	Even	though	this	common
user	is	present	in	all	of	the	PDBs,	it	does	not	have	any	privileges	in	any	of	those	PDBs,	or
the	root	PDB	for	that	matter.	We	need	to	give	this	common	user	the	privileges	required	to
be	the	owner	of	the	recovery	catalog	schema	in	the	rcatpdb	PDB.	To	do	this,	we	will
connect	to	the	CDB	with	a	user	that	has	administrative	privileges.	We	will	then	use	the
alter	system	command	to	connect	to	the	rcatpdb	PDB	and	then	issue	the	grants	required.
Finally,	we	will	alter	the	common	user	so	that	it	has	an	unlimited	quota	on	the	rcat
tablespace	where	we	will	be	creating	the	objects:

Note	that	the	use	of	the	container=current	clause	is	pretty	much	optional	because	it’s
the	default	setting,	and	in	fact	the	only	valid	option	when	connected	to	a	PDB.	Still,	it’s	a
good	practice	to	put	it	in	there.

Creating	the	Recovery	Catalog	Schema	Objects
Now	that	you	have	created	the	recovery	catalog	database	(or	PDB)	and	user,	it’s	time	to
actually	create	the	recovery	catalog.	This	is	a	pretty	simple	process.	All	you	need	to	do	is
use	RMAN	and	the	catalog	parameter	to	connect	to	the	recovery	catalog	database	schema
using	the	username	and	password	you	just	created	to	manage	the	recovery	catalog.	If	you
are	using	a	catalog	in	a	PDB,	you	would	need	to	connect	to	that	database	using	the

database	service	name.

Once	you	have	connected	to	the	recovery	catalog,	you	then	issue	the	create	catalog
command.	Optionally,	you	can	use	the	tablespace	parameter	to	define	a	tablespace	in
which	to	create	the	RMAN	schema	objects.	The	next	RMAN	Workshop	provides	an
example	of	using	the	create	catalog	command	to	create	the	recovery	catalog	schema.

RMAN	Workshop:	Create	the	Recovery	Catalog
Workshop	Notes
For	this	workshop,	you	should	have	completed	the	previous	RMAN	Workshop
(“Create	the	Recovery	Catalog	User	Account”).	Also,	we	assume	that	you	have
created	a	tablespace	called	RCAT.	We	will	be	creating	the	RMAN	schema	objects	in
that	tablespace.

Step	1.			Connect	to	the	recovery	catalog	with	RMAN.	If	you	are	using	a
nonmultitenant	database	(we	called	ours	rcdb),	you	would	set	the	environment	for
that	database	and	then	log	in	with	RMAN	to	create	the	catalog	schema:

You	can	also	use	a	service	name	to	connect	to	a	nonmultitenant	database.	If	you
are	using	a	PDB	in	a	multitenant	database,	you	must	connect	using	a	service	name.
Here	is	an	example	where	we	are	connecting	to	a	PDB	with	a	service	name	of
rcatpdb:

Step	2.			Issue	the	create	catalog	command	from	the	RMAN	prompt:

NOTE

If	you	were	to	connect	to	a	catalog	in	a	PDB,	the	RMAN	connection	syntax
would	look	like	this:

The	create	catalog	command	would	be	the	same.	If	you	were	using	a	common
user,	the	connection	string	would	be

Register	the	Database	with	the	Recovery	Catalog
Now	that	you	have	prepared	the	recovery	catalog	for	use,	you	need	to	register	databases

with	it.	This	is	required	before	you	can	perform	an	RMAN	backup	of	a	database	by	using
the	recovery	catalog.	This	is	a	rather	simple	process,	as	you	can	see	in	the	associated
RMAN	Workshop.

RMAN	Workshop:	Register	Your	Database	in	the
Recovery	Catalog
Workshop	Notes
For	this	workshop,	you	should	have	completed	the	previous	RMAN	Workshop
(“Create	the	Recovery	Catalog”).

Step	1.			If	you	are	using	a	nonmultitenant	database,	set	your	Oracle	environment
and	then	use	the	RMAN	client	to	sign	into	the	database	and	the	recovery	catalog	at
the	same	time:

If	you	are	using	a	recovery	catalog	in	a	PDB,	the	connection	would	look	like	this:

If	a	common	user	owns	the	recovery	catalog,	your	login	looks	like	this:

Step	2.			Register	the	database	with	the	recovery	catalog:

Note	that	if	you	are	using	an	Oracle	Multitenant	database,	you	will	only	connect
to	and	register	the	CDB.	Oracle	will	not	permit	you	to	register	any	PDBs	in	the
database,	so	there	is	no	need	to	connect	to	them	when	registering	a	database	in	the
recovery	catalog.	When	you	register	the	CDB,	all	of	the	PDBs	will	be	registered	at
the	same	time.

(Optional)	Step	3.	Verify	that	the	registration	of	the	database	was	successful	by
issuing	the	report	schema	command	from	the	RMAN	prompt	when	connected	to
the	target	database:

Dropping	the	Recovery	Catalog
Just	as	you	can	create	the	recovery	catalog	schema,	you	may	wish	to	drop	it.	Use	the	drop
catalog	command	to	drop	the	recovery	catalog	schema.	Of	course,	you	should	understand
that	all	the	information	contained	in	the	schema	is	going	to	be	lost,	so	you	should	consider
backing	up	the	recovery	catalog	database	before	you	drop	the	catalog	schema.

Adding	RMAN	Backups	to	the	Recovery	Catalog
If	you	have	already	executed	RMAN	backups	without	a	recovery	catalog	and	you	want	to
add	them	to	the	recovery	catalog	later,	you	can	use	the	catalog	command.	You	can	catalog
datafile	copies,	back	up	set	pieces,	archive	log	backups,	and	even	archive	whole
directories	of	backups,	as	shown	in	the	following	examples:

NOTE

Beware	of	the	catalog	start	with	command.	You	must	have	the	trailing
backslash	at	the	end	of	the	directory	path.	If	you	were	to	use
D:\ORACLE\ORA102\DATABASE	instead,	Oracle	would	traverse	all	possible
directory	combinations	of	DATABASE	that	are	available	in	C:\ORACLE\ORA102.
This	might	include	directories	such	as	C:\ORACLE\ORA102\DATABASE,
C:\ORACLE\ORA102\DATABASE-123,	and	C:\ORACLE\ORA102\DATABASE-
OLD.	Use	the	trailing	backslash	to	indicate	that	you	just	want
C:\ORACLE\ORA102\DATABASE\.

Unregistering	a	Database	from	the	Recovery	Catalog
You	can	use	the	unregister	database	command	in	RMAN	to	unregister	a	database.	If	you
want	to	unregister	an	existing	database	(or	CDB),	simply	connect	to	that	database	(or
CDB)	and	to	the	recovery	catalog—then	issue	the	unregister	database	command:

If	the	database	(or	CDB)	has	been	removed	and	you	want	to	remove	it	from	the
recovery	catalog,	you	simply	need	to	know	the	name	of	the	database	(or	CDB)	you	want
to	unregister,	in	most	cases.	If	you	want	to	unregister	the	OLDROB	database	(or	CDB),
you	would	issue	this	command	after	connecting	to	the	recovery	catalog:

In	cases	where	multiple	databases	with	the	same	name	are	registered	in	the	recovery

catalog,	you	need	to	know	the	DBID	for	the	database	that	you	want	to	unregister.	You	then
need	to	run	the	unregister	database	command	in	a	run	block	while	also	using	the	set
dbid	command,	as	shown	in	this	example:

Utilizing	an	RMAN	Virtual	Private	Catalog
The	RMAN	Virtual	Private	Catalog	provides	the	ability	to	control	access	to	the	recovery
catalog	data	by	specific	users.	Using	the	Virtual	Private	Catalog	features	of	the	RMAN
recovery	catalog,	you	can	use	a	single	recovery	catalog	but	provide	effective
administrative	separation	of	catalog	metadata	among	users	of	that	recovery	catalog.	As	a
result,	you	can	assign	users	to	be	able	to	look	at	specific	catalog	records	on	a	“need-to-
know”	basis.	This	tightens	security	on	the	catalog	and	the	databases	it	serves.

The	Virtual	Private	Catalog	for	RMAN	has	been	around	for	a	while.	As	of	the	time	we
were	updating	this	book,	there	were	two	different	ways	of	creating	the	Virtual	Private
Catalog	in	the	Oracle	database.	The	first	way	is	for	versions	of	the	Oracle	database	at
12.1.0.1	and	below.	The	second	way	is	for	an	Oracle	database	at	version	12.1.0.2.	In	this
section,	we	cover	both	methods	of	creating	the	Virtual	Private	Catalog.

Creating	an	RMAN	Virtual	Private	Catalog	in	Oracle	Database	Version
12.1.0.1	and	Earlier
Building	an	RMAN	Virtual	Private	Catalog	requires	performing	actions	in	SQL*Plus	on
the	recovery	catalog	database,	as	well	as	actions	while	connected	to	the	catalog	with	the
RMAN	client.	These	actions	are	as	follows:

1.			Create	the	new	user	in	the	recovery	catalog	database	to	which	you	will	be
granting	restricted	access	via	the	RMAN	Virtual	Private	Catalog.

2.			Grant	that	user	the	role	RECOVERY_CATALOG_OWNER.

3.			As	the	recovery	catalog	owner,	log	into	RMAN	and	use	the	grant	catalog
for	database	command	to	assign	specific	databases	to	the	user	you	created	in	step
1.	These	are	the	RMAN	Recovery	Catalog	records	the	user	will	be	able	to	see	when
they	log	in.

4.			From	the	RMAN	prompt,	grant	the	register	database	privilege	to	the	user
created	in	step	1.	This	will	provide	the	user	rights	so	that	they	may	register	other
databases	in	the	recovery	catalog.

5.			Log	into	RMAN	as	the	user	created	in	step	1.	Execute	the	RMAN	create
virtual	catalog	command	to	create	the	virtual	catalog.

6.			Finally,	if	you	intend	on	using	a	version	of	RMAN	that	is	Oracle	Database
release	10.2	or	earlier,	you	will	need	to	log	into	SQL*Plus	as	the	recovery	catalog

owner	and	run	the	package	rcat_user.DBMS_RCVCAT.create_virtual_catalog	to
support	these	older	versions	of	the	database.

You	must	repeat	these	steps	for	each	Virtual	Private	Catalog	user	you	want	to	create.
Thus,	you	might	have	a	Virtual	Private	Catalog	user	called	VPROD	that	can	see	only
production	database	RMAN	records,	and	you	might	have	one	called	VDEV	that	can	only
see	development	database	RMAN	records.

RMAN	also	provides	steps	to	drop	a	Virtual	Private	Catalog.	These	steps	are	pretty
simple:

1.			Log	in	as	the	Virtual	Private	Catalog	owner	and	not	the	base	catalog	owner.

2.			Issue	the	drop	catalog	command	if	you	are	running	Oracle	Database	11g	or
later.

3.			Use	the	dbms_rcvcat.delete_virtual_catalog	procedure	to	drop	the	catalog
if	you	are	using	a	version	of	Oracle	Database	previous	to	version	11g.

You	can	use	the	revoke	catalog	for	database	RMAN	command	to	revoke	the	ability	of
a	user	to	see	records	of	a	specific	database.	Also,	you	can	use	the	revoke	register
database	RMAN	commands	to	remove	the	register	database	privilege	from	a	catalog	user.

RMAN	Workshop:	Create	a	Virtual	Private	Catalog	for
Oracle	12.1.0.1	and	Earlier	Databases
Workshop	Notes
In	this	workshop,	we	create	a	VPC	for	user	ebank	in	the	recovery	catalog,	which	is
housed	in	a	database	called	rcdb.	The	recovery	catalog	is	owned	by	the	user
backup_user.

Step	1.			Grant	access	to	the	catalog	from	within	the	database:

Step	2.			Log	into	RMAN	and	grant	access	to	the	database	PROD,	as	well	as	the
ability	to	register	any	new	databases:

Step	3.			Exit	RMAN,	log	back	in	as	ebank,	and	create	the	VPC:

Step	4.			Log	back	into	the	database	and	use	the
rcat_user.dbms_rcvcat.create_virtual_catalog	procedure	to	create	the	virtual
catalog:

Now,	the	user	ebank	will	only	be	able	to	see	RMAN	records	for	the	database
called	PROD	and	any	other	databases	that	that	user	registers.

Creating	an	RMAN	Virtual	Private	Catalog	in	Oracle	Database	Version
12.1.0.2
The	process	of	creating	an	RMAN	Virtual	Private	Catalog	in	Oracle	Database	12.1.0.2	has
changed,	as	mentioned	earlier.	The	basic	steps	now	are	as	follows:

1.			Using	SQL*Plus,	create	the	new	user	in	the	recovery	catalog	database	to
which	you	will	be	granting	restricted	access	via	the	RMAN	Virtual	Private	Catalog.

2.			Grant	the	user	created	in	step	1	the	create	session	role.	This	allows	the	user
to	log	into	the	database.

3.			As	the	base	recovery	catalog	owner	(not	the	user	created	in	step	1),	log	into
catalog	database	with	RMAN	(using	the	catalog	connect	string	format)	and	use	the
grant	catalog	for	database	command	to	assign	specific	databases	to	the	user	you
created	in	step	1.	These	are	the	RMAN	Recovery	Catalog	records	the	user	will	be
able	to	see	when	they	log	in.

The	first	time	you	issue	a	grant	catalog	for	database	command	is	when	the
RMAN	Virtual	Recovery	Catalog	will	be	created.	This	is	now	done	by	RMAN	in
the	background,	and	you	no	longer	need	to	do	anything	to	start	that	process.	The
catalog	will	be	deleted	when	all	the	databases	granted	with	the	grant	catalog	for
database	command	have	subsequently	been	revoked	with	the	revoke	catalog
command.

4.			From	the	RMAN	prompt,	grant	the	register	database	privilege	to	the	user
created	in	step	1.	This	will	provide	the	user	rights	so	that	they	may	register	other
databases	in	the	recovery	catalog.

Note	that	the	main	differences	in	this	procedure	and	the	former	is	that	there	is	no	longer
a	need	to	run	the	create	virtual	catalog	command	at	all.	Also,	the	recovery	catalog	users
that	will	be	created	don’t	need	the	recovery_catalog_owner	role	anymore.	The	new	users
only	need	the	create	session	privilege.	This	is	because	RMAN	is	now	using	the	Virtual
Private	Database	(VPD)	features	of	Oracle.	This	does	not	mean	that	you	have	to	use	the
Virtual	Recovery	Catalog	features,	however.	It	just	simplifies	the	process	of	using	these
features.

Note	that	the	revoke	catalog	RMAN	command	is	still	used	to	revoke	catalog

permissions	from	users.

Upgrading	a	Virtual	Private	Catalog	to	Version	12.1.0.2
If	you	are	upgrading	to	Oracle	Database	12.1.0.2	from	an	earlier	version,	you	will	need	to
upgrade	any	existing	Virtual	Private	Catalogs.	The	steps	to	do	this	are	as	follows:

1.			Connect	to	the	recovery	catalog	database	as	the	SYS	user	using	the	SYSDBA
privileges.

2.			Run	the	script	$ORACLE_HOME/rdbms/admin/dbmsrmansys.sql.

3.			Using	RMAN,	connect	to	the	recovery	catalog	as	the	base	recovery	catalog
schema	owner.

4.			Run	the	upgrade	catalog	command	twice.	Running	this	command	twice	is
required	to	confirm	that	you	truly	want	to	execute	the	command.

5.			Connect	to	the	recovery	catalog	database	using	the	SYS	user	with	the
SYSDBA	privileges.

6.			Run	the	script	$ORACLE_HOME/rdbms/admin/dbmsrmanvpc.sql
{catalog_schema_owner}	to	upgrade	the	virtual	private	catalog	schemas.	It	is
required	to	pass	in	the	name	of	the	owning	schema	of	the	recovery	catalog	as	a
parameter	when	you	run	this	command.

Once	you	have	completed	these	steps,	all	previous	Virtual	Private	Catalog	schemas	of
the	base	catalog	will	be	updated.

NOTE

Yes,	we	know	that	we	said	you	should	almost	never	log	in	as	SYS	using	the
SYSDBA	privilege.	This	is	one	of	those	exceptions	because	that’s	what	Oracle
tells	you	to	do.	When	Oracle	tells	you	to	use	SYS	as	SYSDBA,	then	do	so.	You
won’t	get	any	argument	from	us!

Merging	Multiple	Recovery	Catalogs
The	other	primary	headache,	once	we	overcome	the	inability	to	adequately	share	the
recovery	catalog	via	Virtual	Private	Catalogs,	is	to	vanquish	catalog	sprawl.	For	whatever
reason,	sometimes	you	end	up	with	multiple	catalogs,	and	there	has	historically	been	no
way	to	import	records	from	one	catalog	to	the	next	in	a	way	that	didn’t	make	matters
worse.

The	import	catalog	command	is	used	to	easily	import	catalog	metadata	from	one
recovery	catalog	into	another.	This	import	can	include	all	databases	in	the	source	catalog,
or	only	a	subset	that	you	specify	at	the	time	of	import.	This	functionality	provides	the
mechanism	of	sorting	through	the	records	and	ensuring	the	correct	records	are	brought	in

without	creating	dependency	issues	or	duplicate	rows.

The	import	catalog	command	in	RMAN	can	merge	two	catalogs;	it	cannot	be	used	as
an	upgrade	mechanism.	Before	you	can	import	a	lower	version	of	the	catalog	into	a	newer
version,	you	will	have	to	use	the	upgrade	command	first	against	the	source	catalog	to
upgrade	it	to	the	same	level	as	the	destination	catalog.	Then	you	can	import	that	catalog
schema.	While	we	are	on	the	matter	of	versions,	it	should	be	noted	that	the	source	catalog,
destination	catalog,	and	RMAN	executable	version	must	all	be	the	same	version	for	the
import	to	work.

The	import	catalog	command	can	also	be	used	to	move	an	existing	catalog	to	a	new
database	or	to	a	new	schema.	In	such	a	case,	you	would	create	the	new	catalog	in	the	new
location,	then	use	that	new	catalog	as	the	destination	catalog	in	an	import	catalog
operation.

RMAN	Workshop:	Merge	Two	Recovery	Catalogs
Workshop	Notes
In	this	workshop,	we	will	import	a	subset	of	databases	from	the	catalog	RCAT1	into
the	destination	catalog	RCAT2.

Step	1.			Connect	to	the	destination	catalog	in	RMAN:

Step	2.			Run	the	import	command	by	specifying	a	connect	string	to	the	source
catalog:

Step	3.			Confirm	that	the	metadata	for	the	databases	was	imported:

RMAN	Stored	Scripts
We	honestly	don’t	find	much	use	for	RMAN	stored	scripts	because	we	prefer	to	use
Oracle	Enterprise	Manager	to	maintain	our	backup	scripts	and	other	kinds	of	jobs.
However,	stored	scripts	are	available	with	RMAN	if	you	are	using	the	recovery	catalog,	so
we	will	cover	them	here	quickly.

Stored	scripts	provide	the	ability	to	save	a	set	of	RMAN	commands	in	the	form	of	a
script	in	the	recovery	catalog.	Later	you	can	take	that	script	and	re-execute	it	on	the	same
or	another	database.	Scripts	are	considered	either	local	or	global—depending	on	how	you
created	them.

There	are	other	ways	of	storing	scripts	with	RMAN	commands.	You	could	create	a
command	file,	which	is	just	a	text	file	physically	located	on	disk	somewhere,	with	the
RMAN	commands,	and	then	execute	the	command	file	from	the	RMAN	command-line

interface	using	the	cmdfile	parameter,	as	shown	in	this	example:

Alternatively,	you	can	run	a	command	file	from	within	RMAN	itself	using	the	@
command:

Then,	as	we	mentioned,	there	is	our	favorite—using	Oracle	Enterprise	Manager	Cloud
Control.

In	this	section	we	are	interested	in	the	creation,	use,	and	administration	of	stored	scripts
in	the	RMAN	catalog.	We	look	at	creating	stored	scripts,	finding	stored	scripts	in	the
recovery	catalog,	and	changing	and	deleting	a	stored	script.	We	then	look	at	how	to	start	a
stored	script	and	how	to	print	out	the	stored	script	for	documentation	purposes.

Creating	Stored	Scripts
To	store	a	script	in	the	recovery	catalog,	you	use	the	create	script	RMAN	command.	Each
stored	script	is	assigned	a	name	when	you	create	it.	You	can	create	scripts	that	do	backups,
recoveries,	and	maintenance	of	your	databases.	To	create	a	script,	you	must	be	connected
to	the	recovery	catalog.	Here	is	an	example	of	using	the	create	script	command	to	create
a	backup	script.	RMAN	also	allows	you	to	store	comments	related	to	your	stored	scripts
by	using	the	comment	parameter:

Starting	with	Oracle	Database	11g,	RMAN	supports	the	use	of	substitution	variables.
Each	substitution	variable	is	denoted	with	an	ampersand	and	a	number	that	makes	each
variable	unique.	For	example,	you	could	rewrite	this	script	as	follows:

This	is	a	global	script,	so	we	only	need	to	be	connected	to	the	recovery	catalog	(instead
to	a	specific	target	database)	to	create	the	script.	When	you	create	the	script,	RMAN	will
prompt	you	for	a	value	for	the	substitution	variable.	This	is	okay,	and	whatever	you	select
for	the	variable	is	not	stored	as	a	default	value.	If	you	want	to	avoid	being	prompted	for
the	value,	you	can	start	RMAN	and	define	the	argument	value	on	the	command	prompt,	as
shown	here:

In	this	case	we	have	defined	the	default	value	for	the	&1	parameter	as	test.	We	will
show	you	how	to	run	a	stored	script	with	parameters	later	in	this	chapter	when	we	discuss
running	stored	scripts.

Querying	the	Recovery	Catalog	for	Stored	Script

Information
You	can	use	the	recovery	catalog	views	to	determine	the	name	of	scripts	stored	in	the
recovery	catalog	by	querying	the	RC_STORED_SCRIPT	view.	You	can	see	the	contents
of	a	given	script	by	querying	the	RC_STORED_SCRIPT_LINE	view.	Let’s	look	at	an
example	of	using	the	RC_STORED_SCRIPT	view.	Here	we	are	displaying	information	on
the	stored	script	we	created	earlier	in	this	section	called	my_backup_script:

Changing	Stored	Scripts
You	use	the	replace	script	command	to	replace	stored	scripts	in	the	recovery	catalog.
Here	is	an	example	of	using	the	replace	script	command.	Note	that	we	also	add	a
comment	to	the	script.

Deleting	Stored	Scripts
To	drop	a	script,	you	use	the	delete	script	command.	You	must	be	connected	to	the
recovery	catalog	to	successfully	drop	a	stored	script.	Here	is	an	example	of	using	the
delete	script	command:

Using	Stored	Scripts
Now	that	you	have	created	some	stored	scripts,	you	probably	want	to	use	them.	This	is
what	the	execute	script	command	is	for.	Simply	connect	to	the	recovery	catalog	and	use
the	execute	script	command	within	the	confines	of	a	run	block,	as	shown	in	this	example:

If	you	are	using	substitution	variables,	you	can	use	the	using	parameter	to	include	the
values	of	those	parameters	in	the	execute	script	command,	as	shown	in	this	example:

Also,	when	you	start	RMAN,	you	can	use	the	using	parameter	at	the	command	line	to
indicate	what	command-line	parameters	are	to	be	used,	as	shown	here:

Note	that	when	you	execute	the	create	script	command,	which	we	showed	you	earlier,
if	you	are	using	a	substitution	variable	in	that	script,	RMAN	will	prompt	you	for	a	value

for	that	substitution	variable.	This	is	just	part	of	the	process	of	creating	the	script,	and	the
variable	value	has	no	actual	use.	Thus,	when	creating	scripts	with	substitution	variables,	it
is	common	to	start	RMAN	with	the	user	parameter	and	add	variables	so	you	will	not	be
prompted	for	them	when	saving	the	scripts.

Printing	Stored	Scripts
If	you	want	to	print	a	copy	of	your	stored	script,	you	can	use	the	print	script	command.
Connect	to	the	recovery	catalog	and	run	the	print	script	command,	as	shown	in	this
example:

You	can	also	use	the	RC_STORED_SCRIPT_LINE	recovery	catalog	view	to	display
the	contents	of	a	stored	script,	as	shown	in	this	example:

RMAN	Workshop:	Using	RMAN	Stored	Scripts
Workshop	Notes
This	workshop	expects	that	you	have	an	operational	Oracle	database	(called
recover)	and	that	you	are	also	using	a	separate	Oracle	database	in	which	to	store	the
recovery	catalog	(called	catalog).

Step	1.			Connect	to	the	target	database	and	to	the	recovery	catalog:

Step	2.			Create	a	stored	script	to	back	up	the	target	database:

Step	3.			Print	the	stored	script:

Step	4.			Execute	the	stored	script	to	back	up	your	database:

Step	5.			Delete	the	stored	script:

Recovery	Catalog	Maintenance
Use	of	the	recovery	catalog	involves	some	additional	maintenance	activities,	which
include	upgrading	the	catalog	during	a	database	upgrade	or	migration,	manually	resetting
the	database	incarnation,	and	resynchronizing	the	recovery	catalog	after	certain	database
operations.	This	section	describes	those	activities,	as	well	as	other	maintenance
considerations,	including	removing	a	database	from	the	recovery	catalog	and	using	the
Oracle	EXP/IMP	utilities	to	back	up	the	recovery	catalog.	Finally,	this	section	reviews	the
different	recovery	catalog	views	and	what	they	are	used	for.

Unregistering	a	Database	in	RMAN
Prior	to	Oracle	Database	10g,	unregistering	a	database	from	the	recovery	catalog	was	a
manual	process.	Now,	Oracle	makes	removing	a	database	from	the	recovery	catalog	as
easy	as	issuing	the	command	unregister	database.	Here	is	an	example:

When	this	command	is	executed,	the	metadata	for	the	database	in	the	recovery	catalog
is	removed	completely.	Also,	any	metadata	older	than
CONTROL_FILE_RECORD_KEEP	time	is	removed	from	the	control	file.	All	local
scripts	for	that	database	will	also	be	removed	from	the	recovery	catalog.

Database	Migration/Upgrade	Issues
As	you	upgrade	your	Oracle	databases,	you	need	to	upgrade	your	recovery	catalog	as	well.
As	you	will	see	in	Chapter	9,	some	strict	rules	apply	with	regard	to	the	version	of	the
database	you	are	using,	the	version	of	RMAN,	and	the	version	of	the	recovery	catalog.

You	can	determine	the	version	of	your	recovery	catalog	by	querying	the	VERSION
column	of	the	RCVER	view	in	the	recovery	catalog	schema:

If	the	table	displays	multiple	rows,	the	highest	version	in	the	RCVER	table	is	the
current	catalog	schema	version.	For	example,	assume	that	the	RCVER	table	displays	the
following	rows:

As	long	as	the	version	of	the	recovery	catalog	is	at	the	same	level	or	higher	than	your
database,	you	will	be	in	good	shape.	Therefore,	if	you	are	storing	multiple	databases	in	the
same	recovery	catalog,	it’s	okay	to	upgrade	the	catalog	to	a	higher	version,	even	if	only
one	of	the	databases	stored	in	the	recovery	catalog	is	being	upgraded.

To	upgrade	your	recovery	catalog,	simply	issue	the	command	upgrade	catalog	from
RMAN.	RMAN	will	prompt	you	to	enter	the	upgrade	catalog	command	again.	RMAN
will	then	upgrade	the	recovery	catalog	for	you.	Make	sure	you	check	all	documentation	on
the	version	of	the	Oracle	database	to	which	you	are	upgrading	in	order	to	ensure	that	you
are	using	the	proper	upgrade	method	for	that	version	of	the	Oracle	database.

Manually	Resetting	the	Database	Incarnation	(reset	catalog)
Sometimes	when	you	restore	an	Oracle	database	you	will	need	to	use	the	resetlogs
command	to	complete	the	restore	(we	discuss	this	in	Chapter	9	quite	a	bit).	When	the
resetlogs	command	is	used,	one	of	the	things	that	happens	is	a	new	incarnation	of	the
database	is	created.

An	incarnation	of	a	database	is	a	point	in	time	when	the	redo	log	stream	diverged	into
a	different	temporal	version.	When	you	first	create	an	Oracle	database,	that	is	the	first
incarnation	of	the	database.	If	you	ever	recover	the	database	to	the	point	of	a	failure,	then
the	temporal	state	of	the	database	is	consistent.	If	you	recover	the	database	to	some	point
in	time	when	some	of	the	records	that	had	previously	processed	were	not	processed,	then
the	database	will	have	been	opened	with	the	resetlogs	command,	and	this	would	create	a
new	incarnation	of	the	database.	Each	subsequent	recovery	action	that	ends	in	a	resetlogs
command	will	create	a	new	incarnation	of	a	database.	We	discuss	the	resetlogs	command
in	much	more	detail	in	Chapter	9.

If	you	are	not	connected	to	the	recovery	catalog	when	a	resetlogs	operation	occurs,
then	the	recovery	catalog	will	be	resynchronized	the	next	time	the	target	database	is
connected	to	the	recovery	catalog	and	an	RMAN	operation	occurs	or	when	a
resynchronize	operation	on	the	recovery	catalog	database	occurs.

If	this	is	done	during	an	RMAN	operation,	the	recovery	catalog	will	be	correctly
updated.	However,	if	you	manually	issue	a	resetlogs	command	(through	SQL*Plus,	for
example),	you	need	to	reset	the	database	incarnation	in	the	recovery	catalog.	This	is	done
with	the	reset	database	command:

Manually	Resynchronizing	the	Recovery	Catalog	(resync
catalog)
When	RMAN	uses	a	recovery	catalog,	it	uses	a	resynchronization	process	to	ensure	that

the	recovery	catalog	is	consistent	with	the	target	database	control	file.	Generally,	Oracle
performs	database	resynchronization	itself	after	RMAN	operations	such	as	backups	and
recoveries,	so	you	really	don’t	need	to	resync	the	recovery	catalog	often.	One	example	of
the	need	to	resync	the	recovery	catalog	is	if	you	are	running	backups	sometimes	with	and
sometimes	without	a	recovery	catalog.	To	manually	get	Oracle	to	resync	the	recovery
catalog,	use	the	resync	catalog	command:

When	Oracle	synchronizes	the	recovery	catalog,	it	first	creates	a	snapshot	control	file
and	compares	it	with	the	recovery	catalog.	Once	that	comparison	is	complete,	Oracle	will
update	the	recovery	catalog	so	it	is	in	sync	with	the	database	control	file.

Purging	Recovery	Catalog	Records
In	earlier	versions	of	RMAN	(think	9i	and	earlier),	the	recovery	catalog	records	were	not
purged	at	all	and	as	a	result	the	recovery	catalog	would	get	quite	large.	Even	in	later
versions	of	the	Oracle	Database	there	were	cases	where	the	recovery	catalog	would	get	out
of	sync	with	the	database	control	file	and	certain	records	would	not	be	deleted.	Also,	there
have	been	bugs	in	the	past	that	would	cause	certain	tables	in	the	recovery	catalog	not	to
have	deleted	records	removed	from	them.

These	problems	have	largely	been	solved	for	some	time,	and	in	most	cases	there	should
be	no	reason	to	manually	need	to	purge	recovery	catalog	records	at	all.	If	you	find	that	the
recovery	catalog	is	growing	uncontrollably,	you	probably	need	to	make	sure	that	you	are
managing	your	retention	correctly.	If	you	are	only	using	an	FRA,	then	RMAN	should
manage	the	retention	for	you	quite	well	and	you	should	not	see	any	divergence	in	the
recovery	catalog.	If	you	do,	you	may	well	have	hit	a	bug	and	you	should	report	this	to
Oracle	Support.

In	cases	where	your	backups	are	being	moved	to	a	second	or	third	tier	that	is	not	on	the
FRA,	you	will	need	to	manually	manage	the	retention	of	these	RMAN	files	and	the
metadata	associated	with	them.	This	requires	the	use	of	the	delete	obsolete	command	to
remove	obsolete	backups	and	also	the	use	of	the	crosscheck	command	to	ensure	that
nothing	has	removed	the	physical	files	from	the	backup	media,	leaving	orphan	metadata
records	in	the	recovery	catalog.	We	discuss	the	delete	obsolete	and	crosscheck	commands
later	in	this	book	in	Chapter	11.	We	also	cover	how	to	report	on	recovery	catalog	records
using	RMAN	in	Chapter	17,	as	well	as	provide	some	information	about	the	internal	tables
of	the	recovery	catalog	in	this	chapter,	should	you	want	to	traverse	the	views	of	the
recovery	catalog.

Do	keep	an	eye	on	the	growth	of	the	recovery	catalog	because	performance	of	the
catalog	can	be	impacted	by	uncontrolled	growth.

The	recovery	catalog	will	maintain	old	incarnation	records	forever.	These	records	can
be	found	in	the	RC_DATABASE_INCARNATION	view,	which	is	based	on	the
underlying	recovery	catalog	table	DBINC.	It	is	rare	to	need	to	remove	old	incarnation
records	from	the	recovery	catalog.	However,	you	can	use	the	delete	SQL	command	to
remove	incarnation	information	from	the	DBINC	table	if	you	need	to.	We	would	strongly
suggest	you	open	a	support	ticket	with	Oracle	before	you	do	this,	however.

Backing	Up	the	Recovery	Catalog
The	procedure	for	using	RMAN	to	back	up	a	database	can	be	found	in	Chapter	7,	and	it
just	so	happens	that	it	is	perfectly	okay	to	use	RMAN	to	back	up	your	recovery	catalog
database.	Just	make	sure	you	have	a	sound	recovery	strategy	so	you	can	restore	your
recovery	catalog	as	quickly	as	possible.	Also,	remember	that	losing	the	recovery	catalog	is
not	the	end	of	the	world.	Even	if	you	are	using	a	recovery	catalog,	you	can	still	recover
your	databases	later	without	it.	All	you	really	need	is	a	backup	of	the	database	control	file
—or,	in	a	really	bad	situation,	some	fancy	work	with	DBMS_BACKUP_RESTORE!	The
really	important	thing	to	note	is	that	you	need	to	test	your	entire	recovery	strategy.	Only
then	can	you	know,	and	be	comfortable	with,	your	ability	to	recover	your	databases.

Recovery	Catalog	Views
The	recovery	catalog	provides	a	series	of	views	that	can	be	used	to	explore	the	metadata
being	produced	by	your	RMAN	backup	strategy.	These	views	have	base	tables	that	are
populated	when	you	register	your	database	and	then	populated,	updated,	or	removed	on
any	subsequent	resync	command	from	the	catalog.	Additionally	the	recovery	catalog
records	will	be	modified	and	removed	by	retention	criteria	established	for	the	RMAN
FRA.

In	this	section	we	review	what	the	RMAN	recovery	catalog	base	table’s	views	are	for.
We	then	list	the	different	recovery	catalog	base	tables	and	views.	Finally,	we	provide	some
examples	of	querying	the	data	dictionary	views.

The	Purpose	of	the	Recovery	Catalog	Views	and	the
Database	Data	Dictionary	Views
Just	like	the	Oracle	database	data	dictionary	tables,	there	are	a	number	of	recovery	catalog
views	that	are	created	when	the	recovery	catalog	is	created.	The	naming	convention	for
these	views	follows	the	convention	of	RC_*.	For	example,	there	are	views	called
RC_BACKUP_SET	and	RC_BACKUP_REDOLOG,	along	with	many	more.

Keep	in	mind	that	almost	every	RMAN	operation	is	independent	of	the	recovery
catalog.	Therefore,	a	number	of	V$	views	in	the	database	provide	RMAN	metadata	similar
to	what’s	stored	in	the	database	control	file.

The	big	difference	between	the	database	recovery	catalog	base	tables	and	views	and	the
related	V$	views	is	the	fact	that	the	recovery	catalog	views	will	contain	information	on	all
the	databases	contained	in	the	recovery	catalog.	This	can	be	a	security	issue,	which	is
addressed	by	the	Virtual	Private	Catalog	features	we	discussed	earlier	in	this	chapter.

You	will	find	slight	differences	in	the	V$	views	and	recovery	catalog	views.	For
example,	the	primary	keys	for	the	records	in	the	V$	views	are	going	to	be	different	from
the	primary	key	values	in	the	recovery	catalog.	Again,	this	is	because	there	are	likely	to	be
many	more	databases	in	the	recovery	catalog.	Also,	you	will	find	that	there	may	well	be
more	records	in	the	recovery	catalog	than	in	the	V$	views	for	a	given	database.	This	is
because	some	records	in	the	recovery	catalog	may	have	a	retention	requirement	that	is

longer	than	the	control	file	is	able	to	maintain	a	record	for.	The	database	control	file	can
only	hold	a	year’s	worth	of	RMAN	backup	metadata,	whereas	the	recovery	catalog	can
hold	this	metadata	forever.	Therefore,	it’s	quite	likely	that	the	recovery	catalog	records
will	be	much	larger	than	those	within	the	control	file.

The	Recovery	Catalog	Base	Tables,	Views,	and	Database
Data	Dictionary	Views
So,	what	are	the	base	tables	of	the	recovery	catalog,	and	what	are	they	for?	The	following
table	provides	this	information	for	you:

A	number	of	views	are	built	on	top	of	the	base	tables.	The	following	table	lists	these	views
and	what	is	contained	in	them:

Examples	of	Using	the	Recovery	Catalog	Base	Tables	and
Views
Here	are	some	examples	of	querying	the	RC_*	views.

Looking	at	Archived	Redo	Logs
First,	here	is	a	query	against	the	RC_ARCHIVED_LOG	that	provides	information	on	the
archived	redo	logs	that	exist	on	disk.

Note	that	once	we	back	up	these	archived	redo	logs	and	then	delete	them	after	the
backup	(and	we	are	connected	to	the	recovery	catalog	during	the	backup),	this	view	will
no	longer	contain	any	records,	which	you	can	see	here:

Looking	at	Databases	Registered	in	the	Recovery	Catalog
You	can	find	out	which	databases	are	registered	in	the	recovery	catalog	by	using	the
RC_DATABASE	view,	as	shown	here:

Looking	at	Tablespaces	Registered	in	the	Recovery	Catalog
We	can	now	see	which	tablespaces	are	stored	in	the	recovery	catalog	by	querying	the
RC_TABLESPACE	view,	as	shown	here:

Looking	at	Database	Incarnations
This	listing	highlights	the	increased	information	presented	in	data	dictionary	views	with
the	addition	of	the	Oracle	Multitenant	database.	Now,	we	have	to	consider	the	contained
ID	along	with	the	additional	information	to	determine	what	information	applies	to	what
container	in	the	database.

We	can	also	see	the	history	of	the	incarnations	of	the	databases	in	the	recovery	catalog
by	querying	the	RC_DATABASE_INCARNATION	view:

In	this	case,	we	can	see	that	there	are	two	records	for	the	database	identified	by	the
DBID	column.	The	incarnation	that	has	the	status	of	PARENT	is	the	initial	incarnation	of
the	database	with	the	DBID	2186698322.	The	incarnation	with	a	status	of	CURRENT	is
the	current	incarnation	of	that	database.	You	can	tell	that	both	are	the	same	database	(or	in
rare	cases,	copies	of	the	same	database	that	were	not	copied	correctly)	because	the	DBID

is	the	primary	identifier	of	any	database.	When	a	database	is	created,	it	is	assigned	a
DBID,	which	is	considered	a	GUID—a	numbering	scheme	designed	to	provide	a	unique
number	at	all	times.	This	GUID	is	then	assigned	to	each	database	and	uniquely	identifies
that	database.	So,	in	the	recovery	catalog	it’s	the	DBID	that	really	uniquely	identifies	a
database	and	not	the	name	of	the	database.	This	helps	avoid	naming	conflicts	that	might
otherwise	occur.

Datafile	Backup	Block	Corruption
The	RC_BACKUP_CORRUPTION	view	lists	the	corruption	that	exists	in	datafile
backups.	To	tolerate	corruption,	the	value	of	MAXCORRUPT	must	be	set	to	a	non	zero
value,	which	indicates	how	many	corrupt	blocks	RMAN	will	back	up	before	it	throws	an
error	and	aborts.	The	corrupt	blocks	are	not	discarded,	but	rather	are	backed	up	as	is.

A	similar	view,	RC_DATABASE_BLOCK_CORRUPTION,	lists	blocks	that	are
corrupt	in	the	database	based	on	the	last	backup	operation	(or	backup	validate).	The
difference	between	these	two	views	is	that	RC_BACKUP_CORRUPTION	lists	blocks
that	are	corrupt	in	the	backup,	not	in	the	database	itself.

The	following	code	provides	a	list	of	corrupt	blocks,	with	block	number,	file	number,
the	backup	piece	in	which	the	corruption	exists,	and	the	type	of	corruption	for	the	database
V102:

Returning	to	the	RC_BACKUP_CORRUPTION	view	we	find	that	it	provides	the
corruption	list	that	is	populated	when	a	backup	or	backup	validate	operation	discovers
corrupt	blocks.	Remember	that	these	are	the	actual	corrupt	blocks	in	the	database,	and	not
in	the	backups	or	copies	themselves.	This	view	is	refreshed	on	each	backup	operation	to
reflect	current	corruption	(if	any).	V$DATABASE_BLOCK_CORRUPTION	is	the	view
used	during	block	media	recovery	when	you	specify	blockrecover	corruption	list	and	is
therefore	the	one	you	will	most	often	be	referencing.	The	following	code	is	a	sample
select	statement	against	this	view:

Backup	Files	in	the	Recovery	Catalog
The	RC_BACKUP_FILES	view	provides	a	list	of	the	backup	files	(backup	set	copies	or
image	copies,	for	example)	created	by	the	backup	database	command.	This	view
provides	details	about	all	backup	files	known	to	the	recovery	catalog,	regardless	of
whether	the	file	is	a	backup	set,	datafile	copy,	or	proxy	copy.

One	thing	that	is	different	in	this	view	than	other	views	is	that	before	you	can	query	the
view,	you	must	first	call	DBMS_RCVMAN.SETDATABASE	to	indicate	which	database
you	are	looking	for.	You	pass	the	DBID	of	the	database	from	which	you	want	to	collect
information	to	the	procedure.	Then	you	can	query	the	RC_BACKUP_FILES	view,	as
shown	in	this	example:

RMAN	Configuration	Information
The	RC_RMAN_CONFIGURATION	view	is	equivalent	to	a	show	all	command,	giving
the	name	and	value	for	each	configuration	parameter	that	is	set	for	each	of	your	target
databases.	It	is	worth	noting	that	three	configuration	parameters	are	not	stored	here:
configure	exclude	information	is	found	in	RC_TABLESPACE	(V$TABLESPACE),
configure	auxname	information	is	found	in	RC_DATAFILE	(V$DATAFILE),	and
configure	snapshot	controlfile	information	is	found	only	in	the	target	database	control
file	(there	is	no	catalog	equivalent).

It	is	also	important	to	point	out	that	RC_RMAN_CONFIGURATION	does	not	have	a
DB_NAME	column,	so	you	have	to	use	the	primary	key	DB_KEY	value	from
RC_DATABASE	to	get	the	values	for	the	appropriate	database	registered	in	your	catalog.

Furthermore,	no	values	are	listed	in	either	V$RMAN_CONFIGURATION	or
RC_RMAN_CONFIGURATION	for	default	values.	Only	values	that	have	been	manually
changed	will	appear	in	this	list.	The	following	code	is	a	sample	select	statement	against
this	view:

Catalog	Views	Intended	for	Use	by	Oracle	Enterprise
Manager
A	series	of	new	views	in	the	recovery	catalog	were	created	specifically	to	provide
performance	and	functionality	enhancements	to	the	OEM	Console.	Many	of	these	views
can	be	very	interesting	when	performing	diagnostic	information	on	RMAN	backup	or
restore	problems.	For	example,	the	RC_RMAN_OUTPUT	view	is	very	helpful	because	it
stores	all	the	output	for	an	RMAN	run.	There	is	a	V$RMAN_OUTPUT	view	that	provides
like	information	from	the	Oracle	control	file.

V$RMAN_OUTPUT	excepted,	most	of	these	views	do	not	have	corresponding	V$
views	in	the	target	database	control	file.	It	is	worth	taking	a	look	at	these	views	and
identifying	their	parts	to	avoid	any	misunderstanding.	If	you	are	looking	for	a	way	to
leverage	the	information	in	these	views,	you	can	find	the	same	information	in	them	in
OEM’s	backup	and	recovery	functionality.	The	following	table	lists	and	briefly	describes
the	RC_*	views	that	are	built	primarily	for	use	by	the	OEM.

Summary
In	this	chapter,	we	detailed	what	a	recovery	catalog	is	and	how	it	can	help	you	to	manage
your	backups—and	save	you	during	a	recovery.	We	discussed	how	to	build	the	catalog,
how	to	add	managed	databases	to	it,	and	how	to	drop	it.	RMAN	provides	the	option	for
generating	virtual	private	catalogs	to	maintain	privacy	and	security.	In	addition,	RMAN
offers	the	capability	to	merge	multiple	catalogs	as	you	work	to	centralize	and	simplify
your	ecosystem	management.	Finally,	we	provided	an	overview	of	the	critical	recovery

catalog	views	that	can	be	utilized	to	understand	the	metadata	surrounding	your	backups
and	to	help	guide	your	backup	maintenance	and	recovery	operation	planning.

CHAPTER
7

RMAN	Backups

T
his	chapter	is	all	about	backing	up	your	Oracle	database	with	RMAN.	This	chapter	is
largely	tactical	and	not	strategic.	Therefore,	we	show	you	the	various	options
available	when	using	the	RMAN	backup	command.	We	also	show	you	the
different	types	of	backups	you	can	perform	when	using	the	RMAN	backup
command.

Continuing	the	chapter	preview	the	next	thing	we	will	do	is	show	you	how	to	do
backups	(and	provide	best	practices	revolving	around	the	backup	command	where	it
makes	sense),	but	we	save	the	more	strategic	topics	for	Chapter	15,	including	where	you
should	put	your	backups	and	designing	a	multitiered	backup	strategy.

In	this	chapter	we	cover	the	following:

			Using	the	RMAN	backup	command

			Using	the	RMAN	set	command

			RMAN	backup	command	options

			Configuring	RMAN	default	settings

			Offline	backups	with	RMAN

			Online	backups	with	RMAN

			Incremental	backups	with	RMAN

			Image	copies

			Incrementally	updated	backups

			A	review	of	RMAN	backup	best	practices

That’s	a	lot	of	material	to	cover,	so	let’s	get	to	it!

Using	the	RMAN	Backup	Command
As	you	might	have	guessed,	backing	up	your	database	with	RMAN	is	the	main	point	of
this	chapter.	The	main	command	we	will	use	to	perform	a	backup	in	RMAN	is	called,
oddly	enough,	backup.	I’ll	wait	a	moment	while	you	recover	from	the	shock	of	this
knowledge.

Up	to	this	point,	we	have	gotten	the	prerequisites	to	using	the	backup	command	out	of
the	way.	We	have	discussed	channels,	what	they	are,	how	they	work,	and	how	to	allocate
them	manually.	We	then	built	on	that	knowledge	by	discussing	the	configuration	of
persistent	configurable	default	settings	in	RMAN	using	the	set	command.	Let’s	look	at	the
backup	command	in	a	bit	more	detail	next.	Then	we	will	be	ready	to	use	it	to	do	some
RMAN	backups!

The	Backup	Command
The	backup	command,	by	default,	will	back	up	the	entire	database	into	backup	sets	and
backup	set	pieces,	as	we	discussed	in	Chapter	3.	The	backup	command	comes	with	a

number	of	options	we	will	introduce	you	to	in	this	chapter.	The	main	options	with	respect
to	backups	involve	the	type	of	backup	you	will	be	performing.	Here	are	the	types	of
backups	RMAN	supports:

			Full	offline	backups	in	both	NOARCHIVELOG	and	ARCHIVELOG	modes

			Full	online	backups	in	ARCHIVELOG	mode

			Incremental	backups	with	an	option	to	perform	cumulative	or	differential
backup	strategies

			Exact	mirror	(image)	copies	of	the	individual	database	datafiles

			A	combination	of	a	mirrored	copy,	regular	application	of	historical	incremental
copies,	and	the	generation	of	new	incremental	copies

As	you	can	see,	the	backup	command	offers	a	deep	set	of	backup-related	features.
Here	is	an	example	of	a	common	use	of	the	backup	command	that	backs	up	the	database
and	its	associated	archived	redo	logs:

If	that	looks	pretty	easy	to	you,	that’s	because	it	is.	Notice	that	we	started	with	the
backup	command.	Then	we	indicated	what	we	wanted	to	back	up—in	this	case,	the	whole
database.	There	are	a	whole	host	of	other	options	we	will	address	throughout	this	chapter,
including	backup	of	tablespaces	and	datafiles.	What	this	does	demonstrate	is	that	the
process	of	backing	up	the	database	with	RMAN	is	pretty	straightforward.	All	you	need	to
do	is	configure	the	specific	persistent	configuration	settings,	as	discussed	in	Chapter	5,
and	then	issue	the	backup	command	with	any	parameters	that	might	be	needed.

The	Backup	Command,	Channels,	and	Performance
We	mentioned	RMAN	channels	in	Chapter	5.	The	use	of	the	backup	command	requires
that	at	least	one	channel	be	allocated.	As	a	result,	a	channel	must	be	configured	prior	to
the	backup	using	the	configure	command,	as	described	in	Chapter	5,	or	a	channel	must	be
allocated	using	the	allocate	channel	command,	as	described	in	Chapters	3	and	5.

Parallelism	is	key	to	performance	with	the	backup	command.	The	number	of	channels
that	are	allocated	determine	the	degree	of	parallelism	(DOP)	used	when	the	backup	is
executed.	Allocate	too	few	channels,	and	the	backup	will	go	slower	than	it	needs	to.
Allocate	too	many	channels,	and	the	backup	will	bog	down	as	system	resources	become
strained.	Finding	the	proper	DOP	takes	time	and	patience.

The	DOP	is	determined	based	on	how	you	configure	channels.	If	you	manually	allocate
channels,	then	the	number	of	channels	manually	allocated	will	be	the	DOP—configured
defaults	will	not	apply	or	override	allocated	channels.	Lacking	manually	allocated
channels,	the	configured	RMAN	defaults	for	that	database	will	determine	the	DOP.

If	you	are	running	Oracle	Real	Application	Clusters,	make	sure	you	read	Chapter	18,
where	we	discuss	DOP	and	performance	of	RMAN	backups	on	a	RAC	cluster.	If	you	wish
to	use	RMAN	for	duplication	or	cloning,	including	cloning	across	platforms,	make	sure
you	take	a	look	at	Chapter	10	for	lots	of	information	on	those	operations.

RMAN	Backup	Command	Options
Now	that	we	have	introduced	you	to	the	backup	command,	let’s	look	at	the	number	of
different	options	you	can	use	with	it.	First,	the	backup	command	is	used	to	create	the
following	types	of	backups	(the	associated	backup	command	is	shown	in	parentheses):

			Database	(backup	database,	backup	database	root,	backup	pluggable
database)

			Tablespace	(backup	tablespace)

			Datafile	(backup	datafile)

			Archive	log	(backup	archivelog)

			Control	files	(backup	controlfilecopy,	backup	current	controlfile)

			Backup	sets	and	backup	set	pieces	to	other	locations	(backup	backupset,
backup	backuppiece)

			The	Fast	Recovery	Area	(backup	recovery	area)

			Recovery	files	(backup	recovery	files)

			Image	copies	(backup	copy	of	database,	backup	copy	of	database	root,
backup	copy	of	datafile,	and	so	on)

			SPFILE	(backup	spfile)

A	number	of	different	options	available	for	use	with	the	backup	command	allow	you	to
do	such	things	as	provide	a	tag	to	identify	the	specific	backup,	define	the	naming	format
and	location	for	the	individual	backup	pieces	(overriding	the	defaults	or	allocated
channels),	limit	the	size	of	backup	set	pieces,	and	many	other	tasks.	A	number	of	options
are	available.	In	the	next	sections	we	look	at	the	most	commonly	used	backup	command
options,	including	the	following:

			Backing	up	to	specific	device	types

			Controlling	the	makeup	of	the	backup	sets	and	backup	set	pieces

			Creating	multisection	backups

			Compressing	RMAN	backups

			Tags

			Restore	points

			Backup	duration	and	I/O	consumption

			Retention	policies

			Override	exclusion	policies

			Skipping	offline,	inaccessible,	or	read-only	datafiles

			Overriding	backup	optimization

			Backing	up	datafiles	based	on	the	last	time	they	were	backed	up,	or	datafiles

that	have	had	unrecoverable	operations	occur	on	them

			Checking	corruption	during	an	RMAN	backup

			Creating	more	than	one	copy	of	your	backup

			Including	control	file	backups	in	backup	sets	where	they	don’t	automatically
occur

Typically	any	setting	included	in	the	backup	command	will	override	any	RMAN
persistent	configuration	setting	or	manually	allocated	setting.

There	are	other	options	related	to	advanced	features	such	as	platform	migration	that	we
won’t	cover	now,	but	have	their	own	chapters	dedicated	to	them.	For	example,	if	you	are
interested	in	cross-platform	migration,	see	Chapter	21	for	information	on	the	options
available	for	this	feature.

Backing	Up	to	a	Specific	Device	Type
Perhaps	you	have	configured	different	default	channels,	one	to	disk	and	one	to	tape.	You
can	use	the	device	type	parameter	to	define	which	automatic	channel	device	you	wish	to
use	when	the	backup	begins.	Here	is	an	example:

Controlling	Attributes	of	Backup	Sets	and	Backup	Set
Pieces
You	can	control	a	number	of	attributes	related	to	backup	sets	and	backup	set	pieces	using
options	available	when	you	issue	the	backup	command	at	the	RMAN	command	line.
Here	are	some	of	the	attributes	you	can	modify	(the	name	of	the	option	is	listed	in
parentheses):

			Backup	set	size	(maxsetsize).	Limit	the	size	of	any	backup	set.

			Maximum	files	per	backup	set	(filesperset).	Limit	the	total	number	of	backup
files	per	backup	set.	The	default	is	the	number	of	files	to	be	backed	up	divided	by
the	number	of	channels.	If	the	result	is	less	than	64,	that	becomes	the	default	value
for	the	filesperset	parameter.	Otherwise,	the	default	value	is	64.

			Include	datafiles	from	at	least	n	disks	for	each	backup	set	(diskratio).

			Name	and	location	of	backup	set	pieces	(format).

			Ignore	backup	optimization	and	force	a	backup	of	all	files	specified	in	the
backup	set	(force).

			Overwrite	existing	backup	set	pieces	or	image	copies	(reuse).

These	options	will	help	you	deal	with	the	cases	where	you	need	to	limit	or	modify	the
default	behaviors	of	RMAN.	It	should	be	fairly	rare	to	need	to	use	these	options,	however.
If	you	find	you	are	using	these	settings	on	a	regular	basis,	be	sure	to	review	them	and
determine	whether	you	really	need	to	be	using	them	still.

Multisection	Backups
Backups	of	databases	with	a	few	large	datafiles	can	take	longer	than	they	need.	By	default,
each	datafile	can	only	be	backed	up	on	an	individual	channel.	This	is	a	point	of
serialization	with	respect	to	backups	and	can	have	a	serious	performance	impact.
Multisection	backups	are	the	solution	to	this	problem.	Multisection	backups	provide	the
ability	to	take	large	datafiles	and	subdivide	them	into	smaller-sized	units	that	RMAN	can
treat	individually	for	backup	and	restore	purposes.	This	allows	for	processing	of	a	large
datafile	by	multiple	channels,	significantly	improving	throughput	and	reducing	the
execution	time	of	the	backup.

NOTE

Multisection	backups	are	probably	the	single	most	overlooked	performance
option	available	to	the	DBA	when	trying	to	performance-tune	a	database	RMAN
backup	(perhaps	second	only	to	channel	parallelization	management,	but	it’s
close).

Multisection	backups	are	enabled	through	the	use	of	the	section	size	parameter	of	the
backup	command.	This	option	provides	the	ability	to	parallelize	the	backup	of	large
database	datafiles,	which	can	improve	the	performance	of	a	backup	of	a	database	with	a
few	small	datafiles	and	several	large	ones	quite	a	bit.	As	the	backup	progresses,	each
datafile	will	be	backed	up	in	a	chunk	that	is	of	the	size	defined	by	the	section	size
parameter.	With	the	section	size	designated,	these	datafile	chunks	can	be	backed	up
individually	over	different	channels,	thus	parallelizing	the	backup	of	a	large	datafile.	This
provides	the	way	to	parallelize	the	backups	of	bigfile	tablespaces	and	use	all	of	the
bandwidth	at	your	disposal	when	backing	up	normal	tablespaces	with	large	database
datafiles.

Here	is	an	example	of	backing	up	a	bigfile	tablespace	called	USER_DATA,	chunking
the	backup	into	1GB	sections.	If	the	datafile	housing	the	USER_DATA	data	is	5GB	in
size,	then	the	result	will	be	five	backup	set	pieces,	spread	across	however	many	channels
are	allocated.

RMAN	Compression
As	you	saw	in	previous	examples,	you	can	actually	compress	backup	sets	(but	not	image
copies).	RMAN	offers	the	following	kinds	of	compression:

			Unused	block	compression	(supported	during	RMAN	backups	to	disk	and
using	Oracle	Secure	Backup	to	tape)

			Null	block	compression	(supported	by	any	RMAN	backup	type)

			Traditional	compression	of	backup	sets

Let’s	look	at	each	of	these	types	of	compression	next.

Unused	Block	Compression
During	a	backup,	RMAN	will	skip	reading	any	block	that	is	not	currently	allocated	to	an
object	in	use	by	the	database.	This	compression	is	available	regardless	of	whether	or	not
the	space	in	the	datafile	was	once	used.	The	following	conditions	must	exist	in	order	for
RMAN	to	use	this	feature:

			The	COMPATIBLE	parameter	must	be	set	greater	than	or	equal	to	10.2.

			Guaranteed	restore	points	cannot	be	configured.

			The	datafiles	must	be	locally	managed.

			The	backup	is	a	full	or	level	0	incremental	backup.	Image	copies	cannot	use
unused	block	compression.

			The	backup	is	created	to	disk,	or	Oracle	Secure	Backup	is	the	media
management	software	in	use.

Null	Block	Compression
With	this	form	of	compression,	Oracle	does	not	back	up	any	blocks	in	a	database	datafile
that	were	never	used.	This	kind	of	compression	is	always	available	for	RMAN	full
backups	and	level	0	incremental	backups	without	restriction.	Image	copies	cannot	use	null
block	compression.

RMAN	Backup	Compression
We	provided	an	example	earlier	in	this	chapter	of	a	database	backup	using	RMAN
compression.	RMAN	has	the	ability	to	apply	compression	algorithms	to	your	backup	sets.
The	end	result	is	that	backup	sets	are	often	much	smaller.	RMAN	compression	can
significantly	reduce	the	size	of	backup	sets.	Compression	can	be	significant;	for	example,
in	one	of	our	test	databases,	we	saw	a	70	percent	difference	in	the	size	of	the	backup	set
images	when	using	compression.	If	you	don’t	have	the	database	configured	to
automatically	compress	backup	sets,	you	can	use	the	as	compressed	backupset	parameter
to	create	the	backup	set	as	a	compressed	backup	set.	If	you	have	compression	configured
and	you	do	not	wish	to	use	it	in	a	given	backup	command,	simply	use	the	as	backupset
parameter	(without	the	compressed	keyword)	of	the	backup	command.

RMAN	offers	several	different	compression	options	to	choose	from:

			None	(the	default)

			BASIC	(the	default	type	of	compression,	if	compression	is	used)

			LOW

			MEDIUM

			HIGH

You	can	see	all	of	the	available	compression	methods	by	querying	the	Oracle	Database

view	V$RMAN_COMPRESSION_ALGORITHM.	This	view	also	includes	algorithms
that	are	no	longer	supported	by	RMAN.

By	default,	RMAN	does	not	use	compression	during	backups.	If	you	choose	to	use
compression,	then	the	default	type	of	compression	that	will	be	used	is	BASIC.	BASIC
compression	does	quite	a	good	job	of	compressing	a	backup.	Compression	ratios	of	50	to
60	percent	are	not	unusual	with	BASIC	compression.	The	nice	thing	about	BASIC
compression	is	that	no	additional	licensing	is	required,	so	you	are	free	to	use	BASIC
compression	any	time!

The	remaining	compression	methods	(LOW,	MEDIUM,	and	HIGH)	require	that	you
license	the	Oracle	Advanced	Compression	option.	These	levels	of	compression	offer	you
the	ability	to	control	the	overall	impact	of	compression	on	the	system.	LOW	offers	some
compression	with	minimal	CPU	impact,	whereas	MEDIUM	and	HIGH	offer
incrementally	better	compression	with	incrementally	higher	performance	impacts.

To	use	a	specific	compression	algorithm	other	than	the	default,	you	will	need	to	use	the
configure	command’s	compression	algorithm	parameter	followed	by	the	type	of
compression	you	want	to	use.	Here	are	the	commands	you	can	use	to	configure	the
compression	algorithm	default:

Configuring	the	compression	algorithm	will	not	cause	backups	to	use	compression	by
default.	To	enable	compression	of	backup	sets	by	default,	you	need	to	use	the	RMAN
configure	command	to	set	the	default	device	type,	where	the	backup	type	is	compressed
backupset,	or	you	can	indicate	that	you	want	to	use	compression	on	the	backup
command	line	itself.

Here	is	an	example	of	configuring	the	default	device	type	to	use	compression:

In	this	case,	each	time	you	issue	the	RMAN	backup	command,	the	backup	will	be
compressed	automatically	using	the	configured	compression	algorithm.	All	backup	sets
created	by	that	backup	will	be	encrypted.	Therefore,	if	you	include	the	plus	archivelog
command	(discussed	later	in	this	chapter	in	more	detail),	which	will	create	archived	redo
log	backup	sets,	then	those	backup	sets	will	also	be	compressed.

You	can	reset	the	default	to	a	noncompressed	backupset	using	the	configure	command,
as	shown	here:

You	can	clear	these	settings	and	reenable	the	defaults	using	the	configure	command
with	the	clear	option,	as	shown	here:

You	can	override	the	configured	defaults	for	the	compression	algorithm	or	if
compression	is	used.	To	override	the	default	compression	algorithm	of	RMAN	for	a
backup	without	changing	the	default,	you	use	the	set	command	before	executing	that
backup.	In	this	example,	we	are	modifying	the	compression	algorithm	to	LOW	before	we
execute	our	compressed	backup.	Here	we	are	setting	the	compression	algorithm	to	LOW:

This	configuration	setting	will	apply	to	the	current	RMAN	session.	It	will	only	apply
until	we	exit	our	session	or	if	we	use	the	set	command	to	change	the	compression
algorithm	again.

You	can	also	enable	compression	from	the	backup	command	directly	(or	use	a	type	of
compression	that	is	different	from	the	default	value	you	configured).	To	do	so,	you	simply
use	the	backup	command	with	the	as	compressed	backupset	option.

If	you	wish	to	override	the	default	compression	algorithm	of	RMAN	for	a	backup
without	changing	the	default,	you	use	the	set	command	before	executing	that	backup.	In
this	example,	we	are	modifying	the	compression	algorithm	to	LOW	before	we	execute	our
compressed	backup:

Here	is	an	example	of	enabling	compression	from	the	backup	command.	In	this
example,	we	are	going	to	back	up	the	database	using	the	default	configured	compression
algorithm:

In	this	next	example,	we	enable	compression	from	the	backup	command	using	a
specific	type	of	compression	algorithm.	In	this	case,	we	are	going	to	back	up	the	database
using	the	LOW	compression	algorithm:

Compression	can	make	a	substantial	impact	on	the	size	of	your	backups.	For	example,
we	backed	up	a	database	that	had	datafiles	that	totaled	3.1GB	in	size.	(This	does	not
include	the	size	of	any	database	tempfiles,	which	are	not	included	in	an	RMAN	backup
anyway.)	We	ran	a	backup	without	any	compression,	as	well	as	backups	using	BASIC	and
LOW	compression.	We	also	ran	the	backups	using	only	one	channel	to	ensure	that	we	got
consistent	results.

The	uncompressed	backup	consumed	2.5GB	of	disk	space	and	took	five	and	a	half
minutes.	Remember	that	we	ran	this	backup	in	serial,	so	we	were	not	looking	to	optimize
the	backup	time	in	this	example.	So,	here	we	see	the	effects	of	default	compression
features	such	as	reduced	undo	backup,	null	block	compression,	and	the	like.

When	we	backed	up	the	database	using	BASIC	compression,	that	backup	consumed
only	625GB	of	disk	space.	The	time	it	took	to	compress	the	backup	was	longer	than	the
uncompressed	backup	(in	this	case,	14	minutes).	This	should	not	be	considered	a	typical
benchmark	test	with	respect	to	time-based	performance,	as	this	was	not	our	goal.	Our
experience	is	that	run	times	of	compressed	and	uncompressed	backup	sets	can	vary

considerably	by	system,	depending	on	a	number	of	factors.	We	have	often	seen
compressed	backups	run	much	faster	than	their	uncompressed	cousins.	So,	the	bottom	line
is	to	test	compression	on	your	system	to	figure	out	what	benefit	it	might	give	you,	and	at
what	cost.

With	compression,	finding	the	correct	degree	of	parallelization	of	the	backup	is	critical.
Depending	on	the	device	you	are	writing	to,	CPU	availability,	and	other	factors,	it	may	be
that	you	will	see	better	compressed	backup	performance	by	allocating	additional	channels
as	opposed	to	an	uncompressed	backup.	This	will	distribute	the	compression	process
across	more	CPUs	(assuming	you	have	the	capacity)	and	reduce	the	overall	I/O	footprint.
There	is	no	easy	way	to	determine	the	correct	degree	of	parallelization,	so	experimentation
will	be	required.

When	we	enabled	parallelization	across	three	CPUs	on	our	four-CPU	system,	we	found
that	the	compressed	backup	set	time	was	reduced	to	eight	minutes.	The	uncompressed
backup	set	time	took	about	five	and	a	half	minutes.	So,	at	the	cost	of	two	and	a	half
minutes	(over	the	original	five-and-a-half-minute	backup	earlier)	we	received	a	savings	of
roughly	73	percent	of	the	used	disk	space.	This	can	be	a	significant	savings	in
environments	where	disk	space	is	critical.

Other	considerations	for	the	use	of	compression	beyond	the	CPU	might	include	things
such	as	the	connection	between	the	database	server	and	the	device	you	are	backing	up	to.
For	example,	an	RMAN	backup	going	across	a	1Gb	Ethernet	channel	might	well	be	much
faster	if	you	enable	compression.	Enabling	compression	trades	an	increase	in	CPU
utilization	for	a	decrease	in	I/O.	This	can	result	in	a	significant	reduction	in	the	throughput
required	on	a	network	to	write	the	backup	set.	However,	if	you	are	CPU	constrained,	you
might	not	see	any	improvement.	Again,	testing	is	the	key,	and	finding	the	right
combination	of	parallelization	and	compression	(or	lack	thereof)	will	just	take	testing
time.

RMAN	backup	to	tape	devices	or	other	devices	that	utilize	their	own	compression
technologies	(or	de-duplication)	are	of	special	interest.	Often	we	are	asked,	should	we
compress	the	backup	with	RMAN	or	allow	the	device	to	compress	the	backup,	or	both?
The	answer	is,	as	usual,	it	depends.	We	discuss	this	subject	in	quite	a	bit	more	depth	in
Chapter	15	when	we	look	at	designing	an	overall	backup	and	recovery	architecture.

RMAN	Precompression	Block	Processing
When	you	execute	a	compressed	backup,	by	default,	Oracle	will	compress	the	blocks
when	they	are	moved	to	the	output	buffer	from	the	input	buffer	of	the	channel.	This	offers
a	reasonable	compression	ratio	without	major	CPU	impact.	If	you	wish	to	achieve	better
compression	ratios,	but	at	some	cost	in	CPU,	you	can	enable	precompression	block
processing.

RMAN	precompression	block	processing	consolidates	all	of	the	free	space	in	a	block
and	optimizes	the	free	space	for	compression.	As	you	might	expect,	this	consolidation
process	usually	results	in	more	CPU	overhead.	However,	it	can	also	improve	the
compression	ratios	of	your	database	backups.

Using	precompression	block	processing	has	the	best	effect	when	you	have	a	database

with	high	DML	transaction	rates	(lots	of	insert	and	delete	activity	in	particular).	This	can
often	leave	blocks	in	a	“Swiss	cheese”	state,	where	the	block	is	fragmented	with	empty
space	and	used	space.	This	kind	of	database	is	a	perfect	candidate	for	precompression
block	processing.	If	your	database	has	low	DML	update	or	delete	activity,	you	will	find
little	benefit	from	this	option	because	the	blocks	in	databases	with	little	or	no	delete	or
update	DML	activity	tend	not	to	have	a	great	deal	of	wasted	space.

NOTE

Although	Oracle	does	coalesce	fragmented	space	within	a	free	block,	this	is
done	on	an	irregular	basis	(during	subsequent	insert	and	update	statements	that
need	space	available	in	a	block,	but	the	block	is	fragmented)	to	reduce	the
performance	impact	on	the	database.	As	a	result,	a	great	deal	of	block
fragmentation	may	be	present	in	a	database,	especially	when	it	is	heavily	used.

To	enable	precompression	block	processing,	use	the	configure	command	along	with
the	compression	algorithm	optimize	for	load	false	parameter.	Use	the	parameter
optimize	for	load	true	to	disable	precompression	block	processing.	Here	is	an	example	of
enabling	precompression	block	processing:

Note	that	you	must	also	indicate	the	compression	algorithm	(BASIC	in	our	case)	in	the
same	configure	command	that	you	use	to	enable	precompression	block	processing.

NOTE

RMAN	does	not	need	to	back	up	most	of	the	undo	within	the	database.	This	is
because	most	undo	is	not	really	needed	to	recover	the	database.	This	can	reduce
the	time	to	complete	backups,	as	well	as	reduce	the	overall	size	of	a	database
backup!

Tags
Each	backup	(except	control	file	autobackups)	in	Oracle	is	assigned	either	a	default	tag	or
a	user-defined	tag.	A	tag	is	a	name	of	no	more	than	30	characters	that	is	associated	with	a
specific	backup	and	can	be	referenced	during	restore	operations	to	indicate	a	specific
backup	to	be	used.

Tags	are	not	required	to	be	unique,	so	you	can	reuse	the	same	tag	for	similar	types	of
backups—say,	for	example,	a	“DAILY_LEVEL_1”	tag.	Tags	are	stored	in	all	uppercase,
regardless	of	the	case	used	when	the	tag	was	defined.	When	the	same	tag	is	used	for
multiple	RMAN	backup	operations,	RMAN	will	restore	the	most	current	version	of	that
tagged	backup,	subject	to	any	other	constraints	issued	within	the	restore	command	(see

Chapter	8	for	more	on	the	RMAN	restore	and	recover	commands).

Tags	can	be	used	with	RMAN	full	backups,	tablespace	backups,	datafile	backups,
incremental	backups,	and	even	backup	copies	(all	of	which	will	be	discussed	in	this
chapter).	Here	is	an	example	of	assigning	a	tag	to	a	full	backup:

In	this	example,	we	used	the	tag	parameter	to	identify	this	backup.	Each	tag	should	be
unique,	and	RMAN	will	allocate	a	tag	to	each	backup	set	by	using	a	default	naming
convention	if	one	is	not	assigned.	The	same	tag	can	be	applied	to	multiple	backups,	and
the	latest	backup	will	be	restored	by	default.

We	strongly	support	the	use	of	tags	to	identify	specific	RMAN	backup	operations.	For
example,	FULL_INCREMENTAL	and	INCREMENTAL_CUM	tags	might	be	used	for
your	incremental	backups	and	ARCHIVELOG_BACKUP_HOURLY	might	be	used	for
automated	hourly	archive	log	backups.

Restore	Points
Whereas	a	tag	is	associated	with	a	specific	backup,	a	restore	point	is	associated	with	a
specific	point	in	time.	You	can	create	a	restore	point	from	the	RMAN	prompt	easily	using
the	SQL	create	restore	point	command,	as	shown	here	(you	will	need	to	use	the	SQL
command	if	you	are	trying	to	execute	this	in	RMAN	versions	prior	to	Oracle	Database
12c):

You	can	also	create	a	restore	point	from	the	SQL*Plus	point	with	the	create	restore
point	command,	as	shown	in	this	example:

Normal	restore	points	are	subject	to	being	removed	after	a	period	of	time.	The	primary
constraint	is	the	availability	of	undo,	which	Oracle	will	try	to	retain	for	a	period	of	time,	as
designated	by	the	parameter	DB_FLASHBACK_RETENTION_TARGET.	However,	this
retention	period	is	not	guaranteed,	and	it’s	possible	that	you	will	lose	the	undo	required	to
perform	the	flashback	operation.

If	you	need	to	ensure	that	you	can	effectively	use	a	restore	point	at	all	times,	you	can
create	a	guaranteed	restore	point	as	shown	here:

In	this	case,	Oracle	will	preserve	the	information	needed	to	flash	back	the	database	to
the	restore	point	identified	by	the	name	Charlie_one.	Guaranteed	restore	points	require
that	the	FRA	be	configured,	and	they	can	consume	a	lot	of	space	in	the	FRA.	Also,
guaranteed	restore	points	only	guarantee	that	the	entire	database	can	be	restored	to	the
point	in	time	defined	by	the	guaranteed	restore	point.	This	same	guarantee	does	not	apply
to	the	flashback	of	tables	or	other	kinds	of	flashback	operations.

If	you	create	backups	using	the	keep	option,	you	can	also	create	a	normal	restore	point
during	that	backup.	See	the	section	on	the	keep	option	later	in	this	chapter	for	more
information	on	creating	restore	points	when	using	the	keep	option.	This	restore	point	will

be	maintained	for	the	life	of	the	backup.

Restore	points	can	be	referenced	during	RMAN	restores	in	lieu	of	other	point-in-time
restore	methods	(such	as	time-based	restores).	We	will	discuss	using	restore	points	for
recovery	in	more	detail	in	Chapter	16.

The	duration	Command:	Putting	Limits	on	Backups
To	assist	you	in	reducing	the	overall	I/O	impact	of	an	RMAN	backup	on	other	processes,
RMAN	offers	the	duration	parameter	of	the	backup	command.	The	duration	parameter
is	like	an	alarm	clock;	if	the	backup	runs	longer	than	the	duration	specified,	RMAN	will
cancel	the	backup.	Here	is	an	example	of	using	the	backup	duration	command:

When	using	the	duration	parameter,	you	can	indicate	how	RMAN	should	treat
backups	that	fail	the	backup	duration	time	restriction.	When	you	use	the	partial
parameter,	if	the	backup	is	terminated	because	it	has	exceeded	the	duration	parameter,
RMAN	will	not	treat	it	as	a	failed	backup.	Thus,	remaining	commands	in	any	run	block
will	continue	to	be	executed.	This	is	handy	if	you	have	subsequent	backup	commands
such	as	archived	redo	log	backups.	Regardless	of	the	setting	of	partial,	Oracle	will
consider	any	backup	set	that	has	been	completed	successfully	to	be	usable	even	if	the
entire	backup	process	did	not	complete.

One	thing	that	makes	the	duration	parameter	a	bit	less	usable	is	that	you	cannot	use	the
backup	database	plus	archivelog	command.	However,	you	can	separate	the	two	backups
and	use	the	duration	parameter	for	each,	as	shown	here:

The	duration	parameter	also	helps	you	to	throttle	your	backups.	When	defining	a
duration,	you	can	indicate	that	RMAN	should	try	to	minimize	either	of	the	following:

			The	time	that	the	backup	takes	to	run

			The	I/O	load	that	the	backup	consumes

If	you	try	to	minimize	the	time	the	backup	runs,	RMAN	will	back	up	at	full	speed.	This
is	the	default	setting.	Another	feature	when	you	use	the	default	minimize	time	parameter
is	that	RMAN	will	prioritize	the	datafiles	that	are	backed	up.	Those	that	were	backed	up
recently	will	have	a	lower	priority	than	those	that	have	not	been	backed	up	recently.

You	can	also	tell	RMAN	to	try	to	spread	out	the	backup	I/O	over	the	duration	window
that	you	have	established,	thus	eliminating	the	overall	impact	that	the	backup	has	on	the
system:

Archival	Backups
The	keep	parameter	of	the	RMAN	backup	command	is	used	to	override	default	retention

criteria.	When	a	backup	is	created	with	the	keep	option,	the	backup	is	called	an	archival
backup.	This	archival	backup	is	a	completely	self-contained	backup	(meaning	it	includes
the	archived	redo	logs	needed	to	perform	a	consistent	recovery).

NOTE

How	backups	using	the	keep	parameter	worked	in	earlier	versions	of	RMAN	is
different	than	described	here.	Please	reference	the	Oracle	RMAN	Backup	and
Recovery	Reference	for	your	version	of	RMAN	and	the	Oracle	Database	to	make
sure	you	properly	understand	how	the	keep	parameter	works	in	your	version	of
the	database.

You	cannot	store	archival	backups	in	the	FRA.	Any	attempt	to	do	so	will	cause	an	error
to	occur	during	the	backup.

You	can	use	the	keep	parameter	when	performing	incremental	backups.	In	such	cases
the	full	backup	needs	to	use	the	keep	parameter	and	must	have	a	tag.	The	subsequent
incremental	backups	must	also	use	the	keep	parameter	and	must	have	the	same	tag	as	the
parent	backup.	These	backups	would	be	considered	completely	different	from	incremental
backups	that	do	not	use	the	keep	parameter,	such	as	your	normal	daily	backups.

The	keep	parameter	has	the	following	options:

			forever			Indicates	that	the	archival	backup	should	be	maintained	until	it	is
manually	removed.	Using	the	keep	forever	option	requires	the	use	of	a	recovery
catalog	since	control	file	records	can	be	aged	out.	Here	is	an	example	of	the	use	of
the	keep	forever	parameter	during	a	backup:

			until	time	string			This	option	defines	an	alternative	retention	criterion	for	the
backup.	Note	that	if	the	time	exceeds	365	days,	it	is	possible	that	the	records	will	be
aged	out	of	the	control	file.	Regardless,	RMAN	does	not	require	that	you	use	a
recovery	catalog	as	it	does	when	you	use	the	keep	forever	parameter.

The	use	of	the	tag	in	this	case	is	to	be	able	to	easily	identify	the	backup	for	restore
purposes.	We	can	also	associate	a	restore	point	with	a	given	archival	backup,	as	shown
here:

If	you	want	information	on	your	archival	backup,	you	can	use	the	list	backup	of
database	command	to	provide	this	information.	We	discuss	the	list	command	in	more
detail	in	Chapter	12,	but	here	is	an	example	of	the	output	you	might	expect	to	see.	Note	in

the	output	that	there	is	a	line	that	says	“Keep:	LOGS,”	followed	by	“Until”	and	a	date.
This	indicates	that	this	backup	is	an	archival	backup	and	that	it	will	be	kept	up	to	the	date
listed	in	the	Until	section	of	the	report.

Also,	you	can	query	the	V$BACKUP_SET	and	V$BACKUP_PIECE	views,	as	shown
in	the	sample	query	that	follows.	You	can	also	substitute	the	RC*	views	to	retrieve	this
same	information	from	the	recovery	catalog	schema.

Overriding	the	Configure	Exclude	Command
You	can	configure	RMAN	to	exclude	from	your	backups	any	datafiles	that	have	not
changed	since	the	last	backup	by	issuing	the	configure	exclude	command	(discussed	in
Chapter	5).	If	you	want	to	ensure	that	RMAN	backs	up	these	datafiles,	you	can	include	the
noexclude	parameter	in	the	backup	command.	In	this	example,	we	are	creating	an	archive
backup	using	the	keep	parameter.	It	makes	since	that	we	would	want	to	back	up	all	of	the
excluded	datafiles	in	that	backup,	which	we	do	in	this	example:

Skipping	Offline,	Inaccessible,	or	Read-Only	Datafiles
Sometimes,	you	will	have	a	datafile	in	your	database	that	has	a	status	other	than	ONLINE.
In	the	case	of	read-only	datafiles,	you	may	not	want	to	back	them	up	every	time	you	do	a
backup	of	the	database.	In	the	case	of	offline	or	inaccessible	datafiles,	RMAN	backups
will	fail	if	you	don’t	do	something	to	indicate	to	RMAN	to	skip	the	missing	datafiles.	This
is	what	the	skip	parameter	is	used	for.	You	can	skip	offline,	read-only,	or	inaccessible
datafiles	(or	all	three)	as	required.	Here	are	some	examples	of	how	to	do	this:

The	inaccessible	parameter	causes	Oracle	to	skip	files	that	cannot	be	read	at	all.	These
files	are	not	physically	on	the	disk	(for	example,	if	the	datafiles	have	been	deleted	from

the	disk	or	moved	to	another	location).	Datafiles	that	are	offline	but	physically	still	in
place	are	skipped	using	the	offline	parameter.	Finally,	the	skip	readonly	parameter	is	used
to	cause	Oracle	to	skip	backing	up	a	read-only	datafile.	Of	course,	you	can	use	the
configure	command	to	enable	backup	optimization,	indicating	that	Oracle	should	not	back
up	read-only	tablespaces	at	all,	which	leads	us	to	our	next	section.

Override	Backup	Optimization
In	the	preceding	section,	we	showed	you	how	to	cause	a	backup	to	skip	read-only
datafiles,	but	this	can	be	a	bit	tedious.	Oracle	offers	backup	optimization	to	make	life	a	bit
easier.	We	talked	about	backup	optimization	in	Chapter	3	in	association	with	the
configure	command.	Backup	optimization	causes	RMAN	to	not	back	up	unchanged
tablespaces	(for	example,	read-only	tablespaces)	by	default.	If	you	want	a	specific	backup
to	be	forced	to	ignore	that	configuration	setting,	you	can	use	the	force	parameter	to	ensure
that	all	datafiles	are	backed	up.	Here	is	an	example:

Backing	Up	Datafiles	Based	on	Their	Last	Backup	Time
Oracle	allows	you	to	indicate	in	your	backup	process	if	you	prefer	to	only	back	up
database	datafiles	that	have	not	been	backed	up	since	a	given	time.	This	is	handy	if	you
have	added	new	datafiles	(as	we	discuss	first	in	this	section),	or	if	you	only	want	to	back
up	datafiles	that	have	changed	in	a	given	number	of	days.	Let’s	look	at	each	of	these
choices	in	a	bit	more	detail.

Backing	Up	Only	Newly	Added	Datafiles
Here	is	a	neat	option	you	can	use.	Suppose	you	have	just	added	four	or	five	new	datafiles
to	the	database,	and	you	want	to	back	them	up	without	having	to	back	up	the	entire
database.	You	could	just	back	up	the	individual	datafiles	(as	we	will	show	you	later	in	this
chapter),	but	there	is	an	easier	way.	You	can	use	the	not	backed	up	option	of	the	backup
command,	and	RMAN	will	only	back	up	datafiles	that	have	not	been	backed	up.	Here	is
an	example:

Backing	Up	Files	Not	Backed	Up	in	a	Specific	Time	Period
Perhaps	you	have	a	backup	strategy	in	which	you	back	up	only	specific	datafiles	on
specific	nights.	The	since	time	option	is	also	really	handy	if	you	need	to	restart	a	failed
backup.	If	the	backup	fails,	you	can	use	this	option,	after	you	have	corrected	the	cause	of
the	failure,	to	restart	the	backup.	For	example,	let’s	assume	that	your	tape	system	died	two
days	ago	in	the	middle	of	a	backup.	You	finally	got	the	tape	system	fixed,	so	how	would
you	restart	the	backup?	Simply	issue	this	command:

In	this	case,	RMAN	only	backs	up	those	datafiles	that	have	not	been	backed	up	within
the	last	two	days.	Note	that	you	can	express	the	time	in	the	database	NLS_DATE	format,

or	you	can	use	a	SQL	date	expression	such	as	the	one	in	our	example.	An	additional
parameter	to	the	since	time	option	applies	to	archive	log	backups	to	ensure	that	each
archive	log	is	backed	up	a	certain	number	of	times	before	it	is	removed.	We	cover	that
option	later	in	this	chapter.

Some	backup	strategies	include	backing	up	the	archived	redo	logs	once,	every	so	often
on	a	regular	basis,	and	then	later	during	the	nightly	backup.	In	some	cases,	configured
retention	policies	can	manage	the	strategy	you	wish	to	use,	especially	if	you	are	creating
archived	redo	logs	in	the	FRA.

Sometimes	the	configured	retention	defaults	don’t	always	provide	the	exact	flexibility
you	need,	or	if	you	are	backing	up	archived	redo	logs	in	a	non-FRA,	those	retention
criteria	won’t	be	applied	at	all.	In	these	cases,	we	need	to	perform	backups	in	such	a	way
that	we	manage	the	preservation	of	archived	redo	logs	and	remove	them	at	the	appropriate
time.

You	can	manage	the	removal	of	source	archived	redo	logs	after	they	are	backed	up	by
using	a	number	of	options	to	the	backup	archivelog	command.	For	example,	we	may
want	to	make	sure	that	all	archived	redo	logs	are	backed	up	twice	and	then	deleted.	The
command	to	perform	this	operation	would	be	as	follows:

In	this	case,	this	command	will	back	up	all	archived	redo	logs	that	have	not	been
backed	up	at	least	two	times.	The	delete	input	parameter	will	cause	all	of	the	archived
redo	logs	that	have	been	backed	up	at	least	twice	(including	this	backup)	to	be	deleted:

Checking	for	Logical	Corruption	during	a	Backup
By	default,	RMAN	checks	for	physical	corruption	of	database	blocks.	If	any	corruption	is
discovered,	the	backup	will	fail.	If	you	want	even	more	error	checking,	you	can	configure
a	backup	to	check	for	logical	corruption	by	using	the	check	logical	option	of	the	backup
command.	Here	are	a	couple	of	examples	of	the	use	of	this	option:

NOTE

If	you	are	using	Oracle	Active	Data	Guard,	did	you	know	that	it	offers	the
ability	to	automatically	repair	corrupt	blocks	on	the	primary	database,	in	the
background,	without	an	outage?	See	Chapter	17	for	more	information	on	this
feature!

The	first	example	physically	backs	up	the	database	as	it	is	checking	for	logical

corruption.	The	second	example	just	validates	the	database	blocks	performing	a	logical
database	verification	without	performing	an	actual	physical	backup	of	the	database.	If	you
want	the	backup	to	continue	through	a	given	number	of	errors,	you	need	to	set	the
maxcorrupt	parameter	first.	Interestingly,	the	set	maxcorrupt	command	is	one	of	the	few
RMAN	commands	left	that	still	requires	using	a	run	block,	as	shown	in	this	example:

NOTE

Even	though	some	of	the	text	generated	during	an	RMAN	validate	run	will
make	it	look	like	a	backup	set	is	being	created,	this	is	not	the	case.	No	RMAN
backup	file	pieces	will	be	generated	during	the	validate	run.

Making	Copies	of	Backups	on	Your	RMAN	Copier
Perhaps	you	wish	to	create	multiple	copies	of	the	backup	pieces	of	a	backup	set.	Although
this	can	be	configured	by	default,	you	can	also	use	the	copies	parameter	to	configure	a
specific	backup	to	create	multiple	copies	of	the	backup	pieces.	(You	could	also	use	the	set
backup	copies	parameter.)	Here	is	an	example	of	this	option	in	use:

Capturing	the	Elusive	Control	File
We	have	already	discussed	control	file	autobackups	in	Chapter	5.	Other	methods	of
backing	up	the	control	file	with	RMAN	include	the	following:

			Using	the	include	current	controlfile	option	during	a	backup.	This	creates	a
snapshot	of	the	current	control	file	and	places	it	into	each	backup	set	produced	by
the	backup	command.	Here	is	an	example	of	the	use	of	this	command:

If	you	do	a	backup	of	datafile	1,	the	control	file	will	get	backed	up	anyway.	So
this	parameter	comes	in	much	more	handy	if	you	are	doing	tablespace	or	datafile
backups.	Furthermore,	if	automated	backup	of	control	files	is	configured,	this
command	can	cause	the	current	control	file	to	be	stored	in	the	backup	set	also	(so
you	have	two	copies	of	the	control	file,	even	though	they	might	be	slightly	different
if	you	are	running	in	ARCHIVELOG	mode).

			Issuing	the	backup	as	copy	current	controlfile	will	create	a	backup	of	the
current	control	file.

Using	the	RMAN	Set	Command
Now	that	we	have	discussed	the	RMAN	backup	command,	we	should	take	a	quick	detour
and	look	at	the	RMAN	set	command.	The	set	command	is	used	to	define	settings	that
apply	only	to	the	current	RMAN	session.	In	other	words,	the	set	command	is	a	lot	like	the
configure	command	(refer	to	Chapter	3),	but	the	settings	are	not	persistent.	You	can	use
the	set	command	in	one	of	two	ways,	depending	on	the	set	command	you	need	to	use.	You
can	use	it	outside	a	run	block	for	these	operations:

			To	display	RMAN	commands	in	the	message	log,	use	the	set	echo	command.

			To	specify	a	database’s	database	identifier	(DBID),	use	the	set	dbid	command.

Certain	set	commands	can	only	be	used	within	the	confines	of	a	run	block.	The	most
common	are	the	following:

			The	set	newname	command	is	useful	if	you	are	performing	tablespace	point-
in-time	recovery	(TSPITR)	or	database	duplication.	The	set	newname	command
allows	you	to	specify	new	database	datafile	names.	This	is	useful	if	you	are	moving
the	database	to	a	new	system	and	the	file	system	names	are	different.	You	need	to
use	the	switch	command	in	combination	with	the	set	newname	command.	You	will
see	examples	of	this	in	later	chapters.

			Using	the	set	maxcorrupt	for	datafile	command	enables	you	to	define	the
maximum	number	of	data	block	corruptions	allowed	on	a	given	datafile	before	the
RMAN	operation	will	fail.	This	setting	applies	to	a	specific	datafile	setting.	All
corrupted	blocks	will	be	transferred	to	the
V$DATABASE_BLOCK_CORRUPTION	view.

			Using	the	set	archivelog	destination	command	allows	you	to	modify	the
archive_log_dest_1	destination	for	archived	redo	logs.	This	is	most	useful	during
restore	operation	because	it	allows	you	to	not	overwrite	any	existing	files	in	the
FRA.

			Using	set	with	the	until	clause	enables	you	to	define	a	specific	point	in	time,
an	SCN,	or	a	log	sequence	number	to	be	used	during	database	point-in-time
recovery.

			Using	the	set	backup	copies	command	enables	you	to	define	how	many
copies	of	the	backup	files	should	be	created	for	each	backup	piece	in	the	backup	set.

			Using	the	set	command	id	setting	enables	you	to	associate	a	given	server
session	to	a	given	channel.

			Using	the	set	controlfile	autobackup	format	for	device	type	command
enables	you	to	modify	the	default	format	for	control	file	autobackups.

			The	set	incarnation	command	is	used	to	reset	the	database	incarnation.	We
cover	this	particular	setting	in	more	detail	in	Chapter	9.

When	doing	backups,	you	may	well	need	to	use	some	of	these	commands.	For
example,	if	you	want	to	perform	a	backup	that	creates	two	copies	of	each	backup	piece
that	is	created	and	you	want	to	allow	for	ten	corruptions	in	datafile	3,	you	would	craft	a

backup	script	that	looks	like	this:

Offline	RMAN	Database	Backups
The	first	kind	of	RMAN	backup	we	want	to	discuss	is	called	an	offline	(or	cold)	backup.
An	offline	backup	simply	means	that	the	database	is	mounted	and	not	open	when	the
backup	occurs.	In	this	chapter	we	discuss	performing	offline	database	backups	with
RMAN	where	you	have	configured	default	settings	(as	discussed	in	Chapter	5).	Then,	we
discuss	offline	backups	where	you	need	to	define	settings	that	are	different	from	the
configured	default	settings	(or	you	have	not	configured	default	settings).

Offline	Backups	Using	Configured	Settings
In	this	section	we	discuss	offline	backups	of	databases	where	you	have	already	configured
default	settings	via	the	RMAN	configure	command.	We	consider	configuring	database
default	settings	via	the	RMAN	configure	command	to	be	a	best	practice,	but	there	will	be
cases	when	you	will	want	to	use	something	other	than	the	configured	defaults.	If	you	are
feeling	a	bit	unsure	about	the	configure	command,	go	have	a	peek	at	Chapter	5,	where	we
discuss	it	quite	a	bit.	It’s	important	(in	fact,	we	consider	it	a	best	practice),	so	go	ahead	and
we	will	wait	for	you	to	read	the	chapter	and	then	come	back	and	join	us—for	everyone
else,	go	grab	a	doughnut.

Now	that	you	understand	the	configure	command	and	have	configured	the	default
settings	as	appropriate,	we	are	ready	to	perform	the	first	backup	in	this	chapter—the
offline	backup	using	configured	RMAN	settings.

Keep	in	mind	that	we	are	discussing	offline	backups.	Specifically,	this	means	that	the
database	is	not	running	when	the	backups	are	being	done.	Offline	backups	are	independent
of	the	logging	mode	of	the	database.	However,	keep	in	mind	that	what	you	can	restore
(and,	more	particularly,	where	you	can	restore	to)	is	not	independent	of	the	logging	mode.
Knowing	this	might	inform	your	backup	strategy.

In	this	section	we	first	consider	backing	up	a	nonmultitenant	database	and	an	Oracle
Multitenant	database	at	the	CDB	level.	This	is	because	both	methods	of	backing	up	an
Oracle	database	at	that	level	are	the	same.	Then	we	look	at	offline	backups	of	PDBs
within	an	Oracle	Multitenant	database.

Complete	Offline	Backups	of	Multitenant	and	Nonmultitenant	Databases
Offline	backups	in	Oracle	Database	12c	may	come	in	two	forms.	One	form	is	a	backup	of
the	entire	database.	The	other	form	can	occur	when	you	are	using	Multitenant	Oracle,	and

this	would	be	to	back	up	a	PDB	offline.	We	will	show	you	examples	of	each	of	these	in	a
moment,	but	we	want	to	strongly	suggest	to	you	that	the	best	practice	is	to	put	your
database	in	ARCHIVELOG	mode	and	do	online	backups.	This	is	less	disruptive,	and	it
allows	you	to	standardize	on	one	backup	process.	Some	DBAs	feel	like	putting
development	or	test	databases	in	ARCHIVELOG	mode	is	a	waste	of	disk	space	because
they	will	be	generating	archived	redo	logs.	The	truth	is	that	if	your	space	availability	is	so
low	that	you	can’t	store	a	few	archived	redo	logs,	you	have	a	much	bigger	problem	than
running	in	ARCHIVELOG	mode	and	generating	those	logs.

Offline	Backups	of	Nonmultitenant	Databases	or	CDBs	in	NOARCHIVELOG
Mode			The	process	of	performing	an	offline	backup	of	a	database	that	is	not	a	multitenant
database	and	the	one	for	performing	a	backup	of	a	multitenant	database	that	includes	all
PDBs	of	the	multitenant	database	are	exactly	the	same.

To	start	the	backup,	sign	into	RMAN	(in	the	example	we	provide	for	this	backup,	we
are	not	using	a	recovery	catalog).	Next,	use	the	RMAN	commands	shutdown	and	startup
mount	to	mount	the	database,	which	is	the	condition	that	the	database	must	be	in	to
perform	an	offline	backup.	You	should	not	use	the	shutdown	abort	command	to	shut
down	the	database	at	this	time.	This	is	because	RMAN	will	detect	that	the	database	was
shut	down	in	an	inconsistent	manner	and	refuse	to	back	up	the	database	(it	is	pretty
particular	about	things).	You	can	use	the	shutdown	immediate	and	shutdown
transactional	RMAN	commands	because	these	will	provide	for	consistent	shutdowns	of
the	database.	You	can	also	issue	these	commands	from	SQL*Plus,	if	you	prefer,	and	then
return	to	RMAN.

Once	the	database	has	been	successfully	mounted,	simply	issue	a	backup	database
command,	and	the	backup	will	occur.	Here	is	an	example	of	the	commands	you	would
issue	to	perform	an	offline	backup	via	RMAN:

If	you	prefer,	you	could	do	this	as	a	compressed	backup	set:

Offline	Backups	of	Nonmultitenant	Databases	or	CDBs	in	ARCHIVELOG
Mode			Now,	sometimes	there	is	confusion	about	offline	backups	and	when	the	database	is
in	ARCHIVELOG	mode.	If	you	perform	an	RMAN	offline	backup	when	the	database	is
in	ARCHIVELOG	mode,	should	you	back	up	the	archived	redo	logs?	Our	answer	is,	“Yes,
of	course.”	While	the	database	itself	will	be	consistent	during	the	backup,	and	no	redo	logs
would	be	required	to	recover	it,	the	presence	of	the	redo	logs	will	provide	the	ability	to
restore	the	database	to	some	previous	point	in	time	(assuming	you	have	a	previous	backup
that	would	support	the	restore).	So,	if	your	database	is	in	ARCHIVELOG	mode,	the

backup	command	would	look	like	this:

We	have	added	a	couple	of	things	to	this	command.	First,	notice	the	as	compressed
backup	set	clause.	This	enables	compression	on	the	backup.	We	discuss	compression	later
in	this	chapter	as	well	as	in	other	chapters,	but	we	thought	we	would	give	you	a	preview	of
how	to	use	it.	Note	that	you	can	use	the	default	compression,	as	we	are	here,	without
needing	any	special	license.	Oracle	offers	other	compression	options	for	RMAN,	and	for
the	database,	that	require	a	separate	license	called	Advanced	Compression	be	purchased.

In	this	case,	we	are	also	using	the	command	plus	archivelog	delete	input	in	this
example.	This	backs	up	all	the	archived	redo	logs	produced	before	the	database	was	shut
down	and	then	deletes	them	after	they	have	been	backed	up.	So	you	will	see	an	archive
log	backup	before	the	database	backup	begins.	Because	the	database	is	down,	there	is	no
log	switch	that	occurs	at	the	end	of	the	backup	(and	indeed,	none	is	needed).	As	a	result,
no	archivelog	backup	is	needed	at	the	end	of	the	backup	(you	will	see	this	is	different	with
online	backups	later	in	this	chapter).

As	you	will	see	later,	this	is	the	same	way	you	do	online	backups.	Frankly,	doing	an
offline	backup	when	your	database	is	in	ARCHIVELOG	mode	does	seem	a	bit	silly.

Offline	Backups	of	Specific	PDBs	within	an	Oracle	Multitenant	Database
Backing	up	specific	PDBs	requires	that	the	database	be	in	ARCHIVELOG	mode.	If	the
database	is	in	NOARCHIVELOG	mode,	individual	backups	of	PDBs	are	not	supported	by
RMAN.	When	a	database	is	in	ARCHIVELOG	mode,	RMAN	will	permit	you	to	perform
offline	backups	of	individual	PDBs.

The	only	way	to	perform	a	truly	offline	backup	of	a	PDB	is	to	use	the	startup	mount
command	to	mount	the	CDB.	You	can	then	use	the	backup	pluggable	database
command	to	back	up	specific	PDBs.	Here	is	an	example	of	performing	this	kind	of
operation:

In	this	case,	we	use	the	backup	command	to	back	up	the	mypdb	pluggable	database.
We	also	use	the	plus	archivelog	delete	input	command	to	back	up	and	delete	the	archived
redo	logs.	This	will	cause	all	the	archived	redo	logs	for	the	entire	CDB	to	be	backed	up.
Keep	in	mind	that	although	the	PDBs	are	separate	logical	entities	in	their	own	right,	they
share	the	redo	stream	with	the	entire	CDB	database.	As	a	result,	we	need	to	back	up	the
archived	redo	logs	so	that	the	PDB	we	are	backing	up	(and	indeed,	the	entire	CDB)	can	be
restored.

The	truth	of	the	matter	is	that	because	backing	up	an	individual	PDB	requires	the
database	to	be	in	ARCHIVELOG	mode,	it	does	not	make	much	sense	to	do	these	kinds	of
backups.	In	cases	where	the	database	is	in	ARCHIVELOG	mode,	the	best	practice	is	to
perform	online	backups	and	not	offline	backups.

One	final	point:	you	might	ask	if	you	can	connect	to	an	open	CDB	that	is	in
NOARCHIVELOG	mode	and	back	up	a	PDB	that	is	not	open.	The	answer	is	no,	and	in
fact	Oracle	will	not	let	you	do	such	a	thing.	If	you	try,	you	will	get	this	error	message:

RMAN	Workshop:	Perform	an	Offline	Backup
Workshop	Notes
This	workshop	assumes	the	following:

			That	the	database	is	in	NOARCHIVELOG	mode.

			That	the	database	has	been	configured	with	automatic	channels,	as
shown	in	Chapter	5.

			You	have	configured	a	database	account	called	backup_admin	for
backups	(as	described	in	Chapter	5).

			You	are	backing	up	to	a	disk	device.

			That	the	database	is	an	Oracle	Database	12c	multitenant	database	that
has	one	PDB	in	it	called	MYPDB.

Note	that	this	workshop	will	work	just	fine	if	you	run	it	on	a	database	that	is	a
nonmultitenant	database.	The	only	difference	is	that	the	output	will	be	slightly
different,	in	that	it	will	not	contain	any	PDB	backup	output.	You	would	also	log	into
a	CDB	using	a	common	user	account	(c##	account).

Let’s	do	this	workshop	then.

Step	1.			Set	your	environment	and	start	RMAN:

Step	2.			Shut	down	the	database	with	the	shutdown	immediate	command:

Step	3.			Mount	the	database	with	the	startup	mount	command:

Step	4.			Back	up	the	database	with	the	backup	database	command.	In	this	case,	to

save	disk	space,	we	will	compress	our	backup	set	(because	we	have	not	configured
compression	as	a	default	setting):

Step	5.			Use	the	alter	database	open	command	to	open	the	database:

Here	is	an	example	of	a	complete	offline	RMAN	backup	following	these	steps:

Breaking	Down	the	Workshop	Output
A	lot	of	output	is	created	when	an	RMAN	backup	is	executed.	The	previous	workshop
pretty	well	demonstrated	that,	didn’t	it?	In	the	workshop	we	had	configured	some	default
settings,	which	reduced	the	number	of	commands	we	needed	to	use	significantly.	If	you
need	to	review	the	configuration	of	default	RMAN	settings,	you	will	want	to	review
Chapter	5.

We	logged	into	the	database	using	RMAN	and	issued	all	the	commands	from	the
RMAN	prompt.	We	really	didn’t	have	to	do	a	lot	of	work.	We	issued	the	shutdown	and
startup	mount	commands	to	shut	down	and	then	restart	the	database.	Next,	we	then
issued	the	backup	as	compressed	backupset	database	command	and	sat	back	to	watch
our	backup	take	off.	Pretty	easy,	huh?	RMAN	has	backed	up	our	database	datafiles,	our
control	file,	and	our	SPFILE	(assuming	we	have	configured	it	to	do	so).	Once	it’s	done,	all
we	have	to	do	is	issue	the	alter	database	open	command	to	open	the	database,	and	our
backup	is	complete.

In	the	workshop,	the	CDB	we	backed	up	has	a	PDB	in	it	called	MYPDB.	In	our	case,
we	have	the	PDB	configured	to	auto-open	when	the	CDB	starts.	If	we	did	not	have	the
PDB	configured	to	open	automatically,	we	would	need	to	open	the	PDB	with	the	alter
pluggable	database	command,	as	shown	here:

What	we	want	to	do	now	is	to	look	at	the	output	in	a	bit	more	detail.	This	is	important
because	we	want	to	be	able	to	interpret	what	RMAN	is	telling	us	during	the	backup
process.	The	ability	to	interpret	the	RMAN	output	is	critical	to	successful	troubleshooting
if	you	are	having	RMAN	issues	during	backups	or	restores.	In	the	following	sections	we
will	discuss	the	output	from	top	to	bottom,	in	this	order:

			Backup	of	the	CDB	root	container	or	non-CDB	database

			Backup	of	the	PDB

			Backup	of	the	seed	container

			Controlfile	automatic	backup

Note	that	if	you	are	backing	up	a	non-CDB	database,	the	middle	two	components—
backup	of	the	seed	container	and	backup	of	the	PDB—will	not	occur	because	they	only
exist	in	a	multitenant	environment.

Also,	the	backup	we	did	in	the	exercise	and	are	discussing	in	this	section	was	limited	to
a	single	channel.	If	we	parallelized	the	backup,	it	would	still	back	up	the	datafiles	in	this
order,	but	it	would	take	full	advantage	of	running	in	parallel.	Thus,	the	backup	of	the
PDBs	will	not	be	restricted	to	waiting	until	the	backup	of	the	CDB	is	complete.	We	just
ran	this	exercise	in	serial	mode	so	we	could	break	down	the	individual	components	and
talk	about	them	in	a	bit	more	depth.

Let’s	look	at	the	output	for	each	of	these	parts	of	the	backup	in	more	detail.	Also,	let’s
address	how	we	might	have	connected	to	and	used	the	recovery	catalog	during	this	backup
in	a	bit	more	detail.

NOTE

You	might	have	noticed	that	we	switch	back	and	forth	between	the	use	of	the
terms	container	and	PDB.	Technically,	all	PDBs	are	considered	containers,
including	the	seed	container/PDB.	The	root	of	the	CDB	is	also	a	container,	but	it’s
not	a	PDB.	We	tend	to	revolve	around	the	use	of	both	of	those	words	often.
Usually	people	call	them	PDBs,	but	use	of	the	word	container	is	perfectly
acceptable.	Referring	to	the	root	container	as	a	PDB	would	not	be	correct,
however.

Backup	of	the	CDB	Root	Container	or	Non-CDB	Database
In	the	workshop,	the	first	thing	RMAN	does	is	back	up	the	datafiles	related	to	the	root

component	of	the	CDB.	If	the	database	were	a	nonmultitenant	database,	this	would	have
been	a	backup	of	the	entire	database.	Both	are,	for	all	practical	purposes,	the	same.

This	is	a	backup	of	what	is	called	the	root	container	in	a	multitenant	database.	Recall
that	in	the	multitenant	architecture,	the	root	container	is	the	central	storage	for	all	metadata
related	to	the	entire	CDB.	With	a	non-CDB,	the	whole	database	would	be	backed	up.	Let’s
look	at	the	RMAN	output	specific	to	this	part	of	the	backup:

Let’s	break	this	output	down	a	bit.	First,	there	is	this	part	of	the	output:

Here,	we	see	a	line	that	indicates	that	the	backup	is	starting.	We	see	the	allocation	of	a
single	channel.	The	configuration	of	that	channel	was	done	with	the	configure	command,
as	demonstrated	in	Chapter	5	of	this	book.	We	then	see	that	the	channel	is	allocated	to
disk.

Notice	the	SID=5	part	of	the	output.	That	is	the	Oracle	Database	session	identifier
(SID)	that	channel	ORA_DISK_1	is	associated	with.	Each	channel	represents	a	unique
connection	between	either	the	RMAN	client	and	the	database,	the	target	database	and	the
recovery	catalog,	or	the	target	database	and	the	media	where	the	backup	is	being	moved
to.	In	this	case,	SID	5	is	being	used	to	manage	the	channel	that	is	actually	writing	the

database	backup	out	to	disk.	The	use	of	Oracle	sessions	is	what	provides	the	ability	to
parallelize	an	RMAN	backup.	In	our	case,	we	just	had	a	single	channel.	In	a	later
workshop	we	will	enable	more	than	one	channel	for	the	backup.	Finally,	we	see	the	output
that	tells	us	the	backup	is	beginning.	Notice	it	is	telling	us	that	the	backup	is	a	compressed
full	datafile	backup	set—this	makes	it	clear	to	us	what	kind	of	backup	is	occurring	here.
It’s	possible	that	there	will	be	other	kinds	of	backups	reported	here,	which	you	will	see
later	in	this	chapter.

Next,	we	see	the	actual	backup	of	the	datafiles	of	the	CDB	listed	in	the	backup	output:

In	this	example	we	backed	up	all	four	datafiles	that	belong	to	the	root	container	of	the
MYCDB	database.	We	can	see	these	same	four	datafiles	in	this	query	when	we	are	logged
into	the	root	container	of	the	database:

Note	the	association	with	the	file	number	listed	in	the	RMAN	output	and	the	FILE_ID
column	value	for	the	datafiles	listed	in	the	preceding	query.	This	relationship	can	help	you

during	specific	recovery	situations	where	you	just	need	to	recover	one	or	a	few	datafiles.
In	those	cases	you	can	opt	to	restore	the	datafile	by	number,	which	can	make	things	much
easier.

Also,	looking	at	this	output	we	can	confirm	that	RMAN	did,	in	fact,	back	up	all	of	the
datafiles	related	to	the	root	container	of	the	database.	Each	of	the	individual	database
datafiles	were	contained	into	one	single	backup	set	piece,	which	is	listed	here:

The	notion	of	RMAN	backup	sets	and	backup	set	pieces	is	critical	to	understand	with
respect	to	backups.	We	discuss	these	fundamental	elements	of	RMAN	in	Chapter	3.	In	this
case,	the	four	datafiles	were	all	backed	up	into	a	single	backup	set	piece	with	the	huge
name	of	O1_MF_NNNDF_TAG20141023T154746_B4M1DM1F_.BKP.	I	guess	it’s	a
good	thing	that	the	old	filename	size	limitation	of	the	DOS	days	are	not	still	with	us!

Note	that	this	backup	set	piece	is	created	in	the	Fast	Recovery	Area	(FRA).	This	is	the
default	location	where	backup	set	pieces	will	be	created,	and	using	the	Fast	Recovery	Area
is	considered	a	best	practice.	Note	that	the	directories	in	the	FRA	are	created	by	RMAN
for	you,	so	you	don’t	need	to	worry	about	them.	Also,	note	that	the	directory	structures	are
very	logical,	including	the	database	name	(MYCDB),	the	type	of	file	contained	in	the
directory	(BACKUPSET),	and	the	date	of	the	backup.	This	is	the	general	format	you	will
find	used	throughout	the	FRA	when	you	use	it	with	RMAN.	Finally,	note	that	the	backup
set	piece	is	given	a	tag.	We	will	discuss	tags	shortly,	but	for	now	just	know	that	they	are
shorthand	identifiers	of	backup	sets.

Backup	of	the	PDBs
If	you	are	not	backing	up	a	multitenant	database,	RMAN	will	proceed	to	the	automatic
backup	of	the	control	file,	discussed	later	in	this	section.	If	you	are	backing	up	a
multitenant	database,	then	the	next	items	RMAN	will	back	up	are	the	various	PDBs	in	the
database.	You	can	see	this	PDB,	and	all	of	the	other	PDBs	in	the	database,	along	with	their
status,	by	querying	the	V$PDBS	view,	as	shown	here:

In	this	output	we	can	see	that	our	CDB	has	two	PDBs	in	it.	The	first	is	the	seed	PDB
called	PDB$SEED	(see	Chapter	4	for	more	information	on	the	seed	PDB/container).	Next
is	the	PDB	MYPDB.	When	performing	a	single-channel	full	backup	of	a	CDB,	RMAN
will	always	back	up	the	root	CDB	first,	then	all	of	the	PDBs,	and	then	finally	RMAN	will
back	up	the	seed	container.	If	you	are	using	parallel	channels,	you	will	find	the	CDB	and	a
mix	of	PDBs	being	backed	up	in	parallel.

RMAN	will	always	back	up	the	root	CDB	into	its	own	individual	backup	set	(or

backup	sets).	RMAN	will	also	back	up	each	individual	PDB	and	the	seed	container	into
their	own	backup	sets.	The	net	effect	of	this	is	that	each	container	is	localized	to	its	own
unique	backup	set,	which	makes	it	easier	to	restore	a	specific	container.

It’s	possible	that	this	division	of	PDBs	into	separate	backup	sets	could	have	some
performance	impacts	if	the	DOP	is	not	set	correctly.	This	would	not	be	unlike	the	situation
where	you	have	a	database	with	one	or	two	large	datafiles	that	cause	the	backup	to	take
longer	than	it	needs	to.	One	very	large	PDB	could	consume	all	of	the	channels	of	the
backup	and	hold	up	the	backup	of	smaller	or	medium-sized	PDBs.	In	some	extreme	cases
this	could	lead	to	longer	backup	times.	The	usual	solutions,	more	DOP	and	using	the
section	size	parameter,	can	be	used	to	deal	with	these	rare	situations.

Let’s	look	at	the	details	of	the	backup	of	the	MYPDB	that	occurred	as	a	part	of	the
workshop	we	just	did:

The	first	thing	to	note	is	that	the	PDB	has	its	own	unique	backup	set.	It	is	possible	for	a
given	PDB	to	be	in	more	than	one	backup	set,	depending	on	how	you	parallelize	the
backup	or	other	configuration	parameters	that	might	restrict	some	attribute	of	a	backup	set
or	backup	set	piece.	However,	the	PDB	datafiles	will	always	be	wholly	self-contained
within	those	individual	backup	sets	and	there	will	not	be	datafiles	related	to	other
containers	within	those	backup	sets.	Keeping	the	PDBs	self-contained	makes	sense,
because	if	you	need	to	restore	a	specific	PDB,	RMAN	will	only	need	to	access	a	few
backup	set	pieces,	rather	than	all	of	the	backup	sets	related	to	the	backup	itself.	This	will

speed	up	a	PDB-level	restore	quite	a	bit.

In	the	preceding	output	snippet,	we	can	see	the	indication	that	RMAN	is	creating	a	new
backup	set,	as	we	would	expect.	We	see	that	this	is	a	full	compressed	backup	set	and	we
are	backing	up	the	files	for	the	MYPDB	PDB.	All	of	the	PDBs	will	be	backed	up	at	this
point.

Look	at	the	location	of	the	database	datafiles	being	backed	up.	Do	you	see	the
difference	in	how	the	PDBs	are	stored	by	default	by	Oracle	when	they	are	created?	Here	is
one	of	the	datafiles	being	backed	up:

There	is	an	additional	directory	level	(the	big	long	name	that	ends	in	85E).	The	name	of
this	directory	is	also	the	GUID	of	the	PDB	that	owns	these	datafiles.	We	discussed	the
GUID	in	detail	in	Chapter	4.	To	quickly	refresh	your	memory,	the	GUID	is	a	unique
identifier	that	is	assigned	to	each	PDB.	The	purpose	of	the	GUID	is	to	be	unique	across
the	entire	database	infrastructure.	This	uniqueness	prevents	naming	collisions	that	might
occur	otherwise	(such	as	datafiles	with	the	same	name	that	might	occur	during	a
duplication	process).

NOTE

You	might	be	wondering	why	the	data	dictionary	and	V$	views	are	important	if
you’re	using	RMAN	and	Cloud	Control.	If	you	are	going	to	be	truly	proficient	in
backup	and	recovery,	you	need	to	understand	how	things	work.	There	may	come	a
point	in	your	career	that	you	will	need	to	do	something	during	a	recovery	where
Cloud	Control	is	not	available,	or	where	RMAN	isn’t	working	like	you	expect.	For
example,	knowing	that	the	V$	views	are	available	when	the	database	is	mounted
but	the	CDB	views	are	not	could	be	very	helpful	when	diagnosing	a	problem.

So,	how	can	you	tell	what	the	GUID	of	a	given	PDB	is?	I’m	glad	you	asked!	It’s
actually	very	simple.	The	GUID	is	contained	in	the	V$CONTAINERS	(and	V$PDBS)
view,	as	shown	in	this	example:

Knowing	the	GUID,	we	can	tell	which	PDB	datafiles	are	being	backed	up	by	RMAN
since	the	PDB	name	is	not	listed	in	the	RMAN	output.	To	get	the	name	of	the	PDB,	we
join	V$CONTAINERS	to	either	the	V$DATAFILE	view	or	DBA_DATA_FILES	view,

using	the	GUID	as	the	predicate,	as	shown	in	this	example:

Backup	of	the	Seed	Container
Finally,	RMAN	will	back	up	the	seed	container	(internally	called	PDB$SEED)	into	its
own	backup	set.	We	discussed	the	seed	container	earlier	in	this	book	when	we	introduced
you	to	the	concept	of	container	databases.	There	really	isn’t	much	different	about	this
backup,	except	to	note	that	the	datafiles	for	the	seed	are	once	again	stored	in	the	directory
where	the	datafiles	for	the	CDB	are	stored.	This	makes	sense	given	that	they	really	are	a
unit.	Because	the	backup	of	the	seed	is	pretty	much	the	same	and	requires	no	real
additional	explanation,	we	won’t	bother	reprinting	the	RMAN	output	for	that	part	of	the
backup	here.

Control	File	Automatic	Backup
We	mentioned	in	the	workshop	that	we	had	enabled	control	file	automated	backups.	In	the
last	section,	we	see	that	backup	occurring.	This	backup	will	occur	at	the	end	of	any
backup	of	the	database	or	of	the	database	archived	redo	logs.	The	control	file	and	the
database	SPFILE	are	both	backed	up	at	this	time.	As	you	will	see	in	Chapter	8,	this
backup	can	later	be	used	to	restore	these	files,	making	for	much	easier	recoveries	than
might	otherwise	be	possible.

One	thing	to	be	aware	of	is	that	if	we	had	not	configured	automated	backups	of	our
control	file,	RMAN	would	still	back	up	the	control	file	as	long	as	we	are	backing	up
datafile	1.	The	control	file	would	be	backed	up	into	the	backup	set	that	contains	datafile	1.
We	would	also	want	to	do	a	separate	control	file	backup	after	our	database	backup	is
complete,	so	we	would	have	the	most	current	control	file	backed	up	(because	the	control
file	backed	up	with	the	backup	set	will	not	have	the	complete	information	on	the	current
backup	in	it).	Note	that	this	control	file	is	a	bit	more	complicated	to	recover	if	you	do	not
configure	control	file	autobackups.	Because	of	this,	we	strongly	suggest	that	you
configure	control	file	autobackups	on	your	system.

Once	this	backup	is	complete,	the	channel	is	released	and	you	can	go	home.

NOTE

Oracle	only	supports	backups	of	SPFILEs	into	a	control	file	automated
backup.	You	cannot	back	up	your	database’s	text-based	init.ora	parameter	file
with	RMAN.

Using	the	Recovery	Catalog
If	we	had	created	a	recovery	catalog,	as	mentioned	in	Chapter	6,	we	could	have	connected
to	that	catalog	when	we	did	the	previous	workshop	exercise.	Nothing	in	the	exercise
would	need	to	be	different	except	for	one	change	on	how	we	connected	to	RMAN.	In	the
workshop	we	connected	to	RMAN	using	this	connection	string:

Because	we	didn’t	use	the	catalog	parameter,	we	will	be	using	the	control	file	as	the
repository	for	our	backup	metadata.	If	we	had	created	a	recovery	catalog,	we	could	have
easily	used	it	when	running	the	workshop.	All	you	would	need	to	do	is	modify	the	RMAN
command	line	to	have	it	also	connect	to	the	recovery	catalog,	as	you	can	see	here:

Notice	that	we	connected	to	our	recovery	catalog	using	Oracle	Net.	This	is	because	the
ORACLE_SID	identifier	was	set	to	point	to	the	database	we	were	backing	up.	Because	the
recovery	catalog	is	in	a	different	database,	we	had	to	use	an	Oracle	Net	service	name	to
connect	to	the	recovery	catalog.	We	could	have	done	things	the	other	way	around,	setting
the	ORACLE_SID	to	point	to	the	catalog	database	and	then	connecting	to	the	target
database	through	the	Net	service	name—unless	the	catalog	database	was	in	a	PDB,	of
course,	in	which	case	we	would	have	to	use	a	network	service	name.

Controlling	Chatty	RMAN	Output
RMAN	is	chatty,	isn’t	it?	Sometimes	we	just	want	the	backup	to	run	and	for	it	to	either	not
produce	output	or	to	redirect	output	somewhere	other	than	the	display.	RMAN	output	can
be	suppressed	by	using	the	log	RMAN	command-line	parameter.	Using	log,	you	can
redirect	RMAN	logging	to	a	file,	or	you	can	redirect	logging	to	/dev/null	on	Linux	to
totally	suppress	logging.	Using	the	log	parameter	will	stop	all	logging	to	the	screen.

Because	you	can	suppress	RMAN	logging,	it	makes	sense	that	there	is	a	view	that
maintains	the	output	you	would	have	otherwise	seen	from	RMAN.	This	information	is
available	in	the	V$RMAN_OUTPUT	view.	This	view	can	support	a	maximum	of	32,768
rows	of	the	last	RMAN	client	output.	This	information	is	stored	in	the	database	control
file,	and	it	is	not	reset	when	the	database	is	shut	down,	as	is	the	case	with	many	V$	views.
There	is	also	the	RC_RMAN_OUTPUT	view,	which	is	the	RMAN	recovery	catalog
equivalent	of	the	V$RMAN_OUTPUT	view.

Here	is	an	example	of	how	to	query	the	V$RMAN_OUTPUT	view:

Offline	Backups	without	Using	Configured	Defaults
What	if	we	had	not	configured	the	default	settings	mentioned	earlier	in	this	chapter?	Or
what	if	the	defaults	were	not	what	we	wanted	to	use?	Sometimes	we	can	override	the
defaults	within	the	given	RMAN	command	itself.	For	example,	if	we	wanted	to	back	up	to
a	different	disk	device	than	the	FRA	(or	defined	default),	we	can	easily	override	this	using
the	format	option	of	the	backup	command,	as	shown	here:

Sometimes	we	can’t	override	a	preconfigured	or	unconfigured	setting	on	the	backup
command	line.	In	these	cases,	a	run	block	is	required.	For	example,	in	this	case	we
assume	that	the	default	degree	of	parallelism	is	3	and	the	default	is	to	write	to	the	FRA.	If
we	want	to	change	the	degree	of	parallelism	to	2	for	one	time	only	and	write	to	a	different
location,	we	can	use	a	run	block	to	perform	this	activity.	Also,	a	run	block	provides	the
ability	to	coordinate	several	actions	into	one	operation.

A	run	block	consists	of	the	use	of	the	keyword	run,	followed	by	an	open	bracket	({).
You	then	enter	the	command	that	you	want	to	have	executed	within	the	context	of	the	run
block	and	then	terminate	the	run	block	with	a	close	bracket	(}).

In	this	example,	we	want	to	use	a	run	block	to	perform	several	operations	all	at	one
time.	First,	we	use	the	shutdown	command	to	shut	down	the	database	and	then	mount	it
with	the	startup	mount	command.	Then	we	run	our	backup	using	the	backup	command.
We	then	back	up	the	current	control	file,	and	finally	the	database	is	restarted:

When	you	create	the	run	block,	Oracle	waits	until	all	of	the	statements	in	the	block	have
been	entered	and	you	have	closed	out	the	run	block	with	the	close	bracket.	All	of	the
statements	within	that	run	block	will	then	run	as	a	single	unit.	If	one	statement	fails,	the
rest	of	the	statements	will	not	be	executed	inside	the	block.	You	can	see	how	this	might	be
a	problem	in	the	preceding	example	should	one	of	the	backups	fail	for	some	reason.	The
alter	database	open	command	would	not	be	used	and	we	would	return	the	next	morning
to	a	database	that	is	not	open.	As	a	result,	the	use	of	the	run	block	is	less	and	less
frequent.	Instead,	now	we	see	RMAN	scripts	being	run,	either	from	OEM	Cloud	Control,

from	a	shared	common	directory,	or	those	stored	in	the	recovery	catalog	(my	preference	is
OEM	Cloud	Control).

Online	RMAN	Database	Backups
We	have	spent	the	first	half	of	this	chapter	on	offline	backups	and	the	set	command.	If	you
are	interested	in	online	backups,	then	this	section	(and	the	following	one)	is	for	you.	Still,
don’t	skip	the	previous	sections,	because	they	present	a	great	deal	of	foundational
information	that	won’t	be	repeated	here.	If	you	are	jumping	into	the	chapter	at	this	point,
first	go	back	and	read	the	previous	sections.	If	you	have	read	the	first	half	of	the	chapter
already	and	you	find	that	you	are	a	bit	punchy,	then	take	a	short	break	before	you	forge	on.

In	this	section,	we	first	discuss	several	different	kinds	of	online	backups:	backups	of
the	entire	database,	tablespace	backups,	and	datafile	backups.	We	then	look	at	archive	log
file	backups	and,	finally,	backups	of	the	control	file	and	parameter	files.

Online	Database	Backups
As	described	in	Chapters	2	and	3	in	detail,	to	perform	online	backups	with	RMAN,	our
database	must	be	in	ARCHIVELOG	mode.	If	your	database	is	not	in	ARCHIVELOG
mode,	RMAN	will	generate	an	error	if	you	try	to	perform	an	online	backup.	You	can
determine	whether	your	database	is	in	ARCHIVELOG	mode	by	querying	the
V$DATABASE	view,	as	shown	here:

There	is	one	key	difference	in	online	backups	(other	than	the	fact	that	the	database
must	be	in	ARCHIVELOG	mode)	that	you	will	want	to	be	aware	of.	You	must	back	up
not	only	the	database,	but	also	the	archived	redo	logs	of	that	database.	This	is	also
recommended	for	offline	backups	of	ARCHIVELOG	database,	as	we	mentioned
previously.	The	main	difference	is	that	with	an	offline	backup	of	a	database	in
NOARCHIVELOG	mode,	the	database	will	be	in	a	consistent	state	during	the	backup;
therefore,	you	can	restore	and	recover	that	database	to	the	point	of	the	backup	without
needing	the	archived	redo	logs.	With	an	online	backup,	you	always	need	to	apply	redo
logs.	There	is	no	exception	or	magic	available	to	avoid	this.	If	you	try	to	avoid	applying
archived	redo	logs	and,	in	reading	the	Internet,	assume	that	it’s	okay	to	try	to	force	your
database	open,	we	will	send	in	the	black	helicopters,	the	Oracle	shock	troops	will	silently
make	their	way	in,	and	we	will	take	your	databases	away	from	you.	You	will	then	be
required	to	go	through	a	very	rigorous	retraining	program	before	you	get	your	databases
back	in	such	situations.

Sometimes	people	are	confused	by	this	need	for	archived	redo	logs,	so	let	us	explain.
When	you	start	an	online	backup,	the	database	is	still	running.	The	backup	itself	is	going
to	be	wholly	inconsistent.	If	the	backup	takes	30	minutes	to	run,	then	a	number	of	blocks
will	have	changed	in	those	30	minutes.	The	database	does	not	stop	writing	to	the	datafiles,

it	does	not	cache	changes,	it	does	not	pass	Go,	nor	does	it	collect	$200.	It	just	goes	about
its	merry	way	with	DBWR	writing	to	the	datafiles.

The	result	of	this	is	that	when	the	backup	is	done,	the	database	will	have	changed
during	the	course	of	that	backup	in	some	way.	It	may	be	a	small	way,	it	might	be	a	big
way,	but	it	will	have	changed.	As	a	result,	the	only	way	to	restore	this	backup	is	to	have	all
of	the	redo	stream	generated	during	the	entire	backup,	from	beginning	to	end,	available	to
RMAN.	To	ensure	this,	we	need	to	make	sure	we	back	up	all	the	redo	generated	during	the
backup,	after	the	backup	has	been	completed.

So,	having	ensured	that	we	are	in	ARCHIVELOG	mode,	we	are	ready	to	do	our	first
RMAN	online	backup.

NOTE

From	this	point	on	in	this	chapter,	we	will	assume	that	you	have	configured
default	channels,	as	discussed	earlier	in	this	chapter,	unless	we	need	to	point	out
something	specifically.	This	saves	you	typing	and	allows	us	to	leave	out
commands	such	as	allocate	channel,	thus	giving	us	more	space	to	give	you
important	information.

You	will	find	that	online	backups	are	not	all	that	different	from	offline	backups.	In	fact,
they	are	a	bit	simpler	because	you	don’t	have	to	mess	with	shutting	down	and	then
mounting	the	database.	When	you	have	your	defaults	configured	(refer	to	Chapter	5),	an
online	backup	is	as	simple	as	this:

This	command	does	it	all.	First,	the	process	does	a	log	switch	(using	the	alter	system
archivelog	current	command).	Next,	it	backs	up	any	existing	archived	redo	logs.	Then,
the	actual	database	backup	occurs.	At	this	point,	another	log	switch	occurs	(using	the	alter
system	archivelog	current	command),	and	RMAN	backs	up	the	remaining	archived	redo
logs	(using	the	backup	archivelog	all	command).	Finally,	the	autobackup	of	the	control
file	and	SPFILE	occurs.

RMAN	Workshop:	Perform	an	Online	Backup
This	workshop	walks	you	through	an	online	backup	of	your	Oracle	database.	It
works	for	both	nonmultitenant	and	multitenant	databases,	just	as	the	workshop	on
offline	backups	did	earlier.	First,	we	will	review	a	few	notes	about	the	workshop	and
then	we	will	back	up	our	database.

Workshop	Notes
This	workshop	assumes	that	your	database	has	been	configured	with	automatic
channels	(as	shown	in	Chapter	5).	If	you	are	running	a	nonmultitenant	database,	you
will	use	the	database	account	called	backup_admin	that	we	described	in	Chapter	5.

If	you	are	running	a	CDB	database,	you	will	want	to	modify	the	backup_admin
account	to	be	a	common	user	account	(c##backup_admin),	which	we	also	described
in	Chapter	5.

In	addition,	it	assumes	that	the	MML	layer	has	been	configured	(if	you	are	using
it).	Finally,	your	database	must	be	configured	for	and	operating	in	ARCHIVELOG
mode.

Step	1.			Start	up	RMAN:

Step	2.			Start	the	backup:

Here	is	an	example	of	a	complete	online	RMAN	backup	following	these	steps:

We	have	now	completed	an	entire	online	database	backup!	Next,	we	will	look	at
tablespace	backups.

NOTE

As	we	will	discuss	later	in	this	chapter,	a	full	database	backup	cannot	be	used
as	a	base	backup	for	application	of	incremental	backups.	They	are	two	similar	but
different	things.

Variations	on	a	Theme:	Other	Types	of	RMAN
Online	Backups
We	have	discussed	full	database	backups,	which	are	the	most	common	kinds	of	backups.
However,	there	are	other	kinds	of	backups	that	you	might	want	to	create	for	various
reasons.	In	this	section	we	introduce	you	to	these	backups	and	give	you	some	idea	as	to

why	you	might	want	to	perform	them.

Tablespace	Backups
Occasionally,	you	will	want	to	do	tablespace-level	backups	instead	of	backups	of	the
entire	database.	This	might	be	before	you	drop	a	partition	that	is	specific	to	that
tablespace,	or	perhaps	just	after	you	have	made	the	tablespace	read-only.	To	do	a
tablespace-level	backup,	simply	use	the	backup	command	with	the	tablespace	parameter:

If	you	want	to	back	up	any	archived	redo	logs	at	the	same	time,	you	could	issue	the
command	like	this:

Or	perhaps	you	want	to	also	make	sure	your	current	control	file	is	backed	up:

Of	course,	you	are	not	really	backing	up	a	tablespace	but	rather	the	datafiles	associated
with	that	tablespace.	Oracle	just	converts	the	tablespace	name	into	a	list	of	datafiles	that
are	associated	with	that	tablespace.	Normally,	a	control	file	backup	will	not	occur	during
these	backups	unless	you	have	configured	automatic	control	file	backups	(refer	to	Chapter
5)	to	occur	(and	you	are	not	backing	up	datafile	1).	If	you	use	the	include	current
controlfile	parameter,	the	control	file	will	be	backed	up.

If	you	are	running	Oracle	Multitenant,	then	backing	up	a	tablespace	is	a	bit	different
because	you	could	have	the	same	named	tablespace	in	many	different	PDBs.	The	solution
to	PDB	backups	is	to	log	directly	into	the	PDB	and	back	up	the	tablespace	from	there.

Here	is	an	example	of	logging	a	PBD	directly	and	backing	up	the	users	tablespace:

Note	in	this	example	that	we	do	not	back	up	the	archived	redo	logs.	This	is	because	any
backup	from	within	a	given	PDB	is	not	able	to	back	up	archived	redo	logs.	Backups	of
archived	redo	logs	must	occur	from	the	root	container	(at	the	time	this	book	was	written).
Thus,	after	this	backup	you	should	switch	back	to	the	root	container	and	back	up	the
archived	redo	logs,	as	shown	here:

Datafile	Backups
You	might	want	to	back	up	specific	database	datafiles.	Perhaps	you	are	getting	ready	to
move	them	to	a	new	device	and	you	wish	to	back	them	up	before	you	move	them.	RMAN
allows	you	to	back	up	a	datafile	by	using	the	backup	command	with	the	datafile
parameter,	followed	by	the	filename	or	number	of	the	datafiles	you	want	to	back	up.	The

following	are	examples	of	some	backup	datafile	commands:

Again,	the	control	file	and	the	SPFILE	will	get	backed	up	if	datafile	1	is	backed	up	or	if
automated	control	file	backups	are	configured.	In	the	last	example,	the	archived	redo	logs
will	get	backed	up	as	well.

Backing	up	individual	datafiles	for	CDBs	can	be	done	from	the	root	by	using	the	same
method	that	we	showed	you	earlier.	You	simply	get	the	datafile	number	or	filename	from
V$DATAFILE	and	issue	the	backup	command	for	that	datafile	or	set	of	datafiles.

Archived	Redo	Log	Backups
For	a	number	of	reasons,	you	might	well	want	to	back	up	your	archived	redo	logs	but	not
the	database.	In	this	event,	you	use	the	backup	archivelog	command.	To	back	up	all	of
the	archived	redo	logs,	simply	issue	the	command	backup	archivelog	all.	Optionally,	you
might	want	to	back	up	a	specific	range	of	archived	redo	logs,	for	which	you	have	several
options	available,	including	time,	SCN,	and	redo	log	sequence	number	(or	a	selected	range
of	those	values).	Specific	options	are	from	SCN,	from	sequence,	and	from	time.	Keep	in
mind	that	using	the	from	option	may	result	in	some	archived	redo	logs	being	left	on	disk
and	not	being	backed	up.	Here	are	some	examples	of	backing	up	the	archived	redo	logs:

A	couple	of	notes	about	the	previous	examples.	When	the	backup	archivelog	all
command	is	run,	a	log	switch	will	occur	and	all	of	the	archived	redo	logs,	including	the
current	redo	log,	will	be	backed	up.	When	you	use	the	from	clause	of	the	backup
archivelog	command,	the	current	redo	log	will	not	be	backed	up.	This	is	important	if	you
are	very	short	on	space,	because	if	you	archive	the	current	redo	log	file,	this	might	fill	up
your	FRA	and	the	database	might	hang.

NOTE

If	an	archived	redo	log	in	the	FRA	is	corrupted,	Oracle	will	“fail	over”	to	any
other	defined	archived	redo	log	destination.	If	the	archived	redo	log	is	in	that
destination	directory	and	it	is	not	corrupted,	RMAN	will	back	up	the	archived
redo	log	from	that	source	destination.

Once	you	have	backed	up	archived	redo	logs,	you	may	want	to	have	RMAN	remove
them	for	you.	The	delete	input	option	allows	you	to	perform	this	operation.	The	delete
input	option	can	also	be	used	with	datafile	copies	(which	we	will	discuss	later	in	this

chapter)	or	with	backup	set	copies.	Here	are	a	couple	of	examples	of	using	the	delete
input	parameter	on	an	archived	redo	log	backup:

You	can	also	instruct	RMAN	to	make	redundant	copies	of	your	archived	redo	logs.	In
the	following	example,	we	use	the	not	backed	up	n	times	parameter	of	the	backup
command	to	make	sure	that	we	have	backed	up	our	archived	redo	logs	at	least	three	times.
Any	archived	redo	logs	that	have	already	been	backed	up	three	times	will	not	be	backed
up	again.

Also,	you	can	use	the	until	time	parameter	with	the	backup	command	to	ensure	that	a
certain	number	of	days’	worth	of	archived	redo	logs	remain	on	disk:

NOTE

Use	of	the	not	backed	up	parameter	and	use	of	the	delete	input	parameter	are
somewhat	mutually	exclusive.	The	delete	input	parameter	will	remove	the
archived	redo	log	regardless	of	how	many	times	it	has	been	backed	up.

One	last	note	about	archived	redo	log	backups.	As	of	the	time	we	wrote	this	book,
archived	redo	log	backups	could	only	occur	when	you	were	logged	into	the	root	of	the
CDB.	Attempts	to	start	archived	redo	log	backups	from	a	PDB	would	fail	with	an	error.

Control	File	and	Parameter	File	Backups
Just	as	with	archived	redo	logs,	sometimes	you	may	just	want	to	back	up	the	control	file	or
the	server	parameter	files.	RMAN	provides	specific	commands	for	these	functions	as	well.
Use	the	backup	spfile	command	to	back	up	the	server	parameter	file.	This	is	handy	if	you
have	made	a	configuration	change	to	the	database,	for	example.	To	back	up	the	control
file,	you	can	use	the	current	controlfile	parameter	of	the	backup	command	to	generate	a
copy	of	the	current	control	file.	The	current	controlfile	parameter	also	comes	with	a	for
standby	clause	that	will	create	a	backup	control	file	for	use	with	a	standby	database.

You	can	use	the	controlfilecopy	parameter	of	the	backup	command	to	create	a	backup
set	that	contains	an	externally	created	backup	of	the	control	file.	This	control	file	backup
might	be	the	result	of	the	alter	database	backup	controlfile	to	‘file_name’	SQL
command	or	the	use	of	the	RMAN	copy	command	(covered	later	in	this	chapter)	to	create
a	control	file	backup.	Also,	you	can	back	up	a	standby	database	control	file	that	was
created	with	the	alter	database	create	standby	controlfile	command.	The	benefit	of	this
feature	is	that	you	can	take	external	control	file	backup	files	and	register	them	with
RMAN	and	create	a	backup	set	that	contains	the	control	file	backup.	Here	are	some
examples	of	the	use	of	this	parameter:

Backup	Set	Backups
Perhaps	you	like	to	back	up	to	disk	first	and	then	to	back	up	your	backup	sets	to	tape.
RMAN	supports	this	operation	through	the	use	of	the	backup	command.	For	example,
suppose	we	issued	a	backup	database	command,	and	the	entire	backup	set	went	to	disk
because	that	is	our	configured	default	device.	Now,	we	wish	to	move	that	backup	set	to
tape.	We	could	issue	the	backup	command	with	the	backupset	parameter,	and	Oracle
would	back	up	all	of	our	backup	sets	to	the	channel	that	is	allocated	for	the	backup.

You	can	choose	to	back	up	all	backup	sets	with	the	backup	backupset	command,	or
you	can	choose	to	back	up	specific	backup	sets.	Further,	you	can	only	back	up	from	disk
to	disk	or	from	disk	to	tape.	There	is	no	support	for	tape-to-tape	or	tape-to-disk	backups.
The	delete	input	option,	which	we	previously	discussed	in	regard	to	archive	log	backups,
is	also	available	with	backup	set	backups.	When	used,	the	delete	input	option	will	cause
the	files	of	the	source	backup	set	to	get	deleted	after	a	successful	backup.	Here	are	some
examples	of	this	command:

An	example	of	a	backup	strategy	here	might	be	to	perform	RMAN	backups	to	disk	and
then	to	back	up	the	backup	sets	to	tape	with	the	backup	backupset	command.	Perhaps
you	want	to	keep	two	days’	worth	of	your	backup	sets	on	disk.	You	could	then	issue	two
commands.	First,	issue	the	backup	backupset	completed	before	'sysdate	-	2'	command
to	back	up	the	last	two	days	of	backups.	Next,	to	back	up	and	then	remove	any	backup	sets
older	than	two	days,	issue	the	backup	backupset	completed	after	'sysdate	-	2'	delete
input	command,	which	would	cause	one	final	backup	of	the	old	backup	sets	and	then
remove	them.

Note	that	in	designing	a	strategy,	it	would	be	preferable	to	use	the	Fast	Recovery	Area
(FRA)	and	the	backup	recovery	area	command,	which	we	will	discuss	next.	Check	out
Chapter	15	for	more	information	on	architecture	and	best	practices.

NOTE

Backup	set	backups	are	very	handy	if	you	want	to	back	up	your	control	file
automated	backups	elsewhere	and	still	have	the	catalog	track	the	location	of	the
backup	set.

Fast	Recovery	Area	Backups
More	and	more	people	are	seeing	the	benefits	of	the	Fast	Recovery	Area	(FRA).	As	you
will	see	in	Chapter	15,	one	of	the	most	common	architectures	is	to	do	your	initial	backup
to	the	FRA	and	then	back	up	the	FRA	to	a	secondary	form	of	storage.	RMAN	makes	the
movement	of	backup	sets	from	the	FRA	to	secondary	storage	very	easy	by	providing	the
backup	recovery	area	command.

Backup	optimization	is	enabled	by	default	when	you	are	using	the	backup	recovery
area	command	and	is	not	impacted	by	the	configure	backup	optimization	setting.	You
can	override	this	behavior	by	using	the	force	parameter	of	the	backup	recovery	area
command.	Thus,	once	you	have	issued	the	backup	recovery	area	command	and	copied
the	current	contents	of	the	FRA	to	another	location,	those	files	will	not	be	copied	to	that
same	location	again.	However,	if	you	back	up	the	FRA	to	a	different	location	later,	then
any	files	not	backed	up	to	that	location	will	be	backed	up	at	that	time.

When	the	backup	recovery	area	command	is	issued,	the	following	files	will	be	backed
up	from	the	FRA:

			Full	and	incremental	backup	sets

			Control	file	autobackups

			Datafile	copies

			Archived	redo	log	files

When	the	command	attempts	to	back	up	the	archived	redo	log	files,	it	may	find	that	one
is	missing	or	corrupted.	If	so,	RMAN	will	look	outside	the	FRA	and	see	if	it	can	find	a
copy	of	that	archived	redo	log	in	another	location.

It	is	important	to	note,	with	respect	to	the	FRA,	that	files	contained	in	the	FRA	can
have	one	of	two	attributes.	They	are	either	managed	by	the	FRA	or	not	managed	by	the
FRA.	If	a	given	file	(such	as	an	archived	redo	log)	is	not	considered	managed	by	the	FRA,
it	will	not	participate	in	the	various	commands,	space	management,	or	retention	controls
associated	with	the	FRA.	One	thing	that	can	cause	a	backup	file	to	not	be	managed	by	the
FRA	is	the	use	of	the	format	clause	to	define	the	location	of	the	backup	file.	Even	if	you
define	the	format	clause	to	use	the	correct	location	in	the	FRA,	the	file	that	is	created	will
not	be	considered	managed	by	the	FRA.	Thus,	if	you	try	to	back	up	the	FRA	to	another
location	using	the	backup	recovery	area	command,	you	will	find	that	those	files	created
when	you	used	the	format	clause	will	not	be	moved	over.	In	essence,	you	have	out-
thought	yourself.	See	Chapter	5	for	more	on	the	FRA	and	how	to	properly	configure	it.

NOTE

Most	of	the	time	when	we	see	FRA-related	issues,	it	tends	to	be	because	either
the	FRA	is	not	configured	correctly	or	the	backup	command	or	configured	default
is	disabling	FRA	feature	use.	If	you	find	something	isn’t	working	right	when
working	with	the	FRA	(for	example,	if	FRA	files	don’t	move	over	when	you	issue
the	backup	recovery	area	command),	ensure	that	the	FRA	is	configured	correctly
and	that	you	have	not	inadvertently	created	files	in	the	FRA	that	cannot	be
managed	by	the	FRA.

In	Chapter	15	we	will	discuss	how	to	manage	different	retention	criteria	that	will	be
present	in	a	multitiered	backup	architecture.

Copies
Okay,	all	this	newfangled	talk	of	backup	sets	and	pieces	is	just	blowing	your	mind.	You
ask,	“Can’t	I	just	make	a	copy	of	these	database	datafiles?”	We’re	here	to	make	you	feel
better.	With	RMAN,	you	can	just	make	copies	of	your	different	database	structures,	and
that’s	what	we	are	going	to	talk	about	in	this	section.	First,	we	will	review	the	upside,	and
downside,	to	creating	copies	instead	of	backup	sets.	Then,	we	will	look	at	how	we	create
datafile	copies,	control	file	copies,	and	archived	redo	log	file	copies.

Image	Copies
RMAN	can	create	an	exact	duplicate	of	your	database	datafiles,	archived	redo	logs,	or
control	file.	An	RMAN	image	copy	is	just	that—it	is	simply	a	copy	of	the	file	with	the
name	and/or	location	changed.	There	are	no	backup	pieces	or	anything	else	to	worry
about.	Image	copies	can	only	be	made	to	disk,	and	you	cannot	make	incremental	copies.
The	database	must	be	either	mounted	or	open	to	make	image	copies.	A	history	of	the
copies	made	is	kept	in	the	database	control	file,	so	you	can	track	when	copies	have	been
made	and	where	they	reside.

You	can	make	image	copies	of	the	entire	database,	tablespaces,	or	datafiles,	just	like	a
regular	backup	(this	is	very	different	from	earlier	versions	of	RMAN).	The	RMAN	copy
process	provides	some	of	the	same	protections	as	normal	RMAN	backup	sets,	such	as
checking	for	corrupted	blocks	and,	optionally,	logical	corruption.	Also,	image	copies	can
be	combined	with	normal	backup	sets	such	as	incremental	backups	and	archived	redo	log
backups	to	facilitate	a	complete	database	recovery.

Database,	Tablespace,	and	Datafile	Image	Copies
The	backup	command	supports	the	creation	of	database	image	copies.	Simply	use	the
backup	as	copy	command	to	do	image	copies,	and	the	process	is	much	like	performing
backup	sets.	Here	is	an	example	of	making	a	database	image	copy	with	RMAN:

RMAN	will	use	the	FRA	to	store	backup	copies,	if	it	is	configured.	If	you	are	using	the
FRA,	the	datafile	images	will	be	stored	in	a	directory	called	datafile,	as	shown	in	this
partial	sample	output	from	a	datafile	image	copy:

Image	copies	of	tablespaces	work	pretty	much	the	same	way;	just	use	the	backup	as
copy	command	and	the	tablespace	keyword,	like	so:

Finally,	you	can	create	image	copies	of	datafiles:

NOTE

An	image	copy	can	be	made	with	the	database	mounted	or,	if	the	database	is	in
ARCHIVELOG	mode,	with	the	database	open.

Control	File	Copies
Control	file	copies	can	also	be	made	with	the	backup	controlfile	command.	These
backups	can	occur	with	the	database	either	mounted	or	open.	Generally,	it	is	a	best
practice	to	enable	control	file	autobackups	and	allow	RMAN	to	back	up	the	control	file
automatically	after	a	backup.

If	you	need	to	manually	create	an	RMAN	backup	set	that	contains	a	control	file,	here	is
an	example	of	such	a	backup:

Note	that	this	is	not	the	same	as	a	control	file	autobackup,	and	an	attempt	to	restore

from	a	control	file	autobackup	will	not	result	in	the	recovery	of	a	control	file	backed	up
using	this	method.

You	can	also	create	control	file	copies.	These	copies	are	just	like	backup	control	files
created	with	the	alter	database	backup	controlfile	to	trace	command;	thus,	they	are
usable	for	recovery	purposes.	Here	is	an	example	of	the	creation	of	a	control	file	copy
from	RMAN:

Note	that	the	backup	as	copy	command	will	not	overwrite	an	existing	backup	control
file	unless	you	use	the	reuse	keyword	as	we	did	in	our	example.	Also	note	that	the
backup	as	copy	command	does	not	create	an	RMAN	backup	set,	only	a	physical	file	that
is	a	backup	control	file.

If	you	wish	to	create	a	control	file	for	use	with	a	standby	database	that	you	are	creating,
you	use	the	for	standby	clause.	Again,	this	will	create	an	RMAN	backup	set:

As	you	did	with	regular	backup	control	files,	you	can	indicate	a	specific
filename/location	when	you	create	a	control	file	backup,	which	would	result	in	the
physical	file	being	created	in	that	location	and	not	in	the	creation	of	an	RMAN	backup	set:

ARCHIVELOG	Image	Copies
Having	copies	of	archived	redo	logs	can	be	helpful.	It’s	certainly	easier	to	mine	a	copy	of
an	archived	redo	log	with	Oracle’s	LogMiner	product	than	to	have	to	first	extract	that
archived	redo	log	from	a	backup	set.	The	copy	command	allows	you	to	create	copies	of
archived	redo	logs	by	using	the	archivelog	parameter	of	the	copy	command.
Unfortunately,	as	we	mentioned	earlier,	the	use	of	copy	archivelog	requires	us	to	list	each
archived	redo	log	by	name,	rather	than	to	specify	some	temporal	range	when	we	make
copies	of	the	archived	redo	logs.	Here	is	an	example	of	making	an	ARCHIVELOG	file
copy:

Incremental	RMAN	Backups
We	hope	you	have	made	it	this	far	through	the	book	without	much	difficulty	and	have
been	able	to	get	at	least	one	good	backup	of	your	database	done.	Now,	we	are	going	to
move	on	to	incremental	backups	in	RMAN.	Through	incremental	backups,	RMAN	allows
you	to	back	up	just	the	data	blocks	that	have	changed	since	the	last	incremental	backup.
The	following	are	the	benefits	of	incremental	backups:

			Less	overall	tape	or	disk	usage

			Less	network	bandwidth	required

			Quicker	backup	times

You	can	do	incremental	backups	either	online	or	offline	and	in	either	ARCHIVELOG
mode	or	NOARCHIVELOG	mode,	which	is	pretty	handy.	Keep	in	mind	that	if	you
choose	an	incremental	backup	strategy,	a	give	and	take	exists	in	terms	of	the	benefits.
While	you	are	deriving	a	benefit	in	the	reduction	of	overall	backup	times	(and	this	may	be
significant),	the	cost	comes	on	the	recovery	side.	Because	Oracle	will	need	to	use	several
backup	sets	to	recover	the	database	if	an	incremental	strategy	is	used,	the	time	required	to
recover	your	database	can	significantly	increase.

NOTE

If	you	choose	to	do	incremental	backups	on	a	NOARCHIVELOG	mode
database,	make	sure	you	shut	down	the	database	in	a	consistent	manner	each	time
you	back	up	the	database.

The	Block	Change	Tracking	File
By	default,	when	you’re	doing	an	incremental	backup,	any	datafile	that	has	changed	in
any	way	will	be	backed	up.	This	can	make	incremental	backups	take	longer	and	will	make
them	larger.	RMAN	offers	the	ability	to	just	back	up	changed	database	blocks.	This	can
make	your	incremental	database	backups	much	smaller	and	shorter.	To	enable	block
change	tracking,	issue	the	command	alter	database	enable	block	change	tracking.	The
result	of	this	command	will	be	the	creation	of	a	file	called	the	block	change	tracking	file
(BCTF).

When	enabling	block	change	tracking,	you	can	choose	to	allow	Oracle	to	name	the
related	block	change	tracking	file	for	you.	Oracle	will	use	the	Oracle	Managed	Files
(OMF)	naming	standard	when	naming	the	BCTF.	You	can	also	choose	to	define	the
location	and	name	of	the	block	change	tracking	file	yourself,	as	shown	in	this	example:

If	a	previous	block	change	tracking	file	already	exists,	you	need	to	use	the	reuse
parameter:

You	disable	block	change	tracking	by	using	the	alter	database	disable	block	change
tracking	command.	The	block	change	tracking	file	size	is	preallocated	and	is	related	to
the	size	of	the	database	and	the	number	of	redo	log	threads.	The	typical	size	of	the	block
change	tracking	file	is	quite	small	and	is	proportional	to	the	size	of	the	database.	Its	size	is
roughly	1/250,000	the	size	of	the	database.

If	you	are	running	an	Oracle	Real	Application	Clusters	(RAC)	database	configuration,
each	node	will	need	to	have	access	to	the	BCTF.	In	these	configurations,	you	may	want	to

consider	storing	the	BCTF	in	ASM	for	ease	of	file	sharing.

The	BCTF	size	also	depends	on	the	number	of	incremental	backups	that	occur	between
each	level	0	backup.	The	more	incremental	backups,	the	more	changed	block-related
metadata	has	to	be	stored	in	the	BCTF.

The	BCTF	can	hold	a	maximum	of	eight	backups’	worth	of	information	(for	example,
one	base	and	seven	level-1	incremental	backups).	After	this,	the	next	backup	will	remove
the	information	of	a	previous	backup,	making	the	BCTF	useless.	The	BCTF	file	will	grow
automatically	in	10MB	increments.	A	minimum	of	320KB	of	space	is	allocated	to	each
datafile	in	the	BCTF	regardless	of	the	size	of	the	datafile.

The	Oracle	Database	defaults	to	not	using	block	change	tracking,	and	you	can
determine	if	block	change	tracking	is	enabled	by	checking	the
V$BLOCK_CHANGE_TRACKING	view.	The	STATUS	column	indicates	if	block
change	tracking	is	enabled,	and	the	FILENAME	column	contains	the	filename	of	the
block	change	tracking	file.	You	can	move	the	block	change	tracking	file	by	using	the	alter
database	rename	file	command	just	as	you	would	any	other	database	file.

The	Base	Backup
When	doing	an	incremental	backup,	the	first	thing	you	need	is	an	incremental	base
backup.	This	backup	is	the	backup	that	all	future	incremental	backups	will	be	based	on.
Each	time	you	perform	a	backup	of	the	database,	you	assign	that	backup	an	incremental
level	identifier	through	the	use	of	the	incremental	parameter	of	the	backup	command.
Incremental	backups	have	levels	assigned	to	them.	A	base	backup	will	always	have	a	level
value	of	0,	and	you	must	have	a	base	backup	to	be	able	to	perform	any	type	of	incremental
backup.	An	incremental	backup	will	always	have	a	level	value	of	1	(more	on	level	1
incrementals	in	a	moment).	If	you	do	not	have	a	base	backup	and	you	try	to	perform	an
incremental	backup	(using	a	backup	level	1),	then	RMAN	will	perform	a	base	backup	for
you	automatically.	Here	is	an	example	of	performing	a	base	incremental	backup:

NOTE

Earlier	versions	of	RMAN	used	to	support	more	than	level	0	and	level	1
backups.	Starting	in	Oracle	Database	10g	Release	1,	any	incremental	level
backup	other	than	0	or	1	was	deprecated	by	Oracle.

Differential	vs.	Cumulative	Incremental	Backups

Now,	we	need	to	decide	how	we	want	to	perform	our	incremental	backups.	We	can	use
one	of	two	methods:

			Differential

			Cumulative

Each	is	a	different	method	of	performing	an	incremental	backup.	Let’s	look	at	these
two	different	types	of	incremental	backup	in	a	bit	more	detail.

Differential	Backups
This	is	the	default	type	of	incremental	backup	that	RMAN	generates.	With	a	differential
backup,	RMAN	backs	up	all	blocks	that	have	changed	since	the	last	level	1	backup	or
since	the	last	level	0	backup	if	the	differential	backup	is	the	first	incremental	backup	after
a	level	0	backup.	Understanding	how	this	all	works	can	get	a	bit	confusing.	Figure	7-1
should	help	you	better	understand	the	impacts	of	using	different	levels.

FIGURE	7-1.			Differential	backups

In	this	example,	we	have	a	level	0	differential	backup	being	taken	on	Sunday.	This
backup	will	back	up	the	entire	database.	Following	the	level	0	backup,	we	perform	a	level
1	differential	backup	on	Monday.	This	backup	will	back	up	all	changed	blocks	since	the
level	0	backup	on	Sunday.	On	Tuesday,	the	level	1	incremental	backup	will	back	up	all
blocks	changed	since	the	level	1	backup	on	Monday.	On	Wednesday,	another	level	0
backup	is	performed,	which	backs	up	all	database	blocks.	On	Thursday	and	Friday,	we
have	level	1	backups	again,	which	back	up	only	the	changed	blocks,	just	as	the	Monday
and	Tuesday	backups	did.	Finally,	on	Sunday,	we	start	all	over	again	with	a	level	0
backup.

Here	is	an	example	of	a	level	1	differential	backup	being	executed.	Remember,	if	a
level	0	has	not	already	occurred,	this	will	result	in	a	level	0	backup	instead	of	a	level	1
backup.

Cumulative	Backups
RMAN	provides	another	incremental	backup	option:	the	cumulative	backup.	Using	this
option	causes	backup	sets	to	back	up	changed	blocks	since	the	last	level	0	backup,
ignoring	any	previous	level	1	backups.	This	is	an	optional	backup	method	and	requires	the
use	of	the	cumulative	keyword	in	the	backup	command.	Again,	this	can	all	be	somewhat
confusing,	so	let’s	look	at	an	example.	Figure	7-2	is	an	example	of	the	impacts	of
cumulative	backups	using	different	levels.

FIGURE	7-2.			Incremental	backups

In	Figure	7-2,	just	as	in	Figure	7-1,	we	start	with	a	level	0	differential	backup	being
taken	on	Sunday.	This	backup	backs	up	the	entire	database.	Following	that,	on	Monday,
we	perform	a	level	1	backup.	This	backup	is	not	unlike	the	differential	backup.	Now
things	change	a	little	bit.	On	Tuesday,	we	perform	another	level	1	differential	backup.	This
time,	the	backup	will	contain	not	only	changed	blocks	since	Monday’s	backup,	but	also
the	blocks	that	were	contained	in	Monday’s	backup.	Thus,	a	cumulative	backup
accumulates	all	changed	blocks	for	any	backup	level	equal	to	or	less	than	the	level	of	the
backup.	As	a	result,	for	recovery	purposes,	we	need	only	Tuesday’s	backup	along	with
Sunday’s	base	backup.	We	continue	to	take	level	0	and	level	1	backups	over	the	remainder
of	the	week	to	complete	our	backup	strategy.

Here	is	an	example	of	the	creation	of	a	level	1	cumulative	backup:

Incremental	Backup	Options
Oracle	allows	you	to	perform	incremental	backups	of	not	only	the	database,	but	also
tablespaces,	datafiles,	and	datafile	copies.	Control	files,	archived	redo	logs,	and	backup
sets	cannot	be	made	as	incremental	backups.	Additionally,	you	can	choose	to	back	up	the
archived	redo	logs	at	the	same	time.	Here	are	some	examples:

Metalink	note	7457989.1	provides	some	insight	into	the	block	change	tracking	file	and
an	inherent	limit	in	that	file.	By	default,	Oracle’s	block	change	tracking	file	can	only	track
bitmap	changes	of	up	to	eight	days	between	recover	commands.	If	you	need	a	recovery
window	of	more	than	seven	days	or	if	you	want	to	perform	additional	level	1
incrementals,	you	will	need	to	modify	the	parameter	_bct_bitmaps_per_file	to	allow	for
additional	bitmaps.

Incrementally	Updated	Backups
RMAN	offers	incrementally	updated	backups	(also	called	merged	incremental	backups),
which	let	you	avoid	the	overhead	of	taking	full	image	copy	backups	of	datafiles,	yet
provide	the	same	recovery	advantages	as	image	copy	backups.

Merged	incremental	backups	are	cumulative	incremental	backups	by	default.	Older
versions	of	Oracle	will	generate	an	error	if	you	try	to	do	them	as	differential	incremental
backups.	With	a	merged	incremental	backup,	you	create	a	level	0	(full)	backup.
Subsequent	backups	will	be	level	1	incremental	backups.	As	these	incremental	backups
are	made,	they	are	merged	into	the	previous	level	0	backup.	Thus,	there	is	no	need	to	re-
create	the	level	0	backup,	which	can	save	time.	Use	a	block	change	tracking	file	in
combination	with	a	merged	incremental	backup	to	further	reduce	the	time	it	takes	to	back
up	a	database.

Let’s	look	at	an	example	of	a	merged	incremental	backup:

The	recover	copy	of	database	command	does	not	actually	recover	your	database,	but
it	causes	RMAN	to	apply	any	incremental	backups	to	the	datafile	copies	associated	with
the	tag	listed	(incr_update).	The	previous	commands	will	create	the	backup	in	three
stages:

1.			The	first	backup	using	these	commands	will	result	in	the	creation	of	a	level	0
backup	(assuming	a	level	0	incremental	backup	does	not	already	exist).	Note	that
some	errors	will	appear	during	this	backup,	starting	with	“no	copy	of	datafile	1
found	to	recover.”	This	is	expected,	since	there	is	no	level	1	incremental	backup.

2.			The	second	time	you	run	this	set	of	commands,	a	level	1	incremental	backup
will	occur.	Nothing	else	will	occur	during	this	run.	Again,	you	will	see	the	same

error	as	seen	on	execution	number	1.

3.			On	the	third	and	subsequent	iterations	of	this	backup,	the	previous	level	1
incremental	backup	will	be	applied	to	the	level	0	backup.	As	a	result,	the	level	0
backup	will	be	up	to	date	as	of	the	applied	level	1	incremental	backup.	A	new	level
1	incremental	backup	will	then	occur.	This	means	that	any	recovery/restore	effort
only	requires	the	recovery	of	the	level	0	backup,	followed	by	only	one	level	1
incremental	backup	(and	any	required	archived	redo	logs).	This	can	significantly
reduce	the	time	required	to	restore	your	database.

Note	that	we	use	tags	for	these	backups.	It	is	important	that	the	tags	are	named	the
same	in	both	the	recover	and	backup	commands.

You	can	also	change	the	order	of	the	command,	performing	the	backup	incremental
first	and	then	the	recover	copy	of	database	command	second,	as	shown	in	this	example:

Changing	the	order	in	this	way	will	result	in	the	incremental	level	1	backups	being
applied	to	the	level	0	base	backups	immediately;	thus,	there	is	no	delay	in	the	application
of	the	incrementals	to	the	base	backup.	This	keeps	the	base	backup	as	current	as	possible.

Note	that	this	strategy	assumes	a	retention	policy	of	redundancy	1.	If	you	need	a	more
complex	retention	policy,	you	will	need	to	use	the	until	clause	to	ensure	that	you	can	meet
your	recovery	window.	For	example,	if	your	retention	policy	is	seven	days,	you	will	set
your	retention	policy	to	a	redundancy	of	1,	and	you	will	adjust	your	script	to	use	the	until
clause,	as	shown	here:

Metalink	note	351455.1	provides	a	more	detailed	discussion	on	the	issue	of	retention
and	incrementally	updated	backups.	When	you	use	this	method	of	guaranteeing	a	recovery
window,	it	is	important	that	you	still	configure	the	FRA	to	a	redundancy	of	1,	and	that	you
use	the	until	clause	to	properly	ensure	your	recovery	window.	Using	a	recovery	window
or	a	redundancy	greater	than	1	will	result	in	files	never	being	removed	from	the	FRA,	and
thus	you	will	quickly	run	out	of	space.

RMAN	Workshop:	Perform	an	Incremental	Backup
Workshop	Notes

This	workshop	assumes	that	your	database	has	been	configured	with	automatic
channels	(as	shown	in	Chapter	5).	It	also	assumes	that	you	have	configured	a
database	account	called	backup_admin	for	backups	(as	described	in	Chapter	5).	In
addition,	it	assumes	that	if	you	are	using	the	MML	layer,	it	has	been	configured.
Finally,	your	database	must	be	configured	for	and	operating	in	ARCHIVELOG
mode.

Note	that	this	workshop	can	be	successfully	used	with	either	a	multitenant
database	or	a	nonmultitenant	database.	If	this	database	is	a	CDB,	then	the	user	you
would	log	into	would	be	a	common	user	(C##),	as	was	the	case	in	the	previous
workshops.

Step	1.			Start	up	RMAN:

Step	2.			Perform	a	level	0	incremental	backup.	Include	the	archived	redo	logs	in	the
backup	set,	and	then	remove	them	after	the	backup:

Step	3.			The	next	day,	perform	a	level	1	incremental	backup.	Again,	include	the
archived	redo	logs	in	the	backup,	and	remove	them	after	they	are	backed	up:

That	about	covers	RMAN	backups.	The	next	chapter	will	be	even	more	fun,	because	in
it	we	discuss	how	to	restore	these	backups	and	recover	our	databases.

Getting	Started
We	have	covered	a	number	of	different	backup	options,	and	you	may	be	left	wondering
where	you	should	start.	Let	us	make	a	suggestion	or	two.	We	recommend	that	you	start
with	a	test	database,	one	that	is	very	unimportant	(better	yet,	one	you	have	created	for	just
this	process).	Here	is	an	RMAN	Workshop	to	get	you	started!

RMAN	Workshop:	Get	Your	Database	Backed	Up!
Workshop	Notes
This	workshop	is	more	of	an	overall	list	of	things	you	need	to	accomplish	to	get
your	database	backed	up.	We	have	covered	a	great	deal	of	ground	in	the	last	few
chapters,	and	we	felt	it	would	be	a	good	idea	to	summarize	everything	important	up
to	this	point.	Note	that	if	this	database	is	a	CDB,	the	user	that	you	would	log	into
would	be	a	common	user	(C##),	as	was	the	case	in	the	previous	workshops.

Step	1.			Set	up	a	special	account	in	your	test	database	that	will	be	responsible	for
backup	operations.	Configure	the	account	as	described	in	Chapter	5.	Note	that	you
can	opt	to	use	the	SYS	account,	but	we	prefer	to	use	a	separate	account.

Step	2.			Set	up	your	MML	layer,	and	be	clear	on	what	it	requires	you	to	do	when

performing	backup	and	recovery	commands.

Step	3.			As	we	describe	in	Chapter	5,	use	the	configure	command	to	configure	a
separate	default	channel	for	each	device	that	you	are	backing	up	to,	unless	your
specific	device	supports	multiple	channels	(as	some	do).	Set	the	default	degree	of
parallelism,	as	shown	in	Chapter	5,	such	that	each	of	the	channels	will	be	used
during	the	backup.	If	you	need	to	configure	maximum	set	sizes,	do	so;	otherwise,
don’t	bother	with	that	now.

Step	4.			Use	the	configure	command	to	configure	automated	backups	of	your
control	file	and	SPFILE	(if	you	are	using	one).	For	now,	let	them	be	created	in	the
default	location.	You	will	want	to	change	this	later,	but	for	now,	just	leave	it	there.

Step	5.			Make	sure	your	operating	system	backup	backs	up	your	Oracle	RDBMS
software.	(This	also	makes	sure	your	control	file	backups	will	be	backed	up!)

Step	6.			At	first,	we	suggest	that	you	not	use	a	recovery	catalog.	Once	you	have	the
RMAN	basics	down	pat	and	are	ready	to	deploy	RMAN	to	the	enterprise,	you	can
consider	a	recovery	catalog.

Step	7.			For	the	first	few	trials,	run	your	database	in	NOARCHIVELOG	mode	if
you	can.	Shut	down	and	mount	your	database,	and	execute	a	few	backup	database
commands.	Make	sure	the	backup	sets	are	getting	created	where	you	expect	them	to.

Step	8.			Go	to	Chapter	8	and	recover	the	database.	We	suggest	you	make	cold
backups	of	the	entire	database,	control	file,	and	online	redo	logs	(using	the	cp	or
copy	command)	first,	just	in	case	you	run	into	some	learning	curves.

Step	9.			Once	you	are	good	at	recovering	databases	in	NOARCHIVELOG	mode,
put	the	database	in	ARCHIVELOG	mode,	and	do	the	same	thing	again.	Back	up	the
database	using	the	backup	database	plus	archivelog	command.

Step	10.			Go	to	Chapter	8	and	Chapter	9	and	do	some	recoveries.	Become	an
RMAN	recovery	expert	before	you	go	any	further.

Step	11.			Play	around	with	the	crosscheck	command,	the	list	command,	and	the
report	commands	(see	Chapters	11	and	12	for	more	details	on	these	commands).
Become	really	comfortable	with	these	commands	and	their	purpose.

Step	12.			If	you	have	a	large	enterprise	environment	(say,	more	than	ten	databases),
go	ahead	and	add	a	recovery	catalog	to	the	mix,	and	connect	to	it	and	back	up	your
database	with	it.	We	strongly	encourage	you	to	use	a	separate	recovery	catalog	for
development/test	and	production	databases.	Again,	we	suggest	that	you	run	through
the	gamut	of	backup	and	restore	situations	while	using	a	recovery	catalog	before
you	move	on.

Although	Step	13	suggests	the	use	of	OS	scripts	to	manage	the	RMAN	backup,
this	is	not	considered	a	best	practice.	We	are	suggesting	the	solution	here	because
we	have	not	yet	talked	about	Oracle	Cloud	Control,	which	we	will	cover	in	Chapter
14.	Scheduling	your	backups	through	Oracle	Database	Cloud	Control	is	the
recommended	best	practice	and	will	also	be	discussed	in	that	context	within	Chapter
14.

Step	13.			Once	you	are	very	comfortable	with	RMAN,	create	scripts	to	automate
and	schedule	the	process.	For	example,	if	you	are	running	on	Unix,	a	script	such	as
the	following	could	be	scheduled	through	cron	(we	include	an	offline	and	online
script	here):

If	you	are	doing	online	backups,	use	this	script:

These	are	korn	shell	scripts,	which	is	one	of	the	more	commonly	used	shell
scripting	languages	in	Unix.	Of	course,	RMAN	works	on	a	number	of	different
platforms,	so	you	can	use	the	scripting	language	you	are	most	comfortable	with.	In
this	script,	we	use	what	is	known	as	a	here	document.	That’s	what	the	EOF	is	in	the
fourth	line	of	the	first	script	and	in	the	second	line	of	the	second	script.	A	here
document	acts	like	the	user	is	“here”	and	typing	the	input	that	you	see	listed	from
the	EOF	on	the	top	line,	until	the	closing	EOF	several	lines	later.	Optionally,	you
could	just	use	a	command	script	created	by	a	text	editor	and	then	call	it	from	the
RMAN	command	line,	like	this:

In	this	case,	your	backup.cmd	script	would	look	like	this	for	an	offline	backup:

For	a	hot	backup,	it	would	look	like	this:

You	can	also	store	scripts	in	RMAN	by	using	the	RMAN	create	script

command.	We	will	discuss	stored	RMAN	scripts	in	Chapter	6,	since	storing	scripts
in	RMAN	requires	a	recovery	catalog.

Step	14.			Before	you	move	your	backups	into	production,	test	restores	of	the
backups	you	have	set	up	in	your	test	environments.	Make	sure	you	are	comfortable
that	everything	works	as	it	should.	We	suggest	that	you	keep	using	your	old	backup
strategy	in	tandem	until	you	have	successfully	tested	several	restores.

Step	15.			Move	your	RMAN	backup	strategy	into	production	carefully.	Do	it	one
system	at	a	time.	Choose	your	least	“visible”	systems	to	convert	first.	We	suggest
that	you	do	several	test	recoveries	as	you	move	out	into	production,	and	continue	(if
possible)	to	do	dual	backups	on	each	database	until	you	have	recovered	that
production	database	on	a	test	box	with	an	RMAN	backup	successfully.	Also,	you
might	want	to	consider	separate	archived	redo	log	backups,	if	that	is	required.

Step	16.			Perform	disaster	recovery	and	test	backups	often.	We	also	suggest	that,	at
least	once	a	week,	you	execute	a	restore	database	validate	check	logical	command
on	each	database	to	make	sure	that	the	database	is	recoverable.

You	will	note	that	with	each	of	these	steps,	we	err	on	the	side	of	caution.	We
leave	it	up	to	you	to	decide	when	you	feel	comfortable	with	your	RMAN	setup.
There	is	just	nothing	more	disheartening	than	trying	to	restore	your	database	and
getting	a	message	that	indicates	an	error	in	your	attempted	restore	has	occurred.

RMAN	Best	Practices	Introduced	in	This	Chapter
We	have	introduced	you	to	several	RMAN	best	practices	in	this	chapter.	Let’s	review
them:

			When	appropriate,	use	the	RMAN	configure	command	to	set	default	settings
for	backups	and	use	those	settings	to	make	your	RMAN	commands	as	basic	as
possible.

			For	an	OLTP	database,	the	best	backup	strategy	is	typically	an	incremental
backup	strategy.

			Make	sure	you	use	a	block	change	tracking	file	when	performing	incremental
backups.

			For	a	data	warehouse,	use	the	Oracle	Incrementally	Updated	backup	strategy,
including	the	appropriate	recovery	window.

			Use	a	RMAN	recovery	catalog.

			Use	Oracle	Cloud	Control	12c	to	manage	your	backups.	Store	all	of	your
backup	scripts	in	Cloud	Control	and	not	on	a	variety	of	different	servers	or	even	a
common	shared	script	location.

Summary

In	this	chapter,	we	have	covered	RMAN	backups	galore.	We	looked	at	how	to	do	offline
backups	and	online	backups	using	RMAN.	We	also	looked	at	RMAN	incremental
backups.	We	discussed	the	impact	of	configured	defaults	on	backups	and	how	much	easier
they	make	the	backup	process.	We	also	introduced	the	numerous	options	you	can	use	with
backups,	such	as	using	tags,	overriding	the	default	retention	policy	and	forcing	backups	of
read-only	datafiles.	We	looked	at	methods	of	detecting	database	corruption	with	RMAN.
All	in	all,	it	has	been	a	full	chapter,	but	we	hope	you	have	found	it	to	be	a	worthwhile	one.
You	are	now	a	step	closer	to	being	an	RMAN	expert,	but	the	real	fun	is	yet	to	come,	and
that’s	recovery.	Hang	on,	because	that’s	coming	up	next.

CHAPTER
8

RMAN	Restore	and	Recovery

W
e	have	talked	about	backing	up	your	database.	Now,	it’s	time	to	talk	about	how	we	are
going	to	restore	and	recover	your	database	from	those	backups.	First,	unless
there	is	a	specific	reason	not	to	do	so,	we	will	treat	nonmultitenant
databases	and	the	entirety	of	a	multitenant	database	CDB	pretty	much	the
same.	In	most	respects,	the	operations	you	do	on	one	are	the	same	as	on	the

other.	We,	of	course,	cover	all	aspects	of	PDB	restore	and	recovery	in	this	chapter	as	well.

In	this	chapter	we	cover	the	following	topics:

			RMAN	restore	and	recovery	basics

			The	RMAN	restore	and	recovery	commands

			Preparing	for	an	RMAN	restore

			Restoring	the	database	SPFILE

			Restoring	the	database	control	file

			Complete	restore	and	recovery	of	a	database	in	NOARCHIVELOG	mode

			Complete	restore	and	recovery	of	a	database	in	ARCHIVELOG	mode

			Complete	restore	and	recovery	of	a	PDB

			Recovering	from	the	loss	of	online	redo	logs

			Using	the	Data	Recovery	Advisor

This	chapter	covers	basic	point-of-failure	restore	and	recovery	in	RMAN.	Chapter	9
will	build	on	this	chapter,	covering	database	incarnations	as	well	as	incomplete	database
restores	of	CDBs	and	PDBs.	Chapter	9	will	also	cover	other	RMAN	restore	topics	such	as
the	restore	of	archived	redo	logs,	recovery	of	corrupt	database	blocks,	tablespace	point-in-
time	recovery,	and	other	RMAN-related	topics.

RMAN	Restore	and	Recovery	Basics
In	this	chapter	we	discuss	database	restores	and	recoveries	using	RMAN.	First,	when	we
talk	about	a	database	restore	or	a	database	recovery,	we	mean	the	actual	process	of	taking
a	database	that	has	somehow	become	corrupted	and	restoring	it	to	use.	In	this	context,	the
terms	are	interchangeable.	When	we	talk	about	the	RMAN	commands	restore	and
recover,	these	are	very	specific	individual	and	unique	commands	that	are	used	to	perform
a	database	restore.

Database	restores	usually	occur	because	something	has	happened	to	a	database	that	has
caused	it	to	become	corrupted	in	some	way.	Because	of	this	corruption,	the	database	must
be	restored.	This	corruption	can	be	as	simple	as	a	user	accidently	truncating	a	table,	to	the
actual	loss	of	the	database	physical	files	on	its	operating	media.	In	any	event,	there	are	a
great	number	of	reasons	we	will	find	ourselves	facing	a	database	restore.

When	we	are	using	Oracle,	we	use	RMAN	to	perform	a	database	recovery.	In	this	effort
you	will	use	two	commands.	First,	you	will	use	the	RMAN	restore	command	and	then
you	will	use	the	RMAN	recover	command.	Therefore,	the	two	commands	are	frequently

used	together	when	performing	RMAN	database	recovery	operations.

When	we	talk	about	an	RMAN	restore,	we	mean	using	the	RMAN	restore	command	to
start	a	restore	of	a	database.	In	this	case,	the	restore	command	extracts	the	needed	backup
files	from	the	appropriate	backup	sets,	copying	those	files	to	some	physical	location.

In	most	cases	the	RMAN	restore	command	will	be	followed	by	the	RMAN	recover
command	to	complete	an	RMAN	Oracle	database	recovery.	The	RMAN	recover
command	will	extract	any	needed	archived	redo	logs,	apply	them	to	the	restore	database
datafiles,	and	complete	the	recovery	process.	All	that	is	left	to	you	as	the	DBA,	then,	is	to
open	the	database.

NOTE

Probably	the	main	point	here	to	understand	is	that	in	most	cases,	when	you	are
using	RMAN	to	recover	a	database	from	some	failure,	you	will	almost	always	use
the	restore	command	first,	and	then	the	recover	command	second.

There	are	other	uses	of	the	restore	and	recover	commands	beyond	those	described
here.	For	example,	the	restore	command	can	be	used	to	validate	existing	RMAN	backup
files	that	have	been	created	by	previous	backups.	The	restore	command	can	also	be	used
to	restore	old	archived	redo	logs,	or	it	can	be	used	to	ensure	that	the	files	that	are	required
to	restore	an	Oracle	database	are	available	on	media	and	that	those	files	are	not	corrupt.
We	discuss	these	uses	of	the	restore	and	recover	commands	throughout	the	chapters	in
this	book.

Types	of	Oracle	Database	Recoveries
One	other	huge	consideration	with	respect	to	Oracle	Database	is	what	logging	mode	the
database	was	in	when	it	was	backed	up.	We	discussed	the	ARCHIVELOG	and
NOARCHIVELOG	modes	in	Chapter	2.	How	you	perform	RMAN-based	database
recoveries,	and	the	options	you	can	use	with	the	RMAN	restore	and	recover	commands,
will	depend	very	much	on	which	database	logging	mode	you	are	using.

Three	main	kinds	of	database	recovery	are	supported	by	RMAN.	These	are	point-of-
backup,	point-of-failure	(or	complete),	and	point-in-time	restores.	Point-of-backup
restores	are	the	only	kind	of	restore	supported	when	the	database	is	in	NOARCHIVELOG
mode.	It	is	really	its	own	special	kind	of	point-in-time	restore	because	the	database	can
only	be	restored	to	the	time	when	the	database	was	actually	backed	up.

When	the	database	is	in	ARCHIVELOG	mode,	you	have	an	option	to	perform	either	a
point-of-failure	restore	or	a	point-in-time	restore.	A	point-of-failure	database	recovery
allows	for	the	complete	restore	of	the	database	without	any	loss	of	data.	There	are	some
requirements	to	be	able	to	do	a	point-in-time	restore	that	we	will	cover	in	more	detail	later
in	this	chapter.	A	point-in-time	restore	is	a	database	restore	to	any	point	in	time	that	is
covered	by	available	RMAN	database	backups	and	archived	redo	logs.

Of	course,	the	time	to	decide	what	kind	of	restore	you	wish	to	be	able	to	perform	is
before	you	actually	need	to	restore	the	database.	Thinking	ahead	is	very	important	when	it
comes	to	backup	and	recovery	of	an	Oracle	database.

About	Restoring	Multitenant	Databases
Oracle	Database	12c	introduced	the	multitenant	database	feature,	which	we	introduced
you	to	in	Chapter	4.	In	this	chapter	we	cover	full	database	restores	of	nonmultitenant
databases.	These	same	procedures	will	also	apply	to	full	database	restores	of	Oracle
Multitenant	databases	exactly	as	written.	In	Chapter	9,	we	discuss	other	topics	related	to
the	recovery	of	Oracle	PDBs	and	any	other	issues	unique	to	restores	of	Oracle	Multitenant
databases.	Within	this	chapter,	the	restores	that	are	demonstrated	are	applicable	to	both
Oracle	Multitenant	databases	and	those	that	are	not	using	the	Oracle	Multitenant	feature.
In	the	case	where	any	distinction	is	required,	we	will	point	it	out.

Preparing	for	an	RMAN	Restore
Before	RMAN	can	do	its	thing,	you	need	to	do	a	few	things	first.	Preparation	is	the	mother
of	success,	someone	once	said,	and	this	is	so	true	when	it	comes	to	restoring	your
database.	You	need	to	work	with	your	system	administrator	to	make	sure	the	following
tasks	are	done	before	you	attempt	your	restore/recovery:

			The	OS	parameters	are	configured	for	Oracle.

			Your	disks	are	configured	correctly	and	are	the	correct	sizes.

			The	tape	drives	are	installed,	and	the	tape	software	is	installed	and	configured.

			Your	network	is	operational.

			The	Oracle	RDBMS	software	is	installed.

			The	MML	is	configured.

			Ancillary	items	are	recovered	from	backups	that	RMAN	does	not	back	up,
including

			The	database	networking	files	(for	example,	sqlnet.ora	and	listener.ora)

			The	oratab	file,	if	one	is	used

			The	database	parameter	files,	if	they	are	not	SPFILEs	and	are	not	backed
up	by	RMAN

			Ensure	that	the	appropriate	RMAN	backup	set	pieces	are	in	place,	including
the	backup	set	pieces	for	automated	control	file	backups.

Once	these	items	have	been	restored,	you	are	ready	to	begin	restoring	your	Oracle
database.	If	you	are	using	a	recovery	catalog,	you	will	want	to	recover	it	first,	of	course.
Then,	you	can	recover	the	remaining	databases.

If	you	are	not	using	the	recovery	catalog,	and	if	you	do	not	have	a	good	backup	of	the

control	file,	you	will	need	to	manually	create	the	database	control	file	using	the	create
control	file	SQL	command	(this	can	be	run	from	the	RMAN	prompt	or	from	SQL*Plus).
Once	you	have	manually	created	the	control	file,	you	will	want	to	use	the	RMAN	catalog
command	to	catalog	the	backup	set	pieces	that	need	to	be	used	for	the	database	recovery.
We	discuss	the	use	of	the	catalog	command	in	more	detail	later	in	this	chapter.

When	you	start	recovering	databases,	you	need	to	start	by	recovering	the	SPFILE	(if
you	are	using	one	and	it	was	backed	up),	followed	by	the	control	file.	The	next	two
sections	cover	those	topics	for	you.

NOTE

In	this	chapter	we	generally	assume	that	you	are	not	using	a	recovery	catalog
when	doing	your	database	recoveries.	In	most	cases,	nothing	will	be	different	if
you	are	using	a	recovery	catalog.	If	there	are	important	distinctions	to	make	with
respect	to	the	use	of	a	recovery	catalog,	we	indicate	these	in	the	chapter,	as
appropriate.

Staging	RMAN	Backup	Set	Pieces	for	Restores
Real	database	restores	are	rarely	convenient	things.	First	of	all,	just	the	fact	that	something
has	happened	to	make	you	have	to	restore	your	database	is	enough	to	ruin	your	day.	Often,
whatever	the	cause	of	your	failure	is,	there	are	often	ancillary	ramifications.	One	of	these
might	be	that	all	of	the	backup	files	in	the	Fast	Recovery	Area	(FRA)	you	backed	up	to
have	been	deleted.

In	Chapter	15,	we	help	you	build	an	architecture	where	we	eliminate	the	FRA	as	a
single	point	of	failure.	In	the	architecture	that	we	recommend,	RMAN	will	always	know
where	the	various	backup	set	pieces	are	so	that	restores	will	be	easy	and	quick.

Your	backup	architecture	may	be	different	though.	We	often	find	that	legacy	backup
architectures	will	back	up	the	RMAN	backup	set	pieces	to	some	other	location,	not	using
RMAN.	In	these	cases,	RMAN	loses	“touch”	of	where	these	backup	set	pieces	are.	In
these	cases,	the	first	thing	you	need	to	do	is	recover	the	backup	set	pieces	from	the	backup
media	and	restore	them	to	the	directory	where	RMAN	will	be	expecting	them	to	reside.
This	might	be	the	FRA	or	some	other	external	directory.	It	may	be	that	you	cannot	restore
the	backup	set	pieces	to	the	original	directory	structure.	In	this	case,	you	should	restore	the
backup	set	pieces	to	some	directory	that	is	accessible	to	RMAN.	Recover	the	database
control	file	if	that	is	required,	and	then	use	the	catalog	command	(discussed	later	in	this
chapter)	to	catalog	these	backup	set	pieces	in	the	database	control	file	and/or	recovery
catalog.

The	main	points	here	are	that	the	RMAN	backup	set	pieces	need	to	reside	somewhere
that	RMAN	can	access	them	and	that	RMAN	needs	to	know	where	those	backup	set
pieces	are.	For	many	kinds	of	restores,	you	probably	won’t	have	to	do	anything,	but	for

more	critical	database	restore	operations,	you	may	have	to	stage	the	backup	files	before
you	can	even	start	an	RMAN	database	recovery.

Restoring	the	SPFILE
Now	that	you	have	staged	your	RMAN	backup	set	pieces	(or	ensured	that	they	are	where
you	expected	them	to	be	already),	we	are	ready	to	restore	whatever	part	of	the	database
has	gone	missing	or	that	needs	to	be	replaced.	Let’s	begin	at	the	beginning,	which	is	the
restore	of	database	SPFILEs.

You	really	should	be	using	SPFILEs.	Although	Oracle	still	supports	the	text-based
parameter	file,	and	probably	always	will,	we’ll	still	say	it—use	the	SPFILE.	That	being
said,	RMAN	has	the	ability	to	back	up	database	SPFILEs	and	control	files	automatically.
We	have	discussed	configuring	control	file	automatic	backups	in	previous	chapters	in	this
book.	Now	we	will	put	them	to	good	use!

As	we	discuss	restoring	the	SPFILE	in	this	chapter,	we	will	assume	that	you	have	in
fact	lost	the	SPFILE.	Thus,	any	configuration	required	because	of	the	loss	of	that	file	will
be	covered.	It’s	pretty	easy	to	tell	if	the	SPFILE	has	been	lost.	When	you	try	to	start	the
database	you	will	get	an	error	that	looks	something	like	this:

It	really	does	not	matter	what	your	operating	system	is,	the	message	will	look	pretty
much	the	same,	except	the	path	of	the	missing	SPFILE	will	look	like	the	type	of	path
common	to	your	operating	system.

If	you	want	to	see	a	list	of	SPFILE	backups,	you	can	issue	the	list	backup	of	spfile
command	when	the	database	is	mounted	or	when	you	are	connected	to	a	recovery	catalog.
As	with	many	other	types	of	restores,	SPFILE	restores	can	occur	with	different	kinds	of
permutations.	For	example,	you	may	or	may	not	be	using	a	recovery	catalog,	or	you	may
or	may	not	be	using	a	Fast	Recovery	Area	(FRA).	In	the	following	sections	we	will	look	at
recovering	the	SPFILE	from	an	RMAN	control	file	autobackup	where	the	FRA	was	not	in
use.	Then	we	will	look	at	recovering	an	SPFILE	when	the	database	FRA	is	in	use.

Recovering	the	SPFILE	from	Memory	on	a	Running	Database
If	you	have	mistakenly	deleted	the	database	SPFILE	and	the	database	is	still	running,	the
easiest	way	to	re-create	the	SPFILE	is	to	use	the	SQL	command	create	spfile	from
memory.	Note	that	this	is	a	SQL	command	and	not	an	RMAN	command	(though	the
command	can	be	run	from	the	RMAN	prompt).	In	most	cases,	you	will	need	to	create	an

SPFILE	to	a	location	other	than	one	where	the	old	SPFILE	previously	existed.	You	should
then	use	the	temporary	file	to	create	a	new	copy	of	the	database	SPFILE.	Let’s	look	at	an
example.	First,	let’s	find	the	location	of	the	SPFILE	by	looking	at	the	SPFILE	parameter
(the	SPFILE	parameter	might	not	be	used,	in	which	case	the	SPFILE	would	be	contained
in	the	default	directory	of	the	database—for	example,	$ORACLE_HOME/dbs	in	Linux).
In	this	case,	we	find	the	SPFILE	parameter	is	in	use:

However,	when	we	look	at	the	directory	where	the	SPFILE	is	supposed	to	be	located,
we	find	that	the	SPFILE	is	missing:

The	database	is	still	running,	fortunately.	So,	we	will	just	use	the	create	spfile	from
memory	SQL	command.	We	will	create	an	SPFILE	that	is	named	differently	than	the	one
the	database	was	started	with.	This	is	because	Oracle	will	not	let	you	override	the	current
SPFILE—even	if	that	file	has	been	accidently	deleted.	Once	we	create	the	temporary
SPFILE,	we	will	use	the	OS	copy	command	to	copy	it	into	place.	Here	is	an	example	of
this	operation:

As	you	can	see,	in	the	previous	example	we	don’t	even	need	an	RMAN	backup	of	the
SPFILE	to	correct	the	problem.	However,	this	solution	isn’t	available	if	the	database	is	not
running.

NOTE

If	you	are	using	SPFILEs	and	you	did	not	configure	autobackups	and	didn’t
manually	back	up	the	SPFILE	with	RMAN	(or	some	other	way),	you	won’t	be	able

to	restore	the	SPFILE.	In	this	case,	you	will	need	to	manually	re-create	a	text-
based	parameter	file	and	then	use	the	SQL*Plus	command	create	spfile	from
pfile	to	re-create	the	SPFILE.

Recovering	the	SPFILE	when	Using	RMAN	Controlfile	Autobackups	and
an	FRA
If	the	database	is	not	running,	then	re-creation	of	the	SPFILE	from	memory	is	not
possible.	In	this	section	we	assume	you	have	enabled	SPFILE	autobackups.	To	restore	the
SPFILE,	we	need	a	way	to	get	the	database	instance	started	so	we	can	perform	the	RMAN
recovery	of	that	file.

To	prepare	for	a	restore	of	the	SPFILE,	you	will	need	to	first	configure	the	Oracle
database	environment	on	the	OS.	For	example,	on	a	Linux	system	you	would	set
parameters	such	as	ORACLE_HOME,	ORACLE_SID,	and	the	PATH	required	by	the
database	you	want	to	restore.

Start	the	database	instance	(startup	nomount)	through	the	RMAN	interface.	When	you
issue	the	startup	nomount	command	from	the	RMAN	prompt	and	no	SPFILE	or	database
parameter	file	is	available,	then	the	database	instance	will	be	started	with	a	temporary
parameter	file	to	allow	RMAN	to	restore	the	database	SPFILE	from	backup.	Note	that
only	RMAN	will	be	able	to	start	the	database	instance	this	way;	this	function	is	not
available	through	SQL*Plus.

Now	that	the	instance	is	started,	you	will	want	to	make	sure	you	know	the	name	of	the
database	and	the	location	where	the	RMAN	files	are	located.

NOTE

If	you	are	using	ASM	for	the	FRA,	the	ASM	instance	will	need	to	be	running
before	you	can	configure	the	DB_RECOVERY_FILE_DEST	properly.

Now	that	you	have	collected	all	the	information	you	need,	we	are	ready	to	restore	the
backup	of	the	database	SPFILE.	To	perform	this	restore	we	use	the	RMAN	restore	spfile
command.	In	our	case	the	recovery	area	is	defined	as
“/u01/app/oracle/fast_recovery_area”	and	the	database	name	is	called	ROB.	In	the
following	example,	we	have	done	the	following:

1.			Set	the	database	environment.

2.			Started	RMAN.

3.			Started	the	database	instance	with	the	startup	nomount	command	from	the
RMAN	prompt.	The	output	from	RMAN	indicates	that	the	parameter	file	could	not
be	opened	and	that	it’s	opening	the	database	without	a	parameter	file	so	we	can
restore	the	SPFILE.

4.			The	Oracle	instance	is	started.

5.			The	database	SPFILE	was	extracted	using	the	restore	spfile	from
autobackup	command.	Note	that	we	have	included	the	location	of	the	recovery
area	and	the	name	of	the	database	as	parameters	to	the	restore	spfile	command.

6.			Once	the	SPFILE	was	restored,	we	restarted	the	database	with	the	startup
force	command.

A	few	things	to	note	about	the	restore	of	an	SPFILE.	First,	RMAN	will	search	for
backups	of	SPFILES,	restoring	the	most	current	one	that	is	available.	If	you	wish	to	find	a

different	SPFILE,	you	can	reference	a	specific	tag	name	or	use	the	until	clause	(or	the	set
until	clause	if	you	prefer)	to	indicate	the	day	on	which	you	want	to	start	your	search.
RMAN	will	check	back	in	time	for	a	default	value	of	seven	days	for	backups	of	the
SPFILE.	You	can	use	the	maxdays	parameter	to	change	the	number	of	days	you	want	to
have	RMAN	check.	RMAN	can	check	back	for	a	maximum	of	366	days	for	a	control	file
autobackup	to	restore.	Here	is	an	example	where	we	have	RMAN	check	for	backups	that
are	at	least	seven	days	old,	and	then	checking	for	backups	ten	days	from	that	point	in	time.
You	can	also	use	the	maxseq	parameter	(not	shown	here)	to	control	how	many	sequence
numbers	to	traverse.	Finally,	note	in	the	example	that	we	are	restoring	the	SPFILE	to	a
different	directory:

NOTE

Control	file	RMAN	autobackups	are	stored	in	their	own	specific	backup
location	in	the	FRA.	Under	the	root	of	the	FRA	you	will	find	them	in	a	directory
structure	that	looks	like	the	following:	<instance_name>/autobackup/<date>.
The	backup	files	are	named,	by	default,	using	OFA.	Although	this	naming
convention	can	be	changed,	we	recommend	against	it.

Recovering	the	SPFILE	when	Using	RMAN	Controlfile	Autobackups	and
No	FRA
If	you	are	using	RMAN	controlfile	autobackups	but	you	are	not	backing	up	to	the	FRA,
then	you	will	need	to	slightly	adjust	your	restore	procedure.	The	most	common	reason
why	the	controlfile	autobackups	are	being	located	in	a	place	different	from	the	FRA	is
because	the	RMAN	configure	controlfile	autobackup	command	has	been	used	to
indicate	that	a	different	location	for	the	controlfile	autobackup	backup	set	pieces	should	be
used.

We	should	take	a	second	to	talk	about	what	defines	the	filename	of	the	RMAN	control
file	autobackup	backup	set	pieces	and	the	location	in	which	they	are	stored.	The	location
and	name	of	these	backup	set	pieces	are	controlled	by	the	configure	controlfile
autobackup	format	RMAN	command.	When	this	command	is	used	to	define	the	location
of	the	controlfile	backup	set	pieces,	the	format	must	always	contain	the	%F	parameter.
The	use	of	the	%F	parameter	is	required	and	provides	a	standardized	format	for	the	name
of	the	resulting	backup	set	pieces.

When	the	controlfile	autobackups	are	not	stored	in	the	FRA,	RMAN	needs	different
information	to	be	able	to	locate	them.	This	is	because	the	standardized	format	of	the	FRA
was	not	used.	In	this	case,	the	information	we	need	is	the	location	where	the	controlfile
autobackups	will	be	stored	and	the	DBID	of	the	database.

Each	Oracle	database	is	assigned	a	DBID	when	it’s	created.	The	DBID	for	any	given

database	is	supposed	to	be	unique	(though	there	are	ways,	such	as	a	manual	database
duplication,	that	can	result	in	a	DBID	being	duplicated).	You	can	find	the	DBID	for	a
given	database	by	querying	the	DBID	column	of	the	V$DATABASE	view,	as	shown	here:

The	DBID	is	used	by	RMAN	when	naming	the	control	file	autobackup	backup	set
pieces.	Since	the	database	DBID	is	used,	all	of	the	backup	set	pieces	for	a	specific
database	are	guaranteed	to	be	uniquely	named	from	any	other	database.

If	you	don’t	know	the	DBID	of	the	database	you	need	to	restore	the	SPFILE	for,	don’t
panic—there	are	a	couple	of	ways	of	going	about	finding	it.	First,	if	the	location	where	the
controlfile	autobackup	backup	set	pieces	are	stored	is	unique	to	the	database,	then	finding
the	DBID	of	the	database	is	simple	because	you	can	find	the	DBID	of	the	database	in	the
filename	of	the	controlfile	autobackup	backup	set	pieces.

If	there	is	more	than	one	database	using	the	same	directory	to	store	its	control	file
autobackup	backup	set	pieces,	then	you	can	use	a	command	similar	to	the	Linux	strings
command	to	search	the	various	control	file	automatic	backup	set	pieces	for	the	name	of
your	database.	For	example,	in	this	case,	we’ve	used	strings	to	search	for	the	DB_NAME
parameter	within	the	backup	set	piece	that	belongs	to	a	controlfile	autobackup.	The
DB_NAME	parameter	will	tell	us	the	name	of	the	database	contained	in	the	autobackup:

Now	that	we	know	the	name	of	the	backup	set	piece,	we	know	the	DBID	for	the
database	called	rob.	It’s	in	the	name	of	that	backup	set	piece.	Notice	that	the	backup	set
piece	starts	with	a	c-,	which	indicates	that	it’s	a	controlfile	autobackup	backup	set	piece.
The	next	number	(1145089261)	is	the	DBID	for	the	database.	(See,	we	found	it!)	The	next
number	is	the	date	of	the	backup	(12/03/2014),	which	is	followed	by	a	sequence	number
assigned	to	that	backup	(03).	For	each	given	day,	when	a	controlfile	autobackup	occurs,	it
will	be	assigned	its	own	unique	sequence	number.	The	sequence	numbers	reset	each	day.
Up	to	256	sequences	(starting	with	the	number	1)	are	allowed	each	day.

Now	that	we	have	collected	all	the	information	we	need,	it’s	time	to	restore	the	SPFILE
using	the	RMAN	restore	spfile	command.	In	the	following	example,	we	have	done	the
following:

1.			Set	the	database	environment.

2.			Started	RMAN.

3.			Set	the	DBID	of	the	database	that	is	the	owner	of	the	SPFILE	we	need	to
restore.

4.			Started	the	database	instance	with	the	startup	nomount	command	from	the
RMAN	prompt.	The	output	from	RMAN	indicates	that	the	parameter	file	could	not
be	opened	and	that	it’s	opening	the	database	without	a	parameter	file	so	we	can
restore	the	SPFILE.

5.			Used	the	set	controlfile	autobackup	format	RMAN	command	to	define	the
location	and	filenaming	format	of	the	control	file	autobackups.

6.			Allocated	a	channel	for	the	restore	to	use	with	the	allocate	channel	RMAN
command.	Note	that	we	do	not	need	to	define	a	location	when	this	channel	is
allocated	because	we	set	the	controlfile	autobackup	location	and	format	earlier.

7.			Extracted	the	database	SPFILE	using	the	restore	spfile	from	autobackup
command.

8.			Once	the	SPFILE	was	restored,	we	restarted	the	database	with	the	startup
force	command.

We	have	issued	a	startup	force	after	this	example	and	several	others.	After	any
SPFILE	restore,	you	will	need	to	restart	the	instance	to	have	the	correct	parameters	take
effect.	If	all	that	is	missing	is	the	SPFILE,	the	database	will	start	up	normally.	If	you	need
to	perform	other	recovery	activities,	you	will	now	be	able	to	do	so.	You	can	perform	any
additional	recovery	activities	that	might	be	required.

As	earlier,	we	can	also	use	the	maxdays	and	maxseq	parameters	to	control	how	many
days'	worth	of	backups	to	search	for	and	how	many	sequences	we	want	to	process	for	each
day.	Also,	the	until	time	parameter	is	perfectly	valid.	What’s	more,	as	we	showed	you
earlier,	you	can	use	this	technique	to	restore	an	SPFILE	to	a	different	location,	as	you	can
see	in	this	example:

If	you	know	the	specific	backup	set	piece	from	which	you	want	to	extract	the	SPFILE,
you	can	reference	it	in	the	restore	command	by	including	the	from	backup	clause,	as
shown	in	this	example:

This	allows	you	to	simply	indicate	the	backup	set	piece	that	contains	the	SPFILE
backup	in	it.	You	can	save	a	great	deal	of	time	if	you	know	which	backup	set	piece	you
want	to	use	to	restore	the	SPFILE.

Recovering	the	SPFILE	when	Using	a	Recovery	Catalog
If	you	are	using	a	recovery	catalog,	restoring	the	most	current	SPFILE	is	as	simple	as
setting	the	environment	correctly,	connecting	to	the	database	instance,	and	starting	it
(nomount).	Then	you	would	issue	the	restore	spfile	command.	RMAN	will	use	the
recovery	catalog	to	locate	the	most	current	control	file	backup	and	will	extract	that	backup

for	your	use.	Therefore,	there	is	no	need	to	use	the	autobackup	parameter.	Here	is	an
example:

Extracting	a	Copy	of	the	SPFILE	and	Converting	to	a	PFILE
Extracting	a	copy	of	your	SPFILE	from	a	database	backup	with	the	database	up	is	really
easy	regardless	of	whether	you	are	using	a	control	file	or	a	recovery	catalog.	You	should
note	that	this	operation	will	result	in	a	text	parameter	file,	and	not	an	SPFILE,	so	you	will
need	to	convert	it	if	you	want	it	to	be	an	SPFILE.	Here	is	an	example	where	we	create	a
PFILE	from	an	SPFILE	backup:

Note	that	you	would	need	to	include	the	additional	steps	we	already	demonstrated
depending	on	whether	you	are	using	the	FRA	or	a	non-FRA	location.	If	you	are	using	a
recovery	catalog,	you	can	remove	the	autobackup	parameter.

RMAN	Workshop:	Recover	Your	SPFILE
Workshop	Notes
For	this	workshop,	you	need	an	installation	of	the	Oracle	software	and	an
operational	test	Oracle	database.	We	also	assume	the	following:

			The	archivelog	mode	of	the	database	can	be	either	ARCHIVELOG	mode
or	NOARCHIVELOG	mode.

			That	you	are	using	the	FRA	when	doing	backups.

			That	the	location	of	the	FRA	is	/u02/fast_recovery_area.	Replace	all
instances	of	this	directory	structure	with	the	FRA	path	for	your	database.	You
can	determine	this	location	from	SQL*Plus	by	issuing	the	command	show
parameter	db_recovery_file_dest.

			That	the	name	of	your	database	is	rob.	Replace	this	with	the	correct
name	of	the	database	that	you	are	using.

Step	1.			Ensure	that	you	have	configured	automated	backups	of	your	control	files:

In	this	case,	we	are	accepting	that	the	control	file	backup	set	pieces	will	be
created	in	the	default	location.

Step	2.			Complete	a	backup	of	your	system	(in	this	case,	we	assume	this	is	a	hot
backup):

In	this	workshop,	we	assume	that	the	backup	is	to	a	configured	default	device.

Step	3.			Shut	down	your	database	by	using	the	shutdown	immediate	command
(from	either	SQL*Plus	or	RMAN):

Do	not	use	the	shutdown	abort	command	in	this	workshop.

Step	4.			Rename	your	database	SPFILE.	Do	not	remove	it,	just	in	case	your
backups	cannot	be	recovered.	You	can	generally	find	the	name	of	your	SPFILE	by
using	the	show	parameter	spfile	command	in	SQL*Plus.	The	SPFILE	may	also	be
contained	in	the	OS-specific	default	directory	defined	for	parameter	files.	In	Linux
this	would	be	$ORACLE_HOME/dbs.	The	name	of	the	SPFILE	is	generally
spfile<dbname>.ora,	though	it	may	be	named	differently.

Step	5.			From	RMAN,	attempt	to	start	the	database	using	the	startup	command:

RMAN	will	indicate	that	the	SPFILE	and	parameter	file	cannot	be	found,	and	it	will
start	the	instance	with	a	temporary	parameter	file.	RMAN	then	will	return	an	error
indicating	that	it	could	not	find	the	control	file.

Step	6.			Recover	your	control	file	with	RMAN	by	using	your	autobackup	of	the
control	file:

Step	7.			We	will	test	the	SPFILE	restore	by	issuing	the	startup	force	nomount
command.	The	database	instance	should	start	normally	now:

Restoring	the	Control	File
Restoring	the	control	file	is	essentially	the	same	process	as	restoring	the	database
parameter	file.	As	with	the	parameter	files,	the	main	distinctions	are

			Restoring	when	you	have	used	an	FRA

			Restoring	when	you	have	not	used	the	FRA

			Restoring	when	you	have	used	a	recovery	catalog

In	the	first	section	we	discuss	restoring	the	control	file	given	the	conditions	shown	in
the	preceding	list.	Then	we	will	discuss	restoring	RMAN-related	records	to	the	control
file.

Restoring	the	Control	File	with	RMAN
Before	you	can	restore	the	control	file,	you	need	to	have	started	the	database	instance	with
the	correct	SPFILE.	This	is	because	only	the	correct	SPFILE	will	have	the	metadata
required	to	know	where	the	control	files	are	supposed	to	be	located.	We	discussed
restoring	the	database	SPFILE	in	the	previous	section,	so	you	should	be	aware	of	how	to
restore	the	database	SPFILE.

The	RMAN	methods	used	to	restore	an	SPFILE	are	exactly	the	same	as	those	used	to
restore	a	control	file,	with	a	few	differences.	First,	you	use	the	controlfile	keyword	instead
of	the	spfile	keyword.	Either	you	will	be	using	the	FRA,	a	user-defined	backup	location
for	control	file	autobackups,	or	a	recovery	catalog.	One	difference	is	if	you	are	using	the
FRA,	you	will	not	need	to	define	the	FRA	location	or	define	the	name	of	the	database	as
you	did	with	an	SPFILE	restore.

First,	here	is	an	example	of	the	recovery	of	a	control	file	when	you	are	using	an	FRA:

Note	that	this	looks	almost	identical	to	the	method	used	to	restore	the	SPFILE,	with	a
few	differences:

			We	used	the	keyword	restore	controlfile.

			After	restoring	the	control	file,	we	need	to	issue	the	RMAN	recover	database
command.	This	indicates	to	RMAN	to	prepare	the	Oracle	database	to	be	opened
with	the	recovered	control	file.	The	recover	database	command	prepares	the
database	to	be	opened	with	the	alter	database	resetlogs	command.	If	you	need	to
restore	datafiles,	you	would	perform	that	function	before	issuing	the	recover
database	command.	You	will	see	this	demonstrated	later	in	this	chapter.

			The	database	is	then	opened	with	the	alter	database	open	resetlogs
command.

Note	that	if	your	database	is	in	NOARCHIVELOG	mode,	the	recover	database
command	might	need	to	look	slightly	different.	If	you	have	lost	the	online	redo	logs,	you
will	need	to	add	the	noredo	parameter	to	the	recover	database	command.	If	the	online
redo	logs	are	intact,	the	noredo	parameter	is	not	required.	Here	is	an	example	of	using	the
noredo	parameter	when	restoring	a	control	file	if	the	online	redo	logs	were	lost	as	well:

This	indicates	to	RMAN	that	the	online	redo	logs	have	been	lost.	Obviously,	if	you
need	to	perform	a	recovery	of	database	datafiles,	you	would	not	yet	use	the	recover
database	or	alter	database	open	resetlogs	command.	Instead,	you	would	begin	the
recovery	of	your	database,	after	which	you	would	open	it.

The	next	example	is	if	you	are	restoring	the	control	file	and	you	are	not	using	the	FRA
for	control	file	autobackups.	Again,	this	procedure	looks	similar	to	the	one	used	to	restore
the	SPFILE	that	you	saw	earlier	in	this	chapter.	This	includes	setting	the	database	DBID
before	the	restore	and	setting	the	backup	location	of	the	control	file	autobackups	with	the
set	controlfile	autobackup	format	RMAN	command.

As	with	the	previous	control	file	restore,	we	also	needed	to	execute	the	recover
database	command	and	the	alter	database	open	resetlogs	command	to	open	the	database
after	the	restore:

Restoring	RMAN-Related	Records	to	the	Control	File
Once	you	have	restored	the	control	file,	you	need	to	consider	the	distinct	possibility	that
you	have	lost	RMAN-related	data.	If	you	are	using	an	RMAN	recovery	catalog,	all	of	your
backup	records	will	be	contained	in	there,	so	you	really	have	lost	nothing.	If	you	are	only
using	the	control	file,	then	because	RMAN	stores	all	of	its	data	in	the	control	file,	there	is

a	good	possibility	you	have	at	least	lost	some	records	that	relate	to	archived	redo	logs
(which	Oracle	needs	for	a	full	recovery).

RMAN	makes	this	problem	pretty	easy	to	deal	with,	because	you	can	register	various
RMAN-related	backup	files	after	the	restore	of	a	control	file,	just	to	ensure	that	you	have
everything	you	need	for	a	recovery	in	the	control	file.	To	re-create	RMAN-related
archived	redo	log	records,	you	can	use	the	RMAN	catalog	command	to	register	archived
redo	logs	in	your	control	file.	The	catalog	command	can	be	used	to	register	a	specific
backup	set	piece,	as	shown	in	this	example:

You	can	also	catalog	archived	redo	logs,	as	in	this	example:

Now,	if	you	are	thinking	ahead,	you	might	sigh	and	say	to	yourself,	“Who	wants	to
manually	catalog	the	1,000	archived	redo	logs	that	were	generated	throughout	the	day?”
Fortunately,	the	RMAN	developers	had	the	same	thought!	With	RMAN,	you	can	catalog	a
whole	directory	without	having	to	list	individual	files.	Simply	use	the	catalog	command
again,	but	use	one	of	the	following	keywords:

			recovery	area	or	db_recovery_file_dest

			start	with

The	recovery	area	and	db_recovery_file_dest	keywords	have	the	same	function:	they
cause	the	entire	FRA	to	be	cataloged	by	RMAN.	If	RMAN	finds	files	that	are	already
cataloged,	it	simply	skips	over	them	and	continues	to	catalog	any	remaining	files	that	are
not	found	in	the	control	file.	Here	is	an	example	of	cataloging	all	files	in	the	FRA:

If	you	are	not	using	the	FRA,	you	will	want	to	use	the	start	with	syntax	instead.	The
start	with	syntax	allows	you	to	traverse	a	non-FRA	backup	directory	and	to	catalog	any
RMAN-related	files	contained	in	that	directory	and	any	subdirectories	under	that
directory.	Here	is	an	example	of	the	use	of	the	catalog	start	with	command:

NOTE

RMAN	automatically	catalogs	the	FRA	for	you	if	you	perform	a	restore
operation	with	a	backup	control	file.

RMAN	Workshop:	Recover	Your	Control	File
Workshop	Notes
For	this	workshop,	you	need	an	installation	of	the	Oracle	software	and	an
operational	test	Oracle	database.	Also,	we	assume	the	following:

			That	the	database	is	in	NOARCHIVELOG	mode.

			That	you	are	using	the	FRA	when	doing	backups.

			That	the	location	of	the	FRA	is	/u02/fast_recovery_area.	Replace	all
instances	of	this	directory	structure	with	the	FRA	path	for	your	database.	You
can	determine	this	location	from	SQL*Plus	by	issuing	the	command	show
parameter	db_recovery_file_dest.

			That	the	name	of	your	database	is	rob.	Replace	this	with	the	correct
name	of	the	database	you	are	using.

NOTE

For	this	workshop,	the	database	is	in	ARCHIVELOG	mode.

Step	1.			Ensure	that	you	have	configured	automated	backups	of	your	control	files:

In	this	case,	we	are	accepting	that	the	control	file	backup	set	pieces	will	be	created
in	the	default	location.

Step	2.			Complete	a	backup	of	your	system	(in	this	case,	we	assume	this	is	a	hot
backup):

In	this	workshop,	we	assume	that	the	backup	is	to	a	configured	default	device.

Step	3.			Shut	down	your	database	by	using	the	shutdown	immediate	command:

Do	not	use	the	shutdown	abort	command	in	this	workshop.

Step	4.			Rename	all	copies	of	your	database	control	file.	Do	not	remove	them,	just
in	case	your	backups	cannot	be	recovered.

Step	5.			Start	your	database:

It	should	complain	that	the	control	file	cannot	be	found	and	it	will	not	open.

Step	6.			Recover	your	control	file	with	RMAN	by	using	the	RMAN	restore
controlfile	command:

Step	7.			Mount	the	database	and	then	simulate	incomplete	recovery	to	complete	the
recovery	process:

Restore	and	Recover	the	Database	in
NOARCHIVELOG	Mode
If	your	database	is	in	NOARCHIVELOG	mode,	you	will	be	recovering	from	a	full,	offline
backup,	and	point-in-time	recovery	won’t	be	possible.	If	your	database	is	in
ARCHIVELOG	mode,	read	the	“Database	Recoveries	in	ARCHIVELOG	Mode”	section
later	in	this	chapter.	If	you	are	doing	incremental	backups	of	your	NOARCHIVELOG
database,	you	will	also	want	to	read	the	“What	If	I	Use	Incremental	Backups?”	section,
also	later	in	this	chapter.

Preparing	for	the	Restore
If	you	are	running	in	NOARCHIVELOG	mode,	and	assuming	you	actually	have	a	backup
of	your	database,	performing	a	full	recovery	of	your	database	is	very	easy.	First,	it’s	a
good	idea	to	clean	everything	out.	You	don’t	have	to	do	this,	but	we	have	found	that	in
cases	of	NOARCHIVELOG	recoveries,	cleaning	out	old	datafiles,	online	redo	logs,	and
control	files	is	a	good	idea.	You	don’t	want	any	of	those	files	lying	around.	Because	you
are	in	NOARCHIVELOG	mode,	you	will	want	to	start	afresh.	(Of	course,	it’s	also	a	very
good	idea	to	make	sure	that	those	files	are	backed	up	somewhere	just	in	case	you	need	to
get	them	back!)

Having	cleaned	out	your	datafiles,	control	files,	and	redo	logs,	you	are	ready	to	start	the
recovery	process.	First,	recover	the	control	file	from	your	last	backup,	as	demonstrated
earlier	in	this	chapter.	Alternatively,	you	can	use	a	backup	control	file	that	you	created	at
some	point	after	the	backup	from	which	you	want	to	restore.	If	you	use	the	create	control
file	command,	you	need	to	catalog	the	RMAN	backup-related	files	before	you	can	restore
the	database.

For	this	example,	we	assume	that	you	are	not	using	a	recovery	catalog.	We	also	assume
you	want	to	recover	from	the	most	current	backup,	which	is	the	default	setting	for	RMAN.
If	you	want	to	recover	from	an	older	backup,	you	need	to	use	the	set	time	command,
which	we	will	discuss	later	in	this	section.

The	differences	in	recovery	with	and	without	a	recovery	catalog	are	pretty	much
negligible	once	you	are	past	the	recovery	of	the	SPFILE	and	the	control	file.	Therefore,
we	will	only	demonstrate	recoveries	without	a	recovery	catalog.	Also,	at	this	point,	there
is	little	difference	in	how	you	perform	a	recovery	regardless	of	whether	you	are	using	the
FRA	or	not.	In	the	upcoming	examples,	we	use	the	FRA	and	highlight	any	issues	that	arise
from	this	fact	in	the	text.

First,	let’s	look	at	the	RMAN	commands	you	use	to	perform	this	recovery:

Looks	pretty	simple.	Of	course,	these	steps	assume	that	you	have	recovered	your
SPFILE	and	your	database	control	files.	The	first	command,	startup	mount,	mounts	the
database.	So,	Oracle	reads	the	control	file	in	preparation	for	the	database	restore.	The
restore	database	command	causes	RMAN	to	actually	start	the	database	datafile	restores.
Following	this	command,	recover	database	instructs	RMAN	to	perform	final	recovery
operations	in	preparation	for	opening	the	database.	Finally,	we	open	the	database	with	the
alter	database	open	resetlogs	command.	Because	we	have	restored	the	control	file	and
we	need	the	online	redo	logs	rebuilt,	we	need	to	use	the	resetlogs	command.	In	fact,	you
will	probably	use	resetlogs	with	about	every	NOARCHIVELOG	recovery	you	do.

So,	let’s	look	at	a	NOARCHIVELOG	database	recovery	in	action.	In	this	case,	we
assume	that	the	database	SPFILE	and	control	file	are	already	recovered	or	are	intact:

Note	that	this	particular	restore	was	done	using	an	Oracle	database	that	had	Oracle
Multitenant	(OM)	enabled.	Also,	in	this	case	we	are	using	the	FRA.	The	output	would
look	similar	to	a	non-OM	database,	except	fewer	datafiles	would	have	been	restored.	Also,
if	you	are	not	using	the	FRA,	the	output	would	pretty	much	look	the	same.	The	commands
used	to	restore	the	database	would	be	exactly	the	same,	although	in	some	cases	you	may
need	to	allocate	a	channel	or	two.	Let’s	look	at	parts	of	this	output	in	a	bit	more	detail.

First,	notice	that	after	we	issued	the	restore	database	command	that	RMAN	performed
an	implicit	crosscheck	between	the	control	file	and	the	files	within	the	FRA	itself.	Then,
RMAN	proceeded	to	catalog	the	files	in	the	FRA.	These	two	operations	are	occurring
because	we	restored	the	control	file	of	this	database.	RMAN	knows	that	this	has	occurred
and,	as	such,	during	the	restore	database	process	it	will	automatically	crosscheck	the
FRA	and	also	catalog	the	contents	of	the	FRA.

The	crosscheck	occurs	because	it	is	possible	that	records	will	have	already	been	added
to	the	control	file	after	it’s	restored,	and	RMAN	must	make	sure	that	those	records	are

valid.	The	catalog	process	ensures	that	the	control	file	has	all	of	the	backup	records	it
needs	when	processing	the	restore	operation.	Note	that	if	we	had	not	restored	the	control
file,	the	crosscheck	and	the	catalog	operation	would	not	have	occurred	unless	we	executed
those	commands	explicitly.

Next,	RMAN	will	start	the	database	restore	process.	It	extracts	the	datafiles	from	the
various	backup	set	pieces,	reassembles	them,	and	then	moves	them	to	the	location	where
the	database	expects	them	to	be.	During	this	restore	operation,	two	disk	channels	were
allocated	(automatically),	so	two	different	processes	were	running	the	restore	tasks	in
parallel.

Parallelism	is	probably	one	of	the	main	ways	you	can	speed	up	restores	(and	backups)
with	RMAN.	However,	parallelism	is	also	a	good	way	to	slow	things	down.	Therefore,	be
careful	that	you	balance	the	degree	of	parallelism	with	the	available	system	resources.
Once	the	restore	is	complete,	we	then	proceed	to	issue	the	recover	database	command.
Because	this	database	is	in	NOARCHIVELOG	mode,	this	command	does	not	have	a	great
deal	to	do,	so	it	completes	quickly.

Finally,	we	issue	the	alter	database	open	resetlogs	command	to	open	the	database.
The	reason	we	included	the	resetlogs	option	is	because	we	renamed	the	online	redo	logs,
simulating	their	loss.	The	resetlogs	option	will	cause	Oracle	to	re-create	the	online	redo
logs	when	it	opens	the	database.	This	also	creates	a	new	incarnation	of	our	database	from
RMAN’s	point	of	view.

We	discuss	the	notion	and	impact	of	database	incarnations	in	the	next	chapter.	At	this
point,	however,	it’s	not	really	important	to	know	much	about	them.	For	now,	just	know
that	an	incarnation	represents	a	logical	lifespan	of	a	database	from	either	the	time	the
database	was	created	or	the	last	time	the	resetlogs	command	was	used	to	the	execution	of
another	resetlogs	operation.	Some	more	complex	RMAN	restores	require	you	to	identify
the	incarnation	from	which	you	want	to	restore.	We	discuss	that	topic	in	the	next	chapter.

Restoring	to	a	Different	Location
Of	course,	we	don’t	always	have	the	luxury	of	restoring	back	to	the	original	file	system
names	where	the	Oracle	files	resided.	For	example,	during	a	disaster	recovery	drill,	you
might	have	one	big	file	system	to	recover	to	rather	than	six	smaller-sized	file	systems.
That	can	be	a	bit	of	a	problem,	because,	by	default,	RMAN	is	going	to	try	to	restore	your
datafiles	to	the	same	location	they	came	from	when	they	were	backed	up.	So,	how	do	we
fix	this	problem?

Enter	the	set	newname	for	datafile	and	switch	commands.	These	commands,	when
used	in	concert	with	restore	and	recover	commands,	allow	you	to	tell	RMAN	where	the
datafiles	need	to	be	placed.

The	set	newname	command	offers	several	options	with	respect	to	relocation	of
database	datafiles.	The	set	newname	command	provides	the	ability	to	either	set	the	new
filename	for	individual	datafiles,	or	you	can	change	the	location	for	all	datafiles	in	a
tablespace	or	in	the	entire	database.

In	our	first	example,	we	have	datafiles	originally	backed	up	to	d:\oracle\data\recover,

and	we	want	to	recover	them	to	a	different	directory:	e:\oracle\data\recover.	To	do	this,	we
first	issue	the	set	newname	for	datafile	command	for	each	datafile,	indicating	its	old
location	and	its	new	location.	Here	is	an	example	of	this	command’s	use:

This	example	would	work	for	all	versions	of	the	Oracle	Database	when	using	RMAN.
Note	that	we	define	both	the	original	location	of	the	file	and	the	new	location	that	RMAN
should	copy	the	file	to.	Once	we	have	issued	set	newname	for	datafile	commands	for	all
of	the	datafiles	that	we	want	to	restore	to	a	different	location,	we	proceed	as	before	with
the	restore	database	and	recover	database	commands.	Finally,	before	we	actually	open
the	database,	we	need	to	indicate	to	Oracle	that	we	really	want	to	have	it	use	the	relocated
datafiles	that	we	have	restored.	We	do	this	by	using	the	switch	command.

The	switch	command	causes	the	datafile	locations	in	the	database	control	file	to	be
changed	so	that	they	reflect	the	new	location	of	the	Oracle	database	datafiles.	Typically,
you	use	the	switch	datafile	all	command	to	indicate	to	Oracle	that	you	wish	to	switch	all
datafile	locations	in	the	control	file.	Alternatively,	you	can	use	the	switch	datafile
command	to	switch	only	specific	datafiles.

If	you	use	the	set	newname	for	datafile	command	and	do	not	switch	all	restored
datafiles,	then	any	nonswitched	datafile	will	be	considered	a	datafile	copy	by	RMAN,	and
RMAN	will	not	try	to	use	that	nonswitched	datafile	when	recovering	the	database.	Here	is
an	example	of	the	commands	you	might	use	for	a	restore	using	the	set	newname	for
datafile	command:

Note	that	if	the	recovery	is	not	successful	but	the	files	were	restored	successfully,	the
datafiles	restored	will	become	datafile	copies	and	will	not	be	removed.

Of	course,	all	of	the	individual	set	newname	commands	involve	a	lot	of	typing	for	a
large	number	of	database	files.	We	can	reset	the	names	of	all	the	restored	database	files	by
using	the	set	newname	for	database	command.	If	we	want	to	rename	all	the	database
files	at	a	less	granular	level,	we	can	reset	the	filenames	at	the	tablespace	level	with	the	set
newname	for	tablespace	command.	The	set	newname	for	tempfile	command	provides
the	same	service	for	tempfiles.

With	the	advent	of	CDBs,	new	options	for	the	set	newname	command	are	available.
You	can	now	use	the	set	newname	for	database	root	and	set	newname	for	pluggable
database	commands	to	set	the	new	default	datafile	and	tempfile	names	for	the	root	CDB
and	any	individual	PDB.

In	conjunction	with	the	set	newname	for	database	command,	you	must	use
substitution	variables	to	avoid	any	collisions	with	filenames	that	might	occur	during	the
movement	of	the	datafiles.	The	substitution	variables	are	available	for	use	with	the	other
set	newname	commands,	too.	The	substitution	variables	are	detailed	in	Table	8-1.

TABLE	8-1.			The	set	newname	Substitution	Variables

Here	is	an	example	of	using	the	set	newname	for	database	command	that	will	result
in	the	renaming	of	all	datafiles	of	that	database:

If	you	just	wanted	to	rename	the	files	for	a	specific	tablespace,	you	would	change	the
set	newname	command	slightly,	as	seen	in	this	example:

RMAN	Workshop:	Recover	Your	NOARCHIVELOG
Mode	Database
Workshop	Notes

For	this	workshop,	you	need	an	installation	of	the	Oracle	software	and	an
operational	test	Oracle	database.	Also,	in	this	workshop	we	assume	the	following:

			That	the	database	is	either	a	CDB	or	non-CDB	database

			That	the	database	is	in	NOARCHIVELOG	mode

			That	you	are	using	the	FRA	when	doing	backups

Step	1.			Set	the	ORACLE_SID	and	then	log	into	RMAN.	Ensure	that	you	have
configured	automated	backups	of	your	control	files.	Because	this	is	an	offline
backup,	you	need	to	shut	down	and	mount	the	database,	as	shown	here:

Note	that	in	this	case,	we	are	accepting	that	the	control	file	backup	set	pieces	will	be
created	in	the	default	location.

Step	2.			Complete	a	cold	backup	of	your	system:

In	this	workshop,	we	assume	that	the	backup	is	to	a	configured	default	device.

Step	3.			Shut	down	your	database:

Step	4.			Rename	all	database	datafiles.	Also	rename	the	online	redo	logs	and
control	files.	(Optionally,	you	can	remove	these	files	if	you	don’t	have	the	space	to
rename	them	and	if	you	really	can	afford	to	lose	your	database	should	something	go
wrong.)	You	can	find	the	names	of	the	files	you	need	to	rename	in	the	following
data	dictionary	views:

			Database	datafiles			v$datafile	(column	name)

			Control	files			v$controlfile	(column	name)

			Online	redo	logs			v$logfile	(column	member)

NOTE

We	are	not	restoring	the	SPFILE	during	this	workshop	because	we
are	not	removing	or	renaming	it.

Step	5.			From	RMAN,	issue	the	startup	nomount	command	to	start	your	database.
Then,	use	the	restore	controlfile	command	to	restore	your	control	file.	Finally,	after
the	control	file	has	been	restored,	mount	the	database	with	the	alter	database
mount	command:

Step	6.			Restore	your	database	datafiles	with	RMAN	using	the	restore	database
command.	This	will	restore	the	database	with	the	backup	you	took	in	Step	2.	You
will	notice	that	when	you	issue	the	restore	database	command,	RMAN	will	catalog
all	of	the	datafiles	in	the	FRA.	This	is	because	we	restored	the	control	file	in	Step	5.
After	it	has	done	so,	it	can	then	restore	those	datafiles.

After	the	datafiles	have	been	restored,	complete	the	recovery	by	issuing	the
recover	database	command	and	then	open	the	database	with	the	alter	database
open	command,	all	from	the	RMAN	prompt:

Step	7.			Complete	the	recovery	by	backing	up	the	database	again:

Note	that	although	this	is	not	absolutely	required,	it	is	considered	a	best	practice.

Database	Recoveries	in	ARCHIVELOG	Mode
Typically,	you	will	find	production	databases	in	ARCHIVELOG	mode	because	of	one	or
more	requirements,	such	as	the	following:

			Point-in-time	recovery

			Minimal	recovery	time	service-level	agreements	(SLAs)	with	customers

			The	ability	to	do	online	database	backups

			The	ability	to	recover	specific	datafiles	while	the	database	is	available	to	users

When	the	database	is	in	ARCHIVELOG	mode,	you	have	a	number	of	recovery	options
from	which	you	can	choose:

			Full	database	recovery

			Tablespace	recoveries

			Datafile	recoveries

			Incomplete	database	recovery

			Online	block	media	recovery

We	cover	the	first	three	items	in	this	section.	Later	in	this	chapter,	we	look	at
incomplete	database	recoveries.	In	Chapter	9,	we	look	at	online	block	media	recovery	in
more	detail.	With	each	of	these	types	of	recoveries,	you	will	find	that	the	biggest
difference	compared	with	NOARCHIVELOG	mode	recovery	is	the	application	of	the
archived	redo	logs,	as	well	as	some	issues	with	regard	to	defining	when	(meaning	to	what
point	in	time)	you	want	to	recover	to	if	you	are	doing	an	incomplete	recovery.	For	now,

let’s	start	by	looking	at	a	full	database	recovery	in	ARCHIVELOG	mode.

NOTE

Recoveries	of	SPFILEs	and	control	files	are	the	same	regardless	of	whether
you	are	running	in	NOARCHIVELOG	or	ARCHIVELOG	mode.

Point-of-Failure	Database	Recoveries
With	a	point-of-failure	database	recovery	(also	known	as	a	full	database	recovery),	you
hope	that	you	have	your	online	redo	logs	intact;	in	fact,	any	unarchived	online	redo	log
must	be	intact.	If	you	lose	your	online	redo	logs,	you	are	looking	at	an	incomplete
recovery	of	your	database.	Reference	Chapter	9	for	more	information	on	incomplete
recoveries.	Finally,	we	are	going	to	assume	that	at	least	one	control	file	is	intact.	If	no
control	file	is	intact,	you	need	to	recover	a	control	file	backup,	and	again	you	are	looking
at	an	incomplete	recovery	(unless	your	online	redo	logs	are	intact).

In	this	first	example,	we	have	lost	all	of	our	database	datafiles.	We	have	also	lost	the
control	files.	Fortunately,	the	online	redo	logs	remain	intact.	This	requires	a	full	recovery
of	the	database,	of	course.	Therefore,	we	will	restore	our	control	file	and	then	restore	and
recover	the	database.	Finally,	we	will	open	the	database.	Here	are	the	commands	used	to
perform	this	restore	operation:

You	will	find	the	output	from	this	restore	next.	Note	that	we	interrupt	the	output	a	few
times	to	make	a	few	comments.

Here	we	tried	to	start	the	database	only	to	discover	that	the	control	file	was	missing.	We
proceeded	to	restore	the	control	file.	There	are	some	implications	to	this.	First,	when	we

start	the	database	restore,	the	control	file	will	be	crosschecked	and	then	the	FRA	will	be
cataloged.	Also,	because	we	are	restoring	the	control	file,	we	need	to	use	the	resetlogs
command	when	opening	the	database.	Once	the	database	control	file	is	restored,	we	can
mount	the	database	and	prepare	to	restore	the	database	datafiles.

Continuing	our	example,	because	we	restored	the	control	files,	we	may	want	to	make
sure	the	RMAN	persistent	configurations	are	set	correctly.	For	example,	we	might	want	to
make	sure	we	have	the	degree	of	parallelism	set	properly	for	a	quick	restore.	To	do	this,
we	use	the	show	all	RMAN	command,	as	you	can	see	here:

We	have	determined	that	a	parallelism	of	2	is	sufficient	for	our	needs.	In	this	case,	there
are	no	other	settings	we	need	to	configure	(we	address	some	of	the	cases	where	you	might
need	to	change	configuration	settings	in	the	next	chapter).	Now,	let’s	restore	the	database:

Here	we	see	the	automatic	crosscheck	and	cataloging	in	process.	This	has	happened
because	we	restored	the	control	file.	RMAN	knows	that	the	control	file	is	newly	created
and	automatically	performs	the	crosscheck	and	cataloging.	This	would	not	have	occurred
if	we	had	not	restored	the	control	file.

In	the	next	example,	the	first	channel	will	be	allocated.	We	can	see	the	backup	set	it	is
restoring	and	the	datafiles	that	are	going	to	be	restored	from	that	backup	set.

Now	the	second	channel	will	be	allocated.	Remember	that	both	of	these	channels	will
be	restoring	database	datafiles	in	parallel.

After	a	while,	we	see	that	the	first	channel,	called	ORA_DISK_1,	has	completed	its
restore.	We	can	also	see	how	long	the	restore	took:

The	backup	is	not	complete	at	this	point—there	are	more	files	to	restore.	Since	the	first
channel	completed	its	initial	work,	it’s	reallocated	to	restore	another	backup	set.	Thus,	the
channels	will	continue	to	be	reused	until	all	of	the	backup	set	pieces	are	restored.	You	will
also	see	in	this	next	example	that	the	second	channel	has	completed	its	work,	and	it	also
starts	to	work	on	another	backup	set	restore:

We	wanted	to	point	out	that	these	next	few	lines	are	the	restore	of	the	PDB	of	the
multitenant	database.	Note	that	the	directory	in	which	the	PDB	datafiles	are	stored	has	an
additional	directory	name.	This	directory	name	is	the	GUID	of	the	PDB	that	owns	the
datafiles	stored	in	that	directory.	We	discuss	GUIDs	and	their	use	in	multitenant	databases
in	Chapter	4.	This	next	section	completes	all	of	the	datafile	restores	across	the	two
different	channels:

Now	that	the	restore	is	complete,	we	need	to	issue	the	recover	database	command	to
cause	the	archived	redo	logs	to	be	applied	to	the	restored	datafiles.	At	first	in	this	output,
RMAN	finds	that	the	archived	redo	logs	are	on	disk	and	that	they	have	not	been	backed
up.	RMAN	will	always	use	the	archived	redo	logs	that	are	on	disk	first.	If	it	can’t	find
them	on	disk,	it	will	try	to	restore	them.

Now,	RMAN	will	start	to	restore	archived	redo	log	sequences	1	and	2	from	an	RMAN
backup	set	because	these	archived	redo	logs	are	not	available	on	disk:

At	this	point,	RMAN	has	applied	all	of	the	redo.	If	it	can’t	find	the	redo	in	the	archived
redo	logs,	it	will	try	to	apply	it	from	the	online	redo	logs.	If	neither	is	available,	RMAN
will	apply	all	of	the	redo	it	can	and	then	generate	an	error.

Once	the	recover	command	is	complete,	the	database	is	in	a	consistent	state	and	can	be
opened.	In	this	case,	we	used	the	alter	database	open	resetlogs	command	to	open	the
database.	The	resetlogs	command	is	required	because	we	restored	the	control	file	earlier.
Here	is	an	example	in	which	we	opened	the	database	with	the	alter	database	open
resetlogs	command:

There	are	a	few	things	to	realize	about	restore	operations	like	this.	First,	if	the	datafile
already	exists,	then	Oracle	determines	whether	the	file	it’s	going	to	restore	already	exists.
If	so,	and	the	file	that	exists	is	the	same	as	the	file	it’s	preparing	to	restore,	RMAN	will	not
restore	that	file	again.	If	the	file	on	the	backup	image	is	different	in	any	respect	from	the
existing	datafile,	RMAN	will	recover	that	file.	So,	if	you	lose	a	datafile	or	two,	you	will

want	to	perform	a	datafile	or	tablespace	recovery	instead	of	a	full	database	recovery
(because	a	datafile	recovery	will	be	faster),	which	we	will	talk	about	shortly.	You	can
indicate	to	RMAN	that	you	want	it	to	overwrite	all	of	the	files	by	using	the	force	option	of
the	restore	database	command.

NOTE

If	you	attempt	a	full	database	restore	and	it	fails,	all	recovered	datafiles	will	be
removed.	This	can	be	most	frustrating	if	the	restore	has	taken	a	very	long	time	to
complete.	We	suggest	that	you	test	different	recovery	strategies,	such	as
recovering	tablespaces	(say,	four	to	five	tablespaces	at	a	time),	and	see	which
works	best	for	you	and	which	method	best	meets	your	recovery	SLA	and	disaster
recovery	needs.

RMAN	Workshop:	Complete	Recovery	of	Your
ARCHIVELOG	Mode	Database
Workshop	Notes
For	this	workshop,	you	need	an	installation	of	the	Oracle	software	and	an
operational	test	Oracle	database.	Also,	in	this	workshop	we	will	assume	the
following:

			That	the	database	is	either	a	CDB	or	non-CDB	database

			That	the	database	is	in	ARCHIVELOG	mode

			That	you	are	using	the	FRA	when	doing	backups

NOTE

For	this	workshop,	the	database	must	be	configured	for	and	running
in	ARCHIVELOG	mode.

Step	1.			Ensure	that	you	have	configured	automated	backups	of	your	control	files:

Note	that	in	this	case,	we	are	accepting	that	the	control	file	backup	set	pieces	will	be
created	in	the	default	location.

Step	2.			Because	this	is	an	online	backup,	there	is	no	need	to	shut	down	and	then
mount	the	database.	Complete	an	online	backup	of	your	system:

Note	that	in	this	case,	we	will	back	up	the	database	and	the	archived	redo	logs.	Once
the	archived	redo	logs	are	backed	up,	we	will	remove	them.	In	this	workshop,	we

assume	that	the	backup	is	to	a	configured	default	device.

Step	3.			Shut	down	your	database:

Step	4.			Rename	all	database	datafiles.	Also	rename	the	control	files.	Do	not
rename	your	online	redo	logs	for	this	exercise.	(Optionally,	you	can	remove	the
database	datafile	and	control	file	if	you	don’t	have	the	space	to	rename	them	and	if
you	really	can	afford	to	lose	your	database	should	something	go	wrong.)

Step	5.			Issue	the	startup	nomount	command	and	then	restore	your	control	file:

Step	6.			Recover	your	database	with	RMAN	using	the	backup	you	took	in	Step	2:

Step	7.			Complete	the	recovery	by	backing	up	the	database	again:

Note	that	although	it	is	not	strictly	required	to	back	up	your	database	again,	it	is	a
best	practice.

Tablespace	Recoveries
Perhaps	you	have	just	lost	datafiles	specific	to	a	given	tablespace.	In	this	event,	you	can
opt	to	recover	just	a	tablespace	rather	than	the	entire	database.	One	nice	thing	about
tablespace	recoveries	is	that	they	can	occur	while	the	rest	of	the	database	is	humming
along.	For	example,	suppose	you	lose	your	accounts	payable	tablespace,	but	your	accounts
receivable	tablespace	is	just	fine.	As	long	as	your	application	doesn’t	need	to	access	the
accounts	payable	tablespace,	you	can	be	recovering	that	tablespace	while	the	accounts
receivable	tablespace	remains	accessible.	Here	is	an	example	of	the	code	required	to
recover	a	tablespace:

As	you	can	see,	the	recovery	process	is	pretty	simple.	First,	we	need	to	take	the
tablespace	offline.	Note	that	as	of	Oracle	Database	12c	we	no	longer	need	to	use	the	sql
command	to	execute	the	SQL	DDL	commands.	Now	RMAN	just	interprets	the	SQL
commands	for	what	they	are	without	any	fancy	syntax.	The	sql	command	is	still	available

for	backward-compatibility	purposes.

In	the	previous	example	we	took	the	USERS	tablespace	offline	with	the	command	alter
tablespace	users	offline	command,	which	is	a	SQL	DDL	command.	Next,	we	issued	the
restore	tablespace	command	to	restore	the	datafiles	associated	with	the	USERS
tablespace.	Then	we	used	the	recover	tablespace	command	to	apply	the	redo	logs	to	the
tablespace.	Finally,	we	used	the	alter	tablespace	users	online	command	to	bring	the
tablespace	online.	This	completed	the	recovery	of	the	USERS	tablespace.

NOTE

You	cannot	use	this	method	to	recover	an	individual	tablespace	to	a	point	in
time	different	from	that	of	the	rest	of	the	database.	You	will	need	to	use	the	RMAN
feature	called	tablespace	point-in-time	recovery	to	perform	this	operation.

You	can	also	recover	multiple	tablespaces	in	the	same	command	set,	as	shown	in	this
code	snippet:

Datafile	Recoveries
Second	cousin	to	a	tablespace	recovery	is	a	datafile	recovery,	which	is	a	very	granular
approach	to	database	recovery.	Here,	we	can	replace	lost	database	datafiles	individually,
while	the	rest	of	the	tablespace	remains	online.	Datafile	recovery	allows	the	DBA	to
recover	specific	datafiles	while	allowing	the	rest	of	the	tablespace	to	remain	online	for
users	to	access.	This	feature	is	particularly	nice	if	the	datafile	was	empty	or	sparsely
populated,	as	opposed	to	recovering	the	entire	tablespace.	Here	is	some	sample	code
required	to	recover	a	datafile:

We	recovered	a	couple	of	datafiles	in	this	example	by	using	two	methods	of	defining
which	datafile	we	were	recovering.	First,	we	took	the	offending	datafiles	offline	with	an
alter	database	datafile	offline	command	(they	may	be	already	offline	in	some	cases,	but
we	want	to	make	sure).	We	then	restore	the	datafiles	with	the	restore	datafile	command.
The	first	command	restores	the	datafile	by	number,	and	the	second	restores	the	datafile	by
name.

Next,	we	recover	the	datafiles.	Again,	we	recover	the	first	datafile	by	number	and	then
we	recover	the	datafile	by	name.	Finally,	we	use	the	alter	database	datafile	SQL
command	to	bring	the	datafiles	back	online.	Again,	we	used	the	datafile	number	in	the
first	SQL	command,	and	the	datafile	name	in	the	second.

Before	we	move	on,	let’s	look	more	closely	at	one	component	of	the	alter	database
command:	how	we	reference	datafiles.	There	are	two	different	ways	to	reference	datafiles.
The	first	is	to	reference	the	datafile	by	number,	and	that’s	what	we	did	with	datafile	3	in
the	preceding	example.	The	second	is	to	reference	a	datafile	by	name,
'/u01/app/oracle/oradata/ROB/datafile/o1_mf_users_b86k20gc_.dbf'.	Either	method	is
acceptable,	but	we	often	find	using	the	datafile	number	is	easier.	Generally,	when	a
datafile	is	missing	or	corrupt,	Oracle	gives	you	both	the	datafile	name	and	number	in	the
associated	error	message,	as	shown	in	this	example:

Notice	in	this	listing	that	datafile	4	is	associated	with	the	tools01.dbf	datafile.	Often,
it’s	much	easier	to	just	indicate	that	you	want	to	restore	datafile	4	than	to	indicate	you
want	to	restore	d:\oracle\oradata\recover\tools01.dbf.

Once	we	have	taken	our	datafiles	offline,	we	will	restore	them	(again,	using	either	the
file	number	or	the	filename)	and	then	recover	them.	Finally,	we	bring	the	datafiles	online
again,	which	will	complete	the	recovery	process.

What	If	I	Use	Incremental	Backups?
Oracle	will	determine	automatically	if	you	are	using	an	incremental	backup	strategy	when

you	restore	your	datafiles	and	will	automatically	apply	the	required	incremental	backup
sets	as	required.	You	do	not	need	to	do	anything	different	to	recover	in	these	cases.

During	a	restore	using	an	incremental	backup,	the	restore	command	restores	only	the
base	backup.	Once	that	restore	is	complete,	you	issue	the	recover	command,	which	causes
the	incremental	backups	to	be	applied	to	the	database,	and	then	the	archived	redo	logs	will
be	applied.	Once	that	is	complete,	you	can	open	the	database	as	usual.	In	all	cases,	Oracle
attempts	to	restore	the	base	backup	and	incremental	backup	that	is	the	most	recent.	This
reduces	the	amount	of	redo	that	has	to	be	applied	to	fully	recover	the	database	and	thus
reduces	the	overall	restore	time.

Note	that	because	the	database	will	likely	be	applying	multiple	backup	sets	during	the
recover	process,	your	recovery	will	likely	take	longer	than	you	might	expect.	However,
depending	on	a	number	of	factors	(data	change	velocity	being	a	large	factor),	applying
incremental	backup	sets	can	be	faster	than	the	application	of	a	generous	amount	of	redo,
and	thus	the	incremental	backup	solution	can	be	a	faster	one.	Therefore,	the	ultimate
benefit	of	incremental	backups	is	a	quicker	backup	strategy	(and	a	smaller	overall	space
requirement	for	the	backup	set	pieces)	at	the	expense	of	a	potentially	slower	recovery
timeline.

Recovering	from	Online	Redo	Log	Loss
One	recovery	situation	you	might	experience	is	the	loss	of	the	database	online	redo	logs.
You	will	need	to	contend	with	four	different	situations	if	you	lose	the	online	redo	logs:

			Loss	of	a	redo	log	file	group	member

			Loss	of	an	inactive	online	redo	log	group

			Loss	of	an	active	but	not	current	online	redo	log	group

			Loss	of	the	current	online	redo	log	group

The	first	two	types	of	online	redo	log	loss	are	an	annoyance	at	best.	The	last	two
categories	can	be	catastrophic	with	respect	to	data	loss.

Recall	that	the	redo	logs	are	written	to	as	soon	as	there	is	a	commit	or	as	soon	as	the
online	redo	log	buffer	is	filled	to	a	certain	size	(and	other	events	can	cause	writes,	too).	As
a	result,	uncommitted	undo,	along	with	committed	changes,	can	be	written	to	the	online
redo	logs.	Because	the	database	datafiles	are	written	to	later,	sometimes	much	later,	the
database	datafiles	are	often	way	out	of	synchronization	with	the	actual	current	state	of	the
database.	Due	to	this	lack	of	synchronization	between	the	actual	state	of	the	database	data
and	the	data	contained	in	the	database	datafiles,	Oracle	will	have	to	apply	redo	from	the
online	redo	logs	during	database	recoveries.

Because	database	datafiles	are	often	out	of	synch	with	the	actual	state	of	the	database,
loss	of	an	active	online	redo	log	can	result	in	loss	of	data.	Loss	of	the	current	online	redo
log	can	also	result	in	data	loss.	Obviously,	redo	logs	are	quite	important.	The	current,
active,	and	inactive	redo	logs	differ	as	follows:

			Active			This	is	an	online	redo	log	that	is	not	currently	in	use.	However,	it

contains	redo	that	still	needs	to	be	written	to	the	datafiles,	and	the	group	may	(or
may	not)	still	need	to	be	archived.

			Current			This	is	the	current	online	redo	log	group.	Oracle	is	actively	writing
to	this	online	redo	log	group.

			Inactive			This	online	redo	log	is	not	currently	in	use,	and	redo	has	been
written	to	datafiles	by	DBWR.

You	can	see	the	status	of	an	online	redo	log	group	by	querying	the	STATUS	column	of
the	V$LOG	view.	Let’s	look	at	what	to	do	when	it	comes	to	recovering	from	loss	of	our
redo	log	groups.

Loss	of	an	Inactive	Online	Redo	Log	Group	Member
To	recover	from	the	loss	of	one	or	more	members	of	an	online	redo	log	group	(but	not	the
entire	group),	the	response	is	pretty	easy.	You	can	simply	re-create	the	member	by	using
the	alter	database	add	logfile	member	command.	You	might	discover	that	you	have	lost
a	member	via	an	alert	in	OEM	or	in	the	alert	log,	which	might	look	something	like	this:

As	a	best	practice,	we’d	recommend	that	if	the	database	has	not	shut	down	and	the
member	is	part	of	an	active	or	current	redo	log	group,	you	immediately	attempt	to
checkpoint	the	database	by	using	the	alter	system	checkpoint	command.	The	alter
system	checkpoint	command	will	force	the	database	to	write	any	dirty	blocks	from	the
database	buffer	cache	to	the	database	datafiles	in	an	urgent	manner.	This	can	help	protect
your	database	against	data	loss	should	the	database	crash	because	of	this	missing	online
redo	log.

Once	the	checkpoint	has	completed,	we	would	issue	the	alter	database	add	logfile
command	to	re-create	the	redo	log	group	member	redo02a.log:

If	the	database	happened	to	crash	before	you	could	add	the	logfile,	you	would	mount
the	database	and	then	issue	the	alter	database	add	logfile	command.	You	should	then	be
able	to	open	the	database.

Another	available	option	is	that	you	shut	down	the	database	in	a	consistent	manner
(shutdown	normal)	and	then	copy	another	member	of	the	redo	log	group	to	the	missing
member.	You	can	then	restart	the	database	normally.

NOTE

We	strongly	advise	against	using	a	shutdown	abort	any	time	you	are	dealing
with	the	loss	of	an	online	redo	log	group	or	a	member	of	such	a	group.	This	is	to

eliminate	the	risk	that	database	changes	are	not	flushed	to	the	database	datafiles,
which	can	lead	to	the	loss	of	data.

Loss	of	an	Inactive	Online	Redo	Log	Group
Loss	of	an	inactive	online	redo	log	group	is	a	very	survivable	event	and	is	easy	to	recover
from.	You	will	need	to	understand	two	different	situations	that	might	occur.	First	is	loss	of
an	inactive	online	redo	log	group	during	database	startup.	Second	is	loss	of	an	inactive
online	redo	log	group	during	database	operations.	In	the	next	two	sections,	we	address
these	situations.

Loss	of	an	Inactive	Online	Redo	Log	Group	on	Startup
If	you	start	up	the	database	and	the	inactive	online	redo	log	group	cannot	be	opened,	you
will	get	the	following	error	message:

First,	determine	if	one	of	the	online	redo	log	group	members	has	survived.	If	so,	follow
the	steps	listed	in	the	previous	section	on	recovering	from	the	loss	of	an	online	redo	log
member.	If	none	of	the	members	survived,	you	will	need	to	drop	the	logfile	group	by
using	the	alter	database	command,	as	shown	here:

Once	the	online	redo	log	group	is	dropped,	you	simply	re-create	the	online	redo	log
group	by	using	the	alter	database	add	logfile	command:

Loss	of	an	Inactive	Online	Redo	Log	Group	when	the	Database	Is
Running
If	you	have	lost	an	inactive	online	redo	log	group	(or	it	becomes	corrupted)	while	the
database	is	running,	it	is	possible	that	the	database	will	continue	to	operate.	Oracle
Database	will	sometimes	skip	the	online	redo	log	group	that	went	missing	and	continue	to
operate	normally.	If	this	occurs,	you	can	issue	an	alter	system	checkpoint	command	and
then	clear	the	logfile	group	with	the	alter	database	clear	logfile	group	command,	as
shown	here:

If	the	logfile	you	are	trying	to	clear	has	not	been	archived,	you	may	get	the	following
error:

Of	course,	because	the	logfile	is	not	there,	it	cannot	be	archived.	In	this	case,	we	use
the	alter	database	clear	unarchived	logfile	command	to	clear	the	unarchived	log	file	and
rebuild	the	log	file	in	its	current	location,	as	shown	here:

You	will	need	to	back	up	your	database	in	this	case	because	an	archived	redo	log	will
have	been	lost.

In	some	cases,	the	database	will	not	crash,	but	will	freeze.	If	this	occurs,	open	another
SQL*Plus	session	and	connect	to	the	database.	Then	issue	the	alter	database	checkpoint
command	followed	by	either	the	alter	database	clear	logfile	or	the	alter	database	clear
unarchived	logfile	command,	depending	on	the	type	of	recovery	required.	After	you	issue
these	commands,	the	database	should	operate	as	usual.

Loss	of	an	Active	but	Not	Current	Online	Redo	Log	Group
If	you	suffer	the	loss	of	an	active	online	redo	log	group,	you	will	need	to	use	the	alter
database	clear	unarchived	logfile	command,	as	shown	in	the	previous	section.	This	is
because	the	active	online	redo	log	will	not	have	been	archived,	and	you	need	to	indicate	to
Oracle	that	this	is	okay.	This	command	rebuilds	the	online	redo	log	and	allows	Oracle	to
proceed	with	normal	operations.	You	should	always	back	up	the	database	after	this
operation.

Loss	of	the	Current	Online	Redo	Log	Group
If	you	want	to	have	a	bad	day,	losing	the	current	online	redo	log	group	probably	would	do
it	for	you.	If	you	have	lost	the	current	online	redo	log	group,	you	probably	will	experience
some	loss	of	data.	When	you	lose	the	current	online	redo	log	group,	you	can	expect	that
the	database	will	shut	down,	and	not	in	the	normal,	pleasant	kind	of	way	that	you	would
like.

If	you	are	lucky	and	the	database	has	not	yet	shut	down,	you	should	immediately
attempt	to	reduce	the	overall	loss	of	data	by	checkpointing	the	database	using	the	alter
system	checkpoint	command	and	then	shut	down	the	database	afterward	as	soon	as
practical.	The	alter	system	checkpoint	command	forces	the	database	to	write	any	dirty
blocks	from	the	database	buffer	cache	to	the	database	datafiles.

You	may	be	able	to	open	the	database	without	any	recovery	being	required.	To	try	to
restart	the	database,	follow	these	steps:

1.			Issue	the	startup	mount	command.

2.			Issue	the	alter	database	clear	unarchived	logfile	command	for	the	redo	log

group	that	was	lost.	Examples	of	this	command	can	be	seen	in	earlier	sections	of
this	chapter.

3.			Issue	the	alter	database	open	command.

If	the	database	opens	successfully,	you	are	in	luck	and	a	celebration	is	warranted.

If	the	database	fails	to	open,	you	are	in	a	bad	way.	You	will	need	to	perform	incomplete
recovery	of	the	database.	Incomplete	recovery	with	RMAN	is	covered	in	Chapter	9	of	this
book.

The	Data	Recovery	Advisor
In	Oracle	Database	11g,	Oracle	introduced	a	new	feature	called	Automatic	Diagnostic
Repository	(ADR).	The	ADR	provides	a	great	deal	of	new	information	and	many	new
tools	that	ease	database	administration.	In	this	section	we	discuss	one	of	these	new	tools:
the	Data	Recovery	Advisor	(DRA).

The	Data	Recovery	Advisor	has	both	an	OEM	interface	and	a	command-line	interface.
In	this	section,	we	cover	the	command-line	interface.	If	you	wish	to	use	the	OEM
interface,	refer	to	Chapter	14,	which	contains	much	more	information	about	using	OEM
and	RMAN.

Using	the	Data	Recovery	Advisor	Through	RMAN
To	use	the	manual	interface	into	the	Data	Recovery	Advisor,	you	simply	use	the	RMAN
command-line	interface.	Oracle	has	added	these	new	RMAN	commands	to	allow	you	to
execute	the	Data	Recovery	Advisor	from	the	command	line:

			list	failure

			advise	failure

			repair	failure

			change	failure

All	of	the	DRA	commands	will	work	when	the	database	instance	is	started.	If	the
failure	is	new	and	the	database	has	been	shut	down,	you	will	often	not	get	any	results	until
you	have	tried	to	open	the	database	and	a	failure	has	been	detected.	Once	a	failure	has
been	detected,	though,	the	DRA	will	remember	the	failure,	and	you	can	access	it	with	the
advise	failure	command	with	the	database	in	the	nomount,	mount,	or	open	state.

The	state	that	the	database	needs	to	be	in	when	you	are	repairing	failures	depends	on
the	nature	of	the	failure.	For	example,	for	a	control	file	recovery,	the	database	must	be	in
NOMOUNT	state.	If	you	are	repairing	missing	data	files,	the	repair	failure	command	will
require	the	database	to	be	mounted	or	open.

Typically,	when	you	are	dealing	with	a	data	corruption	error,	the	workflow	is	to	use	the
list	failure	command,	then	the	advise	failure	command,	and,	finally,	the	repair	failure
command,	in	that	order.

There	are	cases	where	the	repair	failure	command	does	not	quite	complete	the	job	the

first	time	around.	The	most	common	case	seems	to	be	where	control	file	recoveries	occur.
In	cases	like	this,	all	you	usually	need	to	do	is	to	run	through	the	list,	advise,	and	the	repair
failure	flow	two	times.	The	first	time	will	cause	it	to	restore	the	control	file.	Once	the
control	file	is	restored,	the	second	run	of	the	Data	Recovery	Advisor	will	determine	how
to	complete	the	database	recovery,	usually	finishing	with	a	recover	database	RMAN
command.

We’ve	mentioned	the	Data	Recovery	Advisor	commands	you	would	use:	that	is,	the	list
failure,	advise	failure,	and	repair	failure	commands.	Let’s	look	at	the	use	of	these
commands	in	a	bit	more	detail.

The	list	failure	Command	The	RMAN	list	command	(discussed	in	detail	in	Chapter	12)
is	used	with	the	failure	keyword	to	list	detected	failures,	their	priorities	(Critical,	High,	or
Low),	status	(Open	or	Closed),	when	they	occurred,	and	a	summary	of	the	failures.	In	this
context,	a	failure	is	any	persistent	data	corruption	that	currently	exists	on	your	system.
Here	is	an	example	of	the	list	failure	command:

Note	that	in	the	preceding	sample	output,	the	datafiles	that	are	missing	are	not	listed.
You	can	use	the	list	failure	detail	command	to	generate	additional	details	on	the	failure.
Additionally,	the	list	failure	exclude	failure	n	command	allows	you	to	exclude	specific
failure	numbers	from	the	report	output.	Other	options	include	listing	only	closed	failures,
only	critical	failures,	only	failures	with	high	or	low	priorities,	and	listing	or	excluding
failures	by	failure	ID.	Here	are	some	examples	of	the	use	of	these	options:

The	following	table	gives	a	complete	list	of	all	the	options	available	on	the	list	failure
command:

Here	are	some	additional	examples	(note	that	some	unimportant	output	was	removed
for	brevity’s	sake.	We	do	like	trees,	after	all!):

NOTE

The	list	failure	command	can	only	be	run	on	a	single-instance	database	(thus,
the	RAC	cluster	must	now	be	brought	to	single-instance	mode).	You	also	cannot
use	this	command	with	a	physical	standby	database.

The	list	failure	command	does	not	check	for	database	errors	itself.	The	database	is
constantly	checking	for	corruption	issues,	and	those	issues	regularly	are	recorded	in	the
data	dictionary	(and	in	the	physical	ADR	repository,	which	is	on	disk	and	not	in	the
database).

If	the	failure	occurred	while	the	database	was	shut	down,	a	failure	will	not	be	detected
until	that	missing	component	is	needed.	For	example,	if	the	control	file	is	missing,	that
will	not	be	detected	until	an	attempt	to	mount	the	database	occurs.	If	a	datafile	is	missing,
then	that	event	will	not	be	detected	until	you	try	to	open	the	database.	If	the	database	was
open	when	the	event	occurred,	it	is	likely	that	the	event	will	be	detected	while	the	database
is	open.

If	a	failure	with	an	OPEN	status	appears	in	the	list,	this	means	you	have	a	current

problem	that	you	will	need	to	deal	with.	This	problem	will	be	linked	to	one	or	more	repair
actions	that	you	can	view	via	the	new	advise	failure	command.	These	options	will	help
you	to	determine	what	repair	options	are	available	to	correct	the	situation.	Let’s	look	at
that	command	next.

NOTE

If	you	just	have	a	datafile	offline,	then	that	datafile	will	not	be	reported	as	a
failure.	If	the	offline	datafile	is	physically	missing,	it	will	be	reported	as	a	failure.

The	advise	failure	Command	Once	the	list	failure	command	displays	an	open	failure,
the	advise	failure	command	can	be	used	to	provide	recommended	actions	that	you	can
take	to	correct	the	failure.	Here	is	an	example	of	the	use	of	the	advise	failure	command:

NOTE

As	with	the	list	failure	command,	the	advise	failure	command	can	only	be	run
on	a	single-instance	database	(thus,	the	RAC	cluster	must	be	open	with	just	a
single	instance	in	single-instance	mode).	You	also	cannot	use	this	command	with
a	physical	standby	database.

You	will	notice	from	the	output	that	RMAN	provides	both	manual	and	automated
repair	options.	The	automated	repair	option	contains	RMAN	commands	that	can	be	used
to	correct	the	problem.	These	automated	repair	options	may	differ	based	on	the	state	the
database	is	in	(say,	NOMOUNT	versus	MOUNT).	We	recommend	then	that	you	get	as
close	to	opening	the	database	as	possible	before	you	use	the	Data	Recovery	Advisor.	For
example,	if	you	can	successfully	mount	the	database,	do	so	rather	than	leave	it	in
NOMOUNT	mode.

Also	note	that	repair	options	may	involve	data	loss,	and	that	the	Data	Recovery
Advisor	will	indicate	if	data	loss	will	occur	if	a	given	recovery	option	is	used.	These
commands	are	contained	in	a	file	within	the	ADR	structure.	Here	is	an	example	of	the
recovery	file:

You	can	choose	to	run	the	recovery	file	manually,	or	you	can	use	the	repair	failure
command,	which	is	our	next	topic.

The	repair	failure	Command	Now	that	we	have	detected	a	failure	and	determined	the
recovery	actions	recommended	by	Oracle,	we	can	manually	repair	the	failure,	or	allow
Oracle	to	repair	the	failure	automatically	with	the	repair	failure	command.	To	run	the
repair	failure	command,	the	target	database	instance	must	be	started.	If	multiple	repairs
are	required,	Oracle	will	try	to	consolidate	them	into	one	repair	operation.	Also,	RMAN
will	double-check	that	the	failures	still	exist	and	will	not	perform	a	recovery	operation	if
the	failure	has	been	corrected.	Here	is	an	example	of	using	the	repair	failure	command
from	RMAN	(we	have	removed	some	RMAN	output	for	brevity’s	sake):

NOTE

Again,	the	repair	failure	command	can	only	be	run	on	a	single-instance
database	(thus,	the	RAC	cluster	must	be	open	with	just	a	single	instance	in	single-
instance	mode).	Note	that	this	command	will	not	repair	failures	such	as	datafiles
that	cannot	be	accessed	by	a	specific	node	in	a	RAC	cluster.

If	you	wish	to	preview	a	failure	action,	you	can	use	the	repair	failure	preview
command.	This	command	will	display	the	repair	actions	to	be	applied,	but	not	execute	the
repair	itself.

The	change	failure	Command	The	RMAN	change	command	now	provides	the	failure
keyword,	which	allows	you	to	change	the	status	of	failures	detected	by	the	Oracle
Database.	For	example,	you	can	change	the	priority	of	a	specific	failure,	or	change	all
failures	from	high	to	low.	You	can	also	opt	to	close	one	or	more	failures.	By	default,
RMAN	will	prompt	you	to	ensure	that	you	want	to	make	the	change.	You	can	use	the

noprompt	clause	of	the	change	command	to	force	the	change	to	occur	without	prompting.
Here	is	an	example	where	we	change	the	priority	of	failure	187	to	LOW:

NOTE

You	cannot	switch	the	status	of	a	CLOSED	failure	to	OPEN.

Data	Recovery	Advisor	Data	Dictionary	Views
Several	new	views	have	been	added	to	Oracle	Database	12c	to	support	the	Data	Recovery
Advisor.	These	views	all	start	with	V$IR,	as	shown	in	the	following	table:

Here	is	an	example	of	a	query	against	the	DRA	views:

Summary
In	this	chapter,	we	looked	at	the	basics	of	recovering	your	database	with	RMAN.	We
looked	at	the	many	different	ways	you	can	recover	your	control	files	and	SPFILEs.	We
also	looked	at	restoring	and	recovering	your	databases	from	RMAN	backups	with	the
restore	and	recover	commands.	We	discussed	the	different	recovery	options	available,
from	full	database	recovery	to	recovery	of	specific	tablespaces	or	datafiles.	Finally,	we
provided	some	workshops	for	you	to	practice	your	newly	learned	recovery	skills.

We	want	to	leave	you	with	one	big	piece	of	advice	at	the	end	of	this	chapter.	Practice
recoveries,	over	and	over	and	over.	Know	how	RMAN	works	and	how	to	recover	your
database	without	having	to	use	this	book.	Become	the	RMAN	expert	in	your	place	of
work.	Then	you	are	poised	to	be	the	hero!

CHAPTER
9

Advanced	RMAN	Recovery	Topics

T
his	chapter	introduces	you	to	additional	RMAN	recovery	topics.	In	the	previous	chapter
we	introduced	you	to	full	database	restore	and	recovery.	This	included	both	the
traditional	Oracle	database	and	databases	using	the	new	multitenant	option.	We
will	start	this	chapter	by	focusing	a	bit	more	on	multitenant	database	restores	by
looking	at	how	to	restore	an	individual	pluggable	database	(PDB).	This	includes

restoring	the	root	container,	the	seed	container,	and	one	or	more	PDBs.

After	we	have	discussed	full	recovery	of	PDBs,	we	then	move	on	to	a	somewhat	more
complex	topic:	incomplete	(or	point-in-time)	restores	and	recoveries.	In	our	experience,
it’s	these	kinds	of	recoveries	(and	the	failures	that	lead	to	having	to	do	them)	that	can
cause	the	most	trouble.	We	will	look	at	incomplete	recoveries	of	an	entire	database	(CDB
and	non-CDB)	and	we	will	also	look	at	point-in-time	recoveries	of	PDBs.

Following	that	discussion,	we	move	on	to	tablespace	point-in-time	recovery.	We	close
out	this	chapter	by	discussing	how	you	can	check	the	integrity	of	your	backups	on	a
regular	basis.

Recovery	of	Pluggable	Databases
A	full	recovery	of	a	pluggable	database	within	a	CDB	is	quite	similar	to	the	recovery	of	an
entire	Oracle	database—the	commands	only	differ	slightly.	The	nice	thing	about	being
able	to	restore	and	recover	individual	PDBs	is	that	the	other	PDBs	can	continue	to	be	used
while	the	recovery	operation	is	running.

In	this	section	we	look	at	the	three	kinds	of	PDB	recoveries	you	might	face:	a	recovery
of	the	root	container,	the	seed	container,	and	one	or	more	PDBs	within	your	Oracle
Database.

Before	we	get	into	the	specifics	of	the	CDB	recovery,	we	want	to	take	a	moment	and
point	out	how	important	failure	analysis	is	before	you	begin	your	recovery	process.	Way
too	often	we	have	seen	people	just	blindly	restore	a	whole	database,	when	all	that	was
needed	was	to	simply	restore	four	or	five	datafiles.	With	a	non-PDB	database,	the	proper
analysis	of	what	has	failed	and	what	kind	of	recovery	is	needed	is	important	and	can	make
a	huge	difference	in	how	long	the	recovery	takes	and	how	many	people	are	impacted	by
that	recovery.

This	concern	gets	taken	to	a	whole	new	level	when	we	start	talking	about	Oracle	CDBs
and	their	pluggable	databases.	Instead	of	having	just	one	database	assigned	to	a	given
application,	as	you	usually	have	with	a	non-CDB,	now	you	potentially	have	many
different	databases	all	running	within	the	same	instance.	That	being	said,	take	great	care	in
analyzing	what	has	failed	and	then	determine	what	kind	of	recovery	is	the	best	for	your
particular	situation.	The	Data	Recovery	Advisor	(DRA),	mentioned	elsewhere	in	this
book,	can	be	helpful	in	guiding	you	to	a	recovery	solution,	but	it’s	no	substitute	for	actual
failure	analysis	for	an	experienced	DBA.

Recovering	the	Root	Container
Recall	from	previous	chapters	that	the	root	container	is	the	owner	of	the	data	dictionary

for	the	entire	CDB.	It	is	much	like	the	SYS	schema	in	a	non-CDB	database,	so	you	can
imagine	that	it’s	quite	important.	If	you	should	happen	to	lose	one	or	more	datafiles
associated	with	the	root	container,	it’s	highly	unlikely	that	your	database	will	stay	up.	As	a
result,	your	root	container	recoveries	will	be	done	with	the	database	down.

The	process	of	restoring	the	root	container	involves	mounting	the	database	and	then
using	the	restore	database	root	RMAN	command,	followed	by	the	recover	database
root	command.	After	you	have	recovered	the	root	container,	assuming	there	are	no	other
container	databases	that	need	to	be	recovered,	you	can	then	use	the	alter	database	open
command	to	open	the	CDB.	Note	that	all	of	this	is	done	from	an	account	with	SYSDBA	or
SYSBACKUP	privileges.

Let’s	look	at	an	example	of	the	recovery	of	the	root	container	of	an	Oracle	CDB
database.	First,	we	try	to	open	the	database,	and	we	receive	the	following	error:

Note	the	error	message	and	the	files	that	are	being	reported	as	missing.	After	careful
review	of	the	missing	files	(and	going	out	to	the	file	system	and	making	sure	that	there
have	not	been	more	files	lost	that	we	are	not	yet	aware	of),	we	decide	that	restoring	the
root	container	is	the	proper	course	of	action.	We	use	the	restore	database	root	command,
followed	by	the	recover	database	root	command,	to	perform	this	recovery,	as	shown
here:

Notice	that	this	recovery	requires	the	database	to	be	down.	We	could	also	have
performed	a	datafile	recovery	if	we	preferred	(because	only	one	datafile	was	lost).	We
discussed	datafile	restores	in	the	previous	chapters.

That	there	are	different	options	to	consider	here	is	an	important	point.	In	this	case,	only
one	datafile	associated	with	the	root	database	is	missing.	Also,	the	restore	of	just	that
single	datafile	might	be	much	faster	than	restoring	the	entire	set	of	root	datafiles	as	we	are
doing	in	this	example.	In	the	end,	analyzing	the	damage	that	needs	to	be	repaired	and
choosing	the	most	efficient	method	to	use	to	repair	it	is	the	expertise	you	will	need	to
bring	to	a	database-recovery	situation.

NOTE

The	recovery	of	the	ROOT	container	does	not	include	recovering	the	SEED

PDB.

Recovering	the	Seed	Container
Recall	that	the	seed	container	(or	seed	database)	is	the	default	set	of	database	files	used
when	a	new	PDB	is	created	during	the	operation	of	the	create	pluggable	database
command.	This	SEED	container	is	created	when	the	CDB	itself	is	created.

Should	the	seed	container	be	missing,	the	database	will	still	open	successfully	and	no
error	message	will	appear	on	the	console.	Additionally,	no	error	will	appear	in	the
database	alert	log.	You	can	discover	that	the	datafile	is	missing	by	querying	the
V$RECOVER_FILE	view,	as	shown	in	this	query	example	(note	that	due	to	page
constraints	we’ve	modified	the	output	slightly):

You	might	also	notice	there	is	a	problem	because	the	seed	container	will	be	in	the
wrong	mode.	Normally,	the	seed	container	(called	PDB$SEED	in	the	data	dictionary)	will
be	open	in	READ	ONLY	mode,	like	this:

However,	if	there	is	a	problem	with	the	seed	container,	it	will	only	show	up	in	MOUNT
mode,	as	shown	in	this	example:

Oracle	Cloud	Control	will	also	generate	an	alert	when	it	detects	the	missing	file.
However,	it’s	possible	that	you	won’t	actually	notice	the	file	is	missing	until	you	try	to
create	a	pluggable	database,	as	shown	here:

The	bottom	line	of	this	is	that	the	loss	of	the	seed	database	will	not	impact	your	ability
to	start	up	the	CDB	or	open	any	of	the	other	PDBs.	Therefore,	there	is	no	outage	(except
for	processes	that	require	the	seed	PDB).	This	also	means	that	a	restore	of	the	seed	PDB
can	be	done	as	an	online	restore,	as	opposed	to	an	offline	restore.

The	process	of	the	restore	is	pretty	basic.	First,	we	know	that	the	name	of	the	seed
container	is	PDB$SEED	(we	learned	this	from	the	earlier	query).	We	can	use	the	restore
pluggable	database	command	to	restore	the	seed	container,	followed	by	the	recover
pluggable	database	command	to	recover	the	seed	container.	After	that,	to	be	able	to	use
the	seed	container,	we	will	have	to	shut	down	and	restart	the	database.	Here	is	an	example
of	the	commands	used	to	restore	the	seed	PDB:

Note	that	it’s	important	to	use	the	double	quotes	on	the	name	of	the	seed	database
(PDB$SEED).	This	is	because	of	the	$	symbol	that	is	used	in	the	name	of	this	database.

While	in	most	cases	you	would	not	need	to	technically	recover	the	seed	container	since
it’s	typically	in	a	READ	ONLY	mode,	it’s	still	a	best	practice	to	do	so.	There	are	some
specific	conditions	that	would	require	this,	such	as	recovering	your	database	to	a	point
after	the	upgrade	with	a	database	backup	taken	before	the	upgrade	started.

You	can	also	opt	to	restore	the	seed	container	at	the	tablespace	or	datafile	level	(we	will
discuss	these	kinds	of	restores	later	in	this	chapter),	if	that	makes	more	sense.

Recovering	PDBs
RMAN	supports	recovery	of	one	or	more	PDBs	at	one	time.	The	recovery	of	a	PDB	in	the
CDB	does	not	require	an	outage	with	any	other	PDB.	In	this	section,	we	first	look	at
recovery	of	one	or	more	complete	PDBs.	Then	we	look	at	how	to	restore	tablespaces	and
datafiles	of	specific	PDBs.	Point-in-time	restores	of	PDBs	are	also	possible.	We	cover	that
topic	later	in	this	chapter	as	we	discuss	point-in-time	restore	in	more	detail.

Full	PDB	Recovery
To	restore	a	complete	PDB,	that	PDB	must	first	be	closed.	You	then	use	the	RMAN
restore	pluggable	database	and	recover	pluggable	database	commands	to	restore	and
recover	a	given	PDB.	Once	the	recovery	is	complete,	you	can	then	open	the	PDB	for

access.	Note	that	in	the	case	of	a	complete	PDB	recovery,	we	must	first	shut	down	the
PDB.	This	is	not	required	for	tablespace	or	datafile	recoveries	of	PDBs,	which	we	discuss
in	the	next	section.

Let’s	look	at	two	examples	of	the	restore	and	recovery	of	PDBs	in	an	Oracle	database.
In	this	first	example,	we	restore	and	recover	a	single	PDB	called	ROBERTPDB:

In	the	second	example,	we	restore	and	recover	two	PDBs	(called	ROBERTPDB	and
TPLUG)	at	once.	Here	is	the	next	example:

PDB	Tablespace	Recoveries
It	might	be	that	the	fastest	way	to	recover	a	PDB	is	to	just	restore	a	given	tablespace	(or
set	of	tablespaces).	Such	might	be	the	case	if	only	datafiles	of	a	specific	tablespace	have
been	lost.	A	tablespace-level	recovery	also	allows	you	to	keep	the	rest	of	the	database
open,	only	restricting	access	to	the	tablespaces	being	restored.

To	restore	the	tablespace	of	a	specific	PDB,	you	must	first	be	logged	into	that	PDB.
Once	you	are	logged	into	that	PDB,	you	can	then	use	the	restore	tablespace	and	recover
tablespace	commands	to	restore	and	recover	any	set	of	tablespaces	in	that	PDB.	Finally,
you	will	open	those	tablespaces	once	they	have	been	restored.

In	the	following	example,	we	are	connecting	to	a	PDB	called	TPLUG.	Once	we	have
connected	to	that	PDB,	we	take	the	tablespace	that	we	are	going	to	recover	offline.	Then
we	restore	and	recover	the	tablespace	called	TESTING.	After	the	recovery,	we	bring	the
tablespace	TESTING	back	online	again:

If	you	want	to	restore	a	set	of	tablespaces,	simply	separate	the	names	of	the	tablespaces
to	be	recovered	by	commas	in	both	the	restore	and	recover	tablespace	commands.	Here
is	an	example:

NOTE

If	you	get	into	a	real	situation	where	you	need	to	recover	a	tablespace,	it	is
likely	that	the	tablespace	is	already	offline.	You	can	determine	this	by	querying
the	STATUS	column	of	the	DBA_TABLESPACES	view	or	the	ERROR	column	of
the	V$RECOVER_FILE	view.

PDB	Datafile	Recoveries
As	with	tablespaces	before,	it	might	be	that	the	fastest	way	to	recover	a	PDB	is	to	just
restore	a	given	datafile	instead.	Such	might	be	the	case	if	only	a	few	datafiles	have	been
lost	or	corrupted.	This	allows	you	to	just	take	those	datafiles	offline,	leaving	the	remaining
datafiles	in	the	database	available	for	use.	This	reduces	the	impact	of	any	outage.

To	restore	datafiles	of	a	specific	PDB,	you	must	first	be	logged	into	that	PDB.	Once
you	are	logged	into	that	PDB,	you	would	take	offline	the	datafiles	you	want	to	restore,
assuming	they	are	not	already	in	an	offline	state.	You	then	use	the	restore	datafile	and
recover	datafile	commands	to	restore	and	recover	the	set	of	datafiles	in	that	PDB.	Finally,
you	bring	the	datafiles	online	after	the	recovery.

In	the	following	example,	we	are	connecting	to	a	PDB	called	TPLUG.	Once	we	have
connected	to	that	PDB,	we	take	the	datafile	that	we	are	going	to	recover	offline.	Then	we
restore	and	recover	the	datafile	(datafile	12).	After	the	recovery,	we	bring	the	datafile	back
online	again:

NOTE

As	with	tablespaces,	if	you	get	into	a	situation	where	a	datafile	recovery	is

needed,	it	may	well	already	be	offline.

If	you	try	to	open	a	PDB	and	find	a	datafile	associated	with	that	PDB	is	missing,	you
will	not	be	able	to	open	that	PDB	without	taking	the	datafile	offline.	Here	is	an	example
where	we	try	to	open	the	PDB	TPLUG	and	get	an	ORA-01157	error,	as	shown	here:

The	end	result	of	this	is	that	the	PDB	will	not	open.	The	first	thing	you	might	think	to
do	in	this	case	is	to	take	the	offending	datafile	offline	using	the	alter	database	datafile
offline	SQL	command	(assuming	that	the	application	associated	with	the	database	would
still	continue	to	function)	and	then	get	the	PDB	open.	After	that,	you	would	restore	the
datafile	with	RMAN.	Unfortunately	when	you	try	to	offline	a	datafile	for	a	PDB	that	has	a
status	of	MOUNTED	with	the	alter	database	offline	command,	you	get	the	following
error:

The	alter	pluggable	database	command	has	an	option	to	offline	datafiles;	however,
that	command	only	works	from	within	the	PDB	itself,	and	the	PDB	in	this	case	cannot	be
opened.	This	provides	us	with	a	problem:	How	can	we	take	the	datafile	offline	so	we	can
open	the	PDB	and	then	work	on	restoring	the	datafile?

The	way	to	fix	this	problem	is	to	log	directly	into	the	root	container	of	the	CDB	and
then	use	the	alter	session	set	container	command,	connecting	to	the	container	in	which
you	need	to	take	the	datafile	offline.

So,	in	our	case,	to	get	the	TPLUG	PDB	open,	we	would	first	log	into	the	root	container
as	sysdba	and	then	use	the	alter	session	set	container	command	to	change	to	the	TPLUG
container	(the	terms	container	and	PDB	are	largely	synonymous).	Once	we	are	connected,
we	can	then	take	datafile	12	offline.	After	taking	datafile	12	offline,	we	would	go	ahead
and	use	the	alter	pluggable	database	command	(still	in	the	TPLUG	container)	to	open
the	database.

Now	that	we	have	the	database	open,	we	can	deal	with	the	missing	or	corrupted	datafile
while	other	users	are	doing	business.	At	this	point,	the	restore	is	a	normal	datafile	restore,
performed	from	RMAN	while	connected	to	the	TPLUG	PDB.	All	of	that	is	a	lot	to	take	in,
but	the	commands	to	execute	the	restore	are	pretty	simple,	as	you	can	see	here:

Incomplete	Database	Recoveries	on	Non-CDB	and
Entire	CDB	Databases
Now,	we	will	move	on	to	the	topic	of	incomplete	database	recoveries.	An	incomplete
database	recovery	involves	restoring	the	database	to	a	point	in	time	other	than	the	current
point	in	time.	It	is	similar	to	a	complete	recovery	in	many	respects;	the	basic	command	set
is	the	same,	but	with	a	few	added	wrinkles.	The	possible	reasons	for	an	incomplete
recovery	are	numerous,	such	as	the	loss	of	online	or	archived	redo	logs	or	a	major	user
error	that	has	seriously	compromised	the	database.	You	might	want	to	“reset”	a	testing
database	to	a	specific	point	in	time	where	the	data	is	at	a	known	state	so	that	you	can	test
with	that	known	data	set.

In	this	section	we	discuss	what	incomplete	recoveries	are.	We	then	discuss	how	RMAN
performs	an	incomplete	recovery.	Finally,	we	cover	the	different	types	of	incomplete
database	recoveries.

What	Is	an	Incomplete	Recovery?
Incomplete	recoveries	(also	known	as	point-in-time	recoveries,	or	PITRs)	impact	the
entire	database;	in	other	words,	you	cannot	perform	an	incomplete	recovery	on	just	one
part	of	the	database	because	it	would	result	in	that	part	of	the	database	having	a	different
System	Change	Number	(SCN,	or	point	in	time	if	you	prefer)	than	the	remainder	of	the
database.	Incomplete	recoveries	come	in	four	different	flavors:

			Point-in-time	recoveries

			SCN-based	recoveries

			Change-based	recoveries

			Point-in-time	recoveries	based	on	a	restore	point

We	cover	each	of	these	different	types	of	recoveries	in	this	section.

Before	we	proceed,	we	want	to	review	the	important	impact	incomplete	recovery	has

on	the	entire	database.	Oracle	demands	that	a	database	be	in	a	consistent	state	at	startup,
and	if	it	is	not	consistent,	Oracle	will	complain	bitterly.	To	illustrate	this	point,	consider	an
example	in	which	a	user	who	has	his	own	tablespace	has	just	mistakenly	truncated	a	table
in	that	tablespace	for	which	he	has	no	backup.	He	calls	a	junior	DBA	in	a	panic	and	asks
her	to	recover	just	that	tablespace	to	the	point	in	time	before	he	issued	the	truncate
operation.

At	first	thought,	the	junior	DBA	might	think	that	she	can	just	restore	the	datafiles	of	the
offending	tablespace	and	recover	them	to	a	time	before	the	truncate	operation	was
executed.	Seems	somewhat	logical,	doesn’t	it?	(In	fact,	that’s	what	a	logical	backup	is	for.)
So,	the	junior	DBA	restores	the	datafiles	and	recovers	the	tablespace	to	a	point	in	time
before	the	truncate	operation.	Now,	she’s	feeling	pretty	good	about	herself.	Unfortunately,
her	euphoria	is	short	lived,	because	when	she	tries	to	open	the	database,	RMAN	slaps	her
with	this	message:

In	this	case,	Oracle	is	basically	saying,	“You	recovered	the	datafile	all	right,	but	you
didn’t	do	enough	recovery	on	it,	and	it’s	not	consistent	with	the	rest	of	the	database!”	The
point	is	that	with	database	PITR,	you	have	to	restore	the	entire	database	to	the	same	point
in	time.

If	this	is	not	the	type	of	restore	you	want	to	perform,	you	have	other	options	to
consider.	First,	there	are	all	the	options	associated	with	Flashback	Database.	The	second
option,	which	is	especially	useful	if	you	want	to	only	restore	tablespaces	to	a	specific
point	in	time	without	restoring	the	entire	database,	is	called	tablespace	point-in-time
recovery.	We	discuss	tablespace	point-in-time	recoveries	in	more	detail	later	in	this
chapter.

Incomplete	Recovery:	How	Does	It	Work?
When	you	perform	incomplete	recovery	with	RMAN,	what	happens?	During	the	restore
process,	you	issue	a	restore	database	command,	indicating	the	point	in	time	(by	virtue	of
defining	the	time,	SCN,	log	change	number,	or	restore	point)	to	which	you	want	to	restore.
Then	you	issue	a	recover	database	command,	again	indicating	the	point	in	time	to	which
you	want	to	recover.	Finally,	you	open	the	database	with	the	alter	database	open
resetlogs	command.

When	you	issue	the	restore	database	command,	RMAN	will	restore	the	database
backup	that	was	completed	nearest	to	the	point	in	time	to	which	you	want	to	restore.	Next,
when	you	issue	the	recover	database	command,	RMAN	will	apply	any	incremental
backups	and	archived	redo	logs	that	are	needed	to	restore	the	database	to	the	point	in	time
desired.

To	open	the	database	after	the	recovery	is	complete,	you	use	the	alter	database	open
resetlogs	command.	When	performing	an	incomplete	recovery,	you	always	use	the
resetlogs	command	when	opening	the	database.	When	you	use	the	resetlogs	command,

you	indicate	to	Oracle	that	you	are	knowingly	deviating	from	an	already	established
stream	of	redo.	As	a	result,	Oracle	will	need	to	clear	out	the	online	redo	logs	and	prepare
the	database	to	support	the	new	incarnation	of	the	database	that	will	be	created.	An
incarnation	represents	the	logical	life	of	a	given	database.	The	first	incarnation	starts	when
the	database	is	created	and	ends	when	you	open	the	database	with	the	resetlogs	command.
The	next	incarnation,	and	each	subsequent	incarnation,	spans	the	time	between	the	use	of
the	resetlogs	commands.	Each	resetlog	command	starts	a	new	incarnation.	You	can	see
each	incarnation	by	querying	the	V$DATABASE_INCARNATION	view.	In	this	example,
our	database	is	in	its	second	incarnation:

Note	that	with	each	use	of	the	resetlogs	command,	the	SCN	counter	is	not	reset.
However,	Oracle	does	reset	other	counters,	such	as	the	log	sequence	number,	and	resets
(and	re-creates	if	required)	the	contents	of	the	online	redo	logs.	It	is	possible	to	travel	back
and	forth	between	incarnations	during	recovery,	if	that	is	required.	We	discuss	this	later	in
this	chapter.

In	older	versions	of	Oracle,	you	were	required	to	perform	backups	after	you	opened	the
database	with	the	resetlogs	command.	This	is	no	longer	required,	and	has	not	been	for
some	time.	Oracle	will	now	recover	a	database	using	backups	taken	before	you	issued	the
resetlogs	command	and	will	perform	a	full	recovery	without	any	intervention	required.
Still,	it’s	probably	a	good	practice	to	back	up	your	database	as	soon	as	reasonably	possible
after	performing	a	database	point-in-time	recovery.

Establishing	a	Point	to	Recover	To
One	of	the	things	you	need	to	do	when	performing	incomplete	recovery	with	RMAN	is	to
establish	a	recovery	target.	The	recovery	target	is	the	point	at	which	you	want	to	terminate
the	recovery	process	and	can	be	identified	based	on	a	point	in	time,	a	specific	SCN,	a	log
sequence	number,	or	a	restore	point.

The	recovery	target	can	be	established	in	a	number	of	different	ways.	First,	you	can	use
the	set	command	along	with	the	until	time,	until	SCN,	until	sequence,	or	until	restore
point	parameter	within	a	run	block.	In	the	following	example,	we	are	choosing	to	perform
a	time-based	recovery	using	a	run	block.	In	this	case,	we	are	using	the	set	until	time
command	to	establish	the	recovery	target	as	3	P.M.	on	July	1,	2014:

When	this	command	is	issued,	RMAN	looks	for	the	backup	set	closest	to,	but	not
including	or	after,	this	period	and	restores	the	database	from	that	backup	set.	If	the
database	is	in	NOARCHIVELOG	mode,	then	recovery	will	stop	at	that	point;	otherwise,
during	the	execution	of	the	recover	command,	Oracle	will	apply	the	archived	redo	logs
(and	any	incremental	backups	that	need	to	be	applied)	up	to,	but	not	including,	the	defined
recovery	target.

NOTE

If	you	are	trying	to	recover	to	the	point	of	completion	of	a	specific	backup,	you
must	recover	to	the	CKP	SCN	or	CKP	TIME	of	the	files	in	the	backup	set	as	listed
in	the	RMAN	list	command	for	the	different	backup	sets	(for	example,	list	backup
set).	Using	the	CKP	TIME	of	the	backup	is	not	sufficient	and	can	lead	to	ORA-
1152	errors.

You	can	also	opt	to	use	the	until	time,	until	SCN,	until	sequence,	or	until	restore
point	command	directly	in	the	restore	and	recover	commands,	which	eliminates	the	need
for	the	run	block	entirely	(which	we	prefer).	Here	is	an	example	of	the	use	of	the	until
time	command	directly	within	the	restore	and	recover	commands	during	an	RMAN
restore.	We	will	also	reference	this	example	in	the	next	section	on	time-based	database
recoveries:

In	this	chapter	(and	the	book)	we	generally	use	this	method,	and	not	run	blocks.

Time-Based	Recoveries
We	already	demonstrated	a	time-based	recovery	earlier	in	this	chapter.	With	a	time-based
recovery,	we	use	the	until	time	clause	to	determine	what	point	in	time	to	restore	the
database	to,	as	shown	in	the	previous	example.	One	thing	to	be	aware	of	is	that	the	time

you	indicate	to	restore	to	is	an	approximation—the	actual	point	in	time	that	any	database
is	restored	to	is	based	on	an	SCN.	In	the	case	of	a	time-based	restore,	the	time	requested	is
translated	into	an	approximate	SCN	value.	Therefore,	the	resulting	restore,	if	done	based
on	time,	will	not	likely	be	done	to	the	exact	point	in	time	you	request.	In	its
documentation,	Oracle	suggests	that	this	time	variation	may	be	as	much	as	three	minutes.

SCN-Based	Recoveries
If	you	want	to	ensure	the	database	is	restored	to	a	specific	point	in	time,	you	need	to	use
an	SCN-based	restore.	The	SCN	of	the	database	can	be	determined	in	various	ways.	For
example,	there	is	a	column	in	the	V$DATABASE	view	called	CURRENT_SCN.	You	can
find	the	SCN	range	associated	with	an	online	or	archived	redo	log	group	by	using	the
V$LOG_HISTORY	view	and	its	FIRST_CHANGE#	and	NEXT_CHANGE#	columns.
You	might	even	use	the	ORA_ROWSCN	pseudo-column	to	determine	the	SCN	when	a
specific	record	changed	and	then	base	your	restore	on	that	value.

Here	is	an	example	of	an	SCN-based	database	restore:

Change-Based	Recoveries
RMAN	allows	you	to	perform	a	recovery	up	to	a	specific	archived	redo	log	sequence
number.	This	is	handy	if	there	is	a	gap	in	your	archived	redo	logs,	which	generally	means
that	you	can	recover	only	up	to	the	point	where	the	gap	begins.	Here	is	the	command	to
perform	this	recovery	in	RMAN:

In	this	case,	we	restore	up	to,	but	not	including,	log	sequence	100	of	thread	1.

Restore	Point–Based	Recoveries
You	can	use	restore	points	to	define	the	point	in	time	to	which	you	want	to	restore	your
database.	First,	you	would	create	a	restore	point	using	the	create	restore	point	command.
Here’s	an	example	of	creating	a	restore	point	called	REST_001:

A	restore	point	is	not	guaranteed	to	be	maintained	by	the	database.	It	will	eventually	be
aged	out	of	the	control	file	(up	to	2,048	restore	points	will	be	maintained).	If	you	are
concerned	that	your	restore	point	might	age	out	over	time,	you	can	use	a	guaranteed

restore	point,	as	shown	here:

Restore	points	can	be	identified	by	querying	the	V$RESTORE_POINT	view,	as	shown
in	this	example:

To	restore	a	database	based	on	a	restore	point,	simply	include	the	to	restore	point
clause	of	the	restore	and	recover	commands,	as	shown	in	this	example:

You	can	also	use	a	run	block	and	use	the	set	until	restore	point	command	to	establish
the	target	restore	point.	Here’s	an	example:

Performing	Incomplete	Recoveries	of	Pluggable
Databases	(PDB)
Oracle	offers	the	ability	to	perform	point-in-time	recoveries	(PITRs)	on	PDBs	as	well.
This	makes	the	multitenant	architecture	very	flexible	because	it	allows	for	a	finer	grain	of
control	with	respect	to	the	restore	and	recovery	of	PDBs	within	that	architecture.	For
example,	you	may	have	a	CDB	that	is	assigned	to	store	a	number	of	PDBs	used	for
testing.	This	CDB	may	have	many	tenants	in	it,	and	there	may	be	a	need	to	refresh	these
tenant	PDBs	to	different	points	in	time.	Oracle’s	ability	to	perform	point-in-time	recovery
within	a	PDB	makes	this	possible.

In	this	section	we	look	at	the	details	of	how	a	PDB	point-in-time	restore	is	done.	We
then	look	at	restrictions	and	requirements	of	a	PDB	point-in-time	recovery.	Next,	we	look
at	the	different	kinds	of	point-in-time	recoveries	available:	time	based,	SCN	based,	change
based,	and	recoveries	to	a	given	restore	point.

About	PDB	Point-in-Time	Recoveries
With	a	non-CDB	database,	a	point-in-time	restore	is	simply	a	matter	of	restoring	the
database	datafiles	over	the	existing	datafiles	and	applying	recovery	to	whatever	point	in
time	you	are	interested	in	restoring	the	database	to.	Point-in-time	restore	of	a	PDB	is	more
akin	to	what	happens	during	a	tablespace	point-in	time	restore.

First,	RMAN	needs	to	create	an	auxiliary	database.	To	do	this,	RMAN	restores	the
datafiles	needed	to	start	and	open	the	auxiliary	instance.	The	datafiles	associated	with
these	tablespaces	are	stored	in	the	FRA	by	default.	If	the	FRA	is	not	defined,	you	must
define	the	location	for	the	files	to	be	created	when	you	execute	the	restore	and	recovery
commands.

When	the	tablespaces	are	restored,	they	will	include	the	SYSTEM,	SYSAUX,	and
UNDO	tablespaces.	These	are	the	basic	tablespaces	required	to	start	the	auxiliary	instance.
Additionally,	the	tablespaces	associated	with	the	PDB(s)	involved	are	restored.	Once	the
datafiles	are	restored,	it’s	then	time	for	the	execution	of	the	recovery	process	via	the
recovery	command.

During	the	recovery,	the	auxiliary	instance	is	started	and	then	mounted.	It	is	then	rolled
forward	to	the	point	in	time	to	which	you	want	to	restore	the	PDB.	The	cloning	process
then	moves	the	recovered	tablespace	datafiles	over	to	the	PDB	and	brings	them	online.	At
that	point	the	PDB	is	restored	to	the	point	in	time.	All	that	remains	is	to	open	the	PDB
using	the	alter	pluggable	database	open	resetlogs	command.	At	that	point,	the	PDB	will
be	open	and	usable.

One	difference	between	normal	database	point-in-time	restores	and	point-in-time
restores	of	PDBs	is	the	amount	of	space	required	to	perform	the	point-in-time	restores	of
the	PDB.	When	you	restore	a	non-CDB	database	(or	the	entire	CDB	database),	the	only
space	that	is	required	is	that	of	the	restored	database	datafiles	and	for	the	archived	redo
logs	required	to	perform	the	restore.	With	a	PDB	PITR,	you	need	all	the	space	consumed
by	the	database	datafiles	plus	all	the	space	required	to	create	the	auxiliary	database.	This
can	mean	that	a	significant	amount	of	space	might	well	be	required	for	a	PITR	of	a	PDB.

Restrictions	and	Requirements	Associated	with	PDB	Point-
in-time	Recoveries
When	RMAN	does	a	PDB	point-in-time	recovery,	an	auxiliary	instance	is	created.	This
auxiliary	instance	uses	the	Fast	Recovery	Area	(or	the	location	defined	by	the	auxiliary
destination	parameter)	for	storage	of	the	datafiles	that	will	be	created	to	perform	the
recovery.	If	you	do	not	use	a	FRA,	you	must	use	the	auxiliary	destination	parameter	when
issuing	both	the	restore	and	recover	commands.

Because	you	will	be	using	the	FRA,	you	need	to	make	sure	enough	physical	space	is
allocated	to	the	directory	where	the	FRA	is	located.	Additionally,	on	a	Windows	platform,
you	may	have	issues	with	the	creation	of	the	auxiliary	instance	if	you	do	not	use	the
auxiliary	destination	parameter.

Restoring	a	PDB	to	a	different	point	in	time	also	impacts	your	ability	to	use	Flashback
Database	on	the	entire	CDB.	When	you	restore	a	PDB	to	a	different	point	in	time,	you	will

only	be	able	to	flash	back	the	database	from	the	current	point	in	time	to	the	point	in	time
to	which	you	restored	the	PDB.	There	are	some	ways	to	work	around	this	restriction,
which	we	will	cover	when	we	discuss	RMAN	and	Flashback	Database	later	in	this	book.

It	might	seem	obvious,	but	another	requirement	is	to	have	a	backup	of	all	the	datafiles
from	a	backup	completed	before	the	point	in	time	to	which	you	wish	to	restore	the	PDB.
You	also	need	all	the	archived	redo	logs	from	the	time	that	backup	started	until	the	point	in
time	to	which	you	wish	to	restore	the	database.	The	recover	database	command	will	take
care	of	extracting	the	archived	redo	logs,	as	it	always	does,	but	if	it	can’t	find	the	backup
set	pieces,	it	can’t	restore	them.

One	nice	thing	about	PDB	PITR	is	that	it	only	requires	that	the	PDB	being	recovered
be	closed.	The	remainder	of	the	CDB	can	continue	to	run	normally.	Some	other	things	to
be	aware	of:	You	will	want	to	ensure	you	have	sufficient	disk	space.	You	will	also	want	to
ensure	that	the	OS	directory	you	want	to	use	to	create	the	files	for	the	automatic	instance
has	the	appropriate	OS-level	privileges	required.

If	the	restore	or	recover	operation	does	fail,	you	need	to	make	sure	that	the	automatic
instance	is	completely	cleaned	up	after	the	failure.	This	may	mean	any	number	of	tasks,
including	the	following:

			Connecting	to	the	automatic	instance	and	using	the	drop	database	command
to	remove	it	from	the	system.

			Executing	the	following	package	to	clear	certain	metadata	settings	related	to
the	automatic	instance:

One	of	the	requirements	of	any	PDB	PITR	is	that	we	have	a	backup	available	of	the
PDB.	This	backup	should	have	completed	at	some	point	in	time	before	the	point	in	time	to
which	we	want	to	restore	the	PDB.	There	are	several	ways	to	validate	that	we	have	such	a
backup.	First,	we	can	use	the	list	command	(which	we	discuss	later	in	this	book	when	we
talk	about	administration	of	RMAN)	to	list	all	the	backups	available.	We	would	then	need
to	manually	check	off	that	we	have	the	backup	we	need.

An	easier	solution	is	to	use	the	restore	pluggable	database	validate	command	to
make	sure	the	required	backup	is	available.	This	will	simulate	a	restore	of	the	database
without	actually	doing	it.	Thus,	we	know	right	away	if	we	have	a	valid	backup,	and	we
also	know	if	some	of	the	backup	pieces	are	missing	and	might	need	to	be	restored	from
some	other	media.	In	our	example,	let’s	say	we	want	to	restore	our	PDB	called	TPLUG	to
a	point	in	time	of	12/28/2014	at	5	P.M.	We	would	then	run	the	following	command	to
validate	that	we	can	actually	restore	to	that	point	in	time:

RMAN	will	proceed	to	simulate	the	restore.	If	no	errors	occur,	we	can	proceed	with	the
next	step,	which	is	to	actually	do	the	PITR	restore.	This	step	does	not	guarantee	us
success,	but	it	is	a	good	check	that	can	help	reduce	the	possibility	of	errors.	We	can	also
simulate	restores	based	on	an	SCN,	change,	or	restore	point.

Something	else	that’s	helpful	is	to	make	sure	the	current	redo	log	file	is	archived	before
you	start	your	PITR	restore—especially	if	you	are	testing.	In	many	cases,	the	redo	needed
in	the	online	redo	log	file	will	be	required	by	the	recovery	process.	If	that	redo	is	not
archived,	it’s	possible	that	the	PITR	will	fail.	Therefore,	if	you	are	having	problems	with
the	PITR	failing,	issue	an	alter	system	switch	logfile	command	followed	by	an	alter
system	archive	log	all	command	to	ensure	that	all	the	redo	you	need	is	archived.

Finally,	suppose	you	start	a	PDB	PITR	and	get	an	error	similar	to	the	following:

In	this	case,	it’s	likely	that	when	you	tried	to	open	the	PDB	with	the	alter	pluggable
database	open	statement,	you	forgot	to	include	the	resetlogs	parameter.	Using	the
resetlogs	parameter	is	required	any	time	you	perform	a	PITR	on	a	PDB.

PDB	Time-Based	Recovery
Now	that	we	have	discussed	the	basic	requirements	around	PDB	point-in-time	recoveries,
we	can	proceed	to	actually	performing	them.	First,	let’s	look	at	a	time-based	PITR	of	a
PDB	within	a	CDB.	Time-based	recovery	is	probably	the	most	common	method	of
restoring	a	particular	PDB	to	a	different	point	in	time.

NOTE

Even	though	time-based	recovery	is	the	most	common,	it	is	not	the	most
accurate	way	of	ensuring	a	given	database	is	restored	to	the	point	in	time	you
desire.	When	a	time	value	is	defined,	it	is	converted	to	an	approximate	SCN
number.	According	to	the	Oracle	documentation,	the	variance	in	the	relationship
between	time	and	SCN	can	be	as	great	as	three	minutes.	Therefore,	if	you	need	to
restore	at	a	specific,	fine-grained	point	in	time,	you	should	consider	a	PDB	PITR
based	on	using	the	SCN	rather	than	time.	Also,	there	are	times	when	the	lack	of
specificity	with	respect	to	time	can	actually	cause	the	restore	to	report	inadvertent
errors.	If	you	are	experimenting	with	this	feature,	make	sure	you	give	yourself
three	to	five	minutes	between	the	time	you	perform	your	backup	and	the	time	you

actually	perform	your	restore.

In	this	case,	we	will	take	the	PDB	(called	TPLUG)	for	which	we	want	to	do	the	PITR
offline.	We	will	then	perform	the	PDB	PITR	using	the	restore	pluggable	database	until
time	and	recover	pluggable	database	until	time	commands.	After	a	successful	restore,
we	will	open	the	pluggable	database	with	the	alter	pluggable	database	open	command,
including	the	resetlogs	parameter.	Here	is	an	example	of	these	commands	in	use:

When	these	commands	are	executed,	the	restore	command	extracts	the	database	files
that	are	required,	and	the	recover	command	proceeds	to	create	the	automatic	instance	and
complete	the	PITR	for	the	PDB.

NOTE

A	lot	of	things	can	go	wrong	with	a	PDB	PITR	operation	because	of	its
complexity.	It’s	a	really	good	idea	to	educate	yourself	and	try	a	number	of	PDB
PITRs	before	you	go	into	the	big	leagues.

Note	that	we	could	have	used	a	run	block	and	the	set	until	time	RMAN	command	to
perform	this	restore,	too.	This	is	true	for	any	of	the	PDB	PITR	restores	we	discuss	in	this
section.	In	fact,	the	Oracle	documentation	recommends	that	you	use	a	run	block.	This
seems	to	mostly	be	to	ensure	that	if	the	restore	operation	fails,	the	recovery	operation	will
not	begin.	If	you	are	going	to	automate	the	PITR,	then	you	should	use	a	run	block.	If	you
are	going	to	be	doing	the	PITR	manually,	you	should	include	the	until	time	parameter	in
the	restore	and	recover	commands.	Either	way	works,	so	use	whichever	way	works	best
for	you.	Here	is	what	such	a	run	block	would	look	like:

PDB	SCN-Based	Recovery
As	with	a	tablespace	PITR,	you	can	restore	a	PDB	to	a	point	in	time	based	on	a	specific
SCN	number.	The	SCN	of	the	database	can	be	determined	in	various	ways.	For	example,
there	is	a	column	in	the	V$DATABASE	view	called	CURRENT_SCN.	You	can	find	the
SCN	range	associated	with	an	online	or	archived	redo	log	group	by	using	the
V$LOG_HISTORY	view	and	its	FIRST_CHANGE#	and	NEXT_CHANGE#	columns.
You	might	even	use	the	ORA_ROWSCN	pseudo-column	to	determine	the	SCN	when	a
specific	record	changed	and	base	your	restore	on	that	value.

For	example,	let’s	say	we	created	a	table	called	INPUT_DATA	in	TPLUG	PDB.	We
will	include	the	rowdependencies	clause	in	our	create	table	DDL	to	ensure	that	the	SCN
recorded	for	each	row	is	unique	to	that	row	(by	default	it’s	unique	to	the	block):

We	then	proceed	to	enter	data	into	that	table	using	some	PL/SQL:

Note	that	we	committed	the	first	batch,	waited	300	seconds,	and	then	loaded	the	second

batch.	This	is	to	simulate	two	discrete	points	in	time	where	we	loaded	two	batches	of	data.
All	of	the	records	associated	with	the	two	different	points	in	time	will	share	the	same
ORA_ROWSCN	value.	Therefore,	the	500	records	loaded	before	the	first	commit	will
have	one	common	ORA_ROWSCN	value,	and	the	second	set	of	500	records	will	have	a
second	unique	SCN	to	identify	them.	In	this	query,	we	can	plainly	see	this	fact:

Now	we	are	ready	to	perform	a	PDB	SCN-based	PITR.	Here	are	the	RMAN	commands
we	would	use	to	perform	a	restore	to	SCN	3250816—the	SCN	from	the	earlier	set	of
inserts	plus	1.	We	have	to	increase	the	SCN	value	by	1	because	the	until	SCN	parameter
restores	up	to	but	not	including	the	SCN	listed	in	the	parameter.	When	this	restore	is
complete,	we	should	see	the	records	with	SCN	3250835	disappear!	Here	is	the	set	of
commands	we	would	use	to	perform	this	PDB	PITR:

After	the	recovery,	we	query	the	INPUT_DATA	table	again	and,	as	expected,	we	now
only	see	the	first	set	of	records	and	their	associated	SCN—but	the	result	is	a	bit	odd:

Notice	how	the	SCN	has	changed?	We	have	correctly	just	restored	the	first	set	of	500
records,	but	one	result	of	the	PDB	PITR	is	that	the	ORA_ROWSCN	of	all	of	the	rows	of
that	table	have	now	changed.	This	is	because	even	though	you	can	have	many	PDBs,	they
all	still	share	one	common	SCN	scheme.	Even	though	you	are	rolling	back	one	PDB,	the
single	SCN	counter	is	still	ticking	away	in	the	CDB	and	all	of	the	other	PDBs.	Therefore,
when	you	perform	a	PITR	of	a	PDB,	the	SCNs	for	the	records	that	are	restored	will
always	be	different	(higher)	than	they	were	in	the	previous	incarnation	of	that	PDB.	Don’t
confuse	this	with	the	ROWID	of	the	unique	rows—these	will	remain	the	same.	Therefore,
the	indexes	of	a	table	are	not	impacted	by	the	restore	and	don’t	need	to	be	rebuilt.

PDB	Change-Based	Recovery
A	PDB	change-based	PITR	follows	the	same	concept	as	a	database	change-based	PITR	in
that	the	recovery	is	bounded	by	a	specific	archived	redo	log	sequence	number.	This	log
sequence	number	can	be	found	in	views	such	as	V$LOG_HISTORY	and
V$ARCHIVED_LOG.	The	column	called	SEQUENCE#	provides	the	log	sequence

number	you	are	interested	in.	Once	you	have	determined	the	change	number	you	wish	to
apply,	the	commands	to	perform	the	restore	include	the	restore	pluggable	database	and
recover	pluggable	database	commands,	along	with	the	until	change	parameter,	as	shown
in	this	example:

Recovering	Based	on	a	Restore	Point
Restore	points	provide	a	way	to	define	the	point	in	time	to	which	you	want	to	recover
based	on	an	already	defined—and	named—point	in	time	called	a	restore	point.	You	create
a	restore	point	using	the	create	restore	point	command.	We	discuss	restore	points	in
much	more	detail	later	in	this	book	when	we	discuss	Flashback	Database	and	RMAN.

You	can	find	the	list	of	restore	points	in	the	database	by	querying	the	view
V$RESTORE_POINT.	Once	you	have	found	the	restore	point	to	which	you	want	to
recover	your	PDB,	the	set	of	commands	to	use	looks	familiar.	In	this	case,	we	will	restore
the	TPLUG	PDB	back	to	the	point	in	time	defined	by	the	restore	point	ROBERT1:

Other	RMAN	Recovery	Topics
We	need	to	cover	a	few	more	things	before	we	finish	this	chapter.	First,	we	need	to	discuss
some	issues	with	read-only	tablespaces.	Then	we’ll	talk	about	archived	redo	log	restores,
datafile	copy	restores,	and	recovering	corrupted	datafile	blocks.	Then	we’ll	turn	to	a
discussion	about	recovering	to	a	previous	incarnation.	More	riveting	RMAN	stuff	coming
your	way!

Read-Only	Tablespace	Recovery	Considerations
By	default,	RMAN	will	not	restore	read-only	datafiles	when	you	do	a	full	database
restore,	even	if	the	read-only	datafile	is	not	there.	To	restore	a	read-only	datafile	during	a
full	recovery,	you	need	to	include	the	check	readonly	or	force	parameter	in	the	restore
command,	as	shown	in	these	examples:

Note	that	the	RMAN	behavior	is	different	if	you	issue	a	recover	tablespace	or	recover

datafile	command.	When	you	use	either	of	these	two	recover	commands,	recovery	occurs
regardless	of	the	read-only	nature	of	the	tablespace.

Archived	Redo	Log	Restores
During	the	normal	course	of	recovery	with	RMAN,	there	is	no	real	need	to	recover	the
archived	redo	logs.	However,	restoring	one	or	more	archived	redo	logs	may	be	required
occasionally.	For	example,	you	might	want	to	use	LogMiner	to	mine	some	information
from	the	archived	redo	log	files	stored	in	your	backups.	In	this	event,	RMAN	allows	you
to	restore	specific	archived	redo	logs	by	using	the	restore	archivelog	command,	as	shown
in	these	examples:

You	might	want	to	have	Oracle	restore	the	archived	redo	logs	to	a	location	other	than
the	default	location.	To	do	this,	use	the	set	command	with	the	archivelog	destination	to
parameter:

Note	that	there	is	no	alternative	to	the	set	command,	so	a	run	block	is	required.	Finally,
be	aware	that	RMAN	will	not	restore	an	archived	redo	log	to	disk	if	it	determines	that	the
archived	redo	log	already	exists.	Even	if	you	change	the	destination	to	a	destination	other
than	the	default	archive	log	destination,	Oracle	will	not	recover	an	archived	redo	log	to
that	new	destination.

Datafile	Copy	Restores
You	can	restore	your	database	datafiles	from	a	datafile	copy	(as	opposed	to	a	backup	set).
To	do	this,	use	the	restore	from	datafilecopy	command	and	then	use	the	recover
command	as	you	normally	would	to	recover	the	database	(or	tablespace	or	datafile),	as
shown	in	this	example:

Note	that	when	you	issue	a	restore	command,	it	will	identify	the	most	current	copy	of
the	datafiles	that	need	to	be	restored	and	then	restore	those	datafiles	from	that	copy.	The
most	current	copy	of	a	datafile	might	be	within	a	datafile	copy	rather	than	a	backup	set.	In
that	case,	Oracle	will	recover	the	datafile	copy.	Also	note	that	the	use	of	parentheses	is
important;	if	they	are	not	used,	this	command	will	fail.

Recovering	Corrupted	Data	Blocks
RMAN	offers	block	media	recovery	(BMR),	which	allows	you	to	do	block-level
recoveries	to	repair	logically	or	physically	corrupted	blocks	in	your	Oracle	database,	even
while	the	associated	datafile	is	online	and	churning	away	the	whole	time.

So,	just	how	do	you	perform	a	block	media	recovery?	It’s	easy,	as	demonstrated	in	the
following	example.	Suppose	you	receive	the	following	error	message	when	querying	an
Oracle	table:

This	message	is	telling	you	that	a	block	in	the	MAINTBS	tablespace	is	corrupted.	Of
course,	you	need	to	do	something	about	that.	Without	BMR,	you	would	have	had	to
recover	the	datafile	from	a	backup.	During	this	recovery,	all	data	within	that	datafile
would	be	unavailable	to	the	users.

Instead,	you	can	use	BMR	to	recover	just	the	corrupted	blocks.	BMR	is	implemented
via	the	recover	command	using	the	datafile	and	block	options,	as	shown	in	this	example:

You	can	recover	multiple	blocks	in	multiple	datafiles	at	the	same	time,	as	shown	in	this
example:

Of	course,	Oracle	tracks	block	corruption	that	occurs	during	backups	and	copies.	If	a
backup	or	copy	operation	has	detected	corruption,	the	operation	will	fail	by	default
because	Oracle	will	allow	zero	corruption	in	a	backup.	You	can	configure	RMAN	to	allow
a	set	amount	of	corruption,	but	this	is	not	a	recommended	practice.

If	you	want	to	see	all	database	corruption	that	might	be	detected	by	RMAN,	you	can
use	the	backup	validate	database	command,	which	populates	the	views
V$BACKUP_CORRUPTION	and	V$DATABASE_BLOCK_CORRUPTION	with	the
results	of	all	corrupted	blocks.	The	backup	validate	database	will	check	all	the	database
blocks	for	corruption	and	report	on	any	corruption	that	has	been	discovered.

If	corruption	appears	in	the	V$DATABASE_BLOCK_CORRUPTION	view,	you	can
use	the	recovery	corruption	list	RMAN	command	to	repair	those	blocks	online,	as
shown	here:

Once	you	have	corrected	the	database	block	corruption,	rerun	the	backup	validate
database	command	and	then	query	V$DATABASE_BLOCK_CORRUPTION	to	ensure
that	no	further	corruption	exists.

A	few	closing	comments	on	some	of	the	corruption	views:	If	corruption	occurs	during	a
copy	operation,	the	V$COPY_CORRUPTION	view	will	indicate	which	backup	sets
contain	corruption.	There	is	also	a	view	called	V$BACKUP_CORRUPTION	that	is	a
historical	view	of	past	corruption.	The	view	previously	mentioned,
V$DATABASE_BLOCK_CORRUPTION,	provides	a	view	of	only	current	block
corruption.	Any	corrupted	blocks	that	have	already	been	repaired	will	be	removed	from
V$DATABASE_BLOCK_CORRUPTION.	However,	these	blocks	will	remain	in	the
V$BACKUP_CORRUPTION	view.

Recovering	to	a	Previous	Incarnation
Recall	from	our	earlier	discussion	about	the	resetlogs	command	that	an	incarnation	of	a
database	is	a	representation	of	a	specific	logical	lifetime	for	that	database.	As	a	hotshot
DBA,	you	may	find	yourself	in	an	odd	restore	situation	where	you	need	to	restore	your
database	using	a	backup	that	took	place	from	before	the	last	time	you	opened	the	database
using	the	resetlogs	command	and/or	you	may	want	to	restore	to	a	point	in	time	before	you
issued	the	last	resetlogs	command.

Preparing	for	the	Restore
To	do	a	restore	to	a	previous	incarnation,	you	need	to	know	to	which	incarnation	you	want
to	restore.	To	find	out	which	incarnations	are	available,	RMAN	provides	the	list
incarnation	command:

In	this	list	we	see	that	we	have	three	incarnations	we	have	to	work	with.	Depending	on
whether	you	are	using	a	control	file	or	recovery	catalog,	the	number	of	records	that	appear
in	this	list	may	well	be	different.	This	is	because	the	recovery	catalog	records	are	not
subject	to	be	removed	as	control	file	records	are.	Also,	if	you	re-create	the	control	file,
some	incarnation	records	will	be	lost.

The	Reset	SCN	and	Reset	Time	columns	indicate	the	SCN	and	time	that	the	incarnation
was	created.	This	can	be	helpful	when	you	are	trying	to	figure	out	which	incarnation	you
will	need	to	use	to	perform	your	restore.

In	this	list	our	database	incarnation	keys	are	1,	2,	and	3	(where	3	is	the	oldest
incarnation).	Assume	that	you	did	a	PITR	of	a	database	and	created	incarnation	3	as	a
result	of	that	restore.	You	did	the	PITR	restore	of	the	database	because	tables	were
mistakenly	dropped	(and	purged).	After	the	recovery	was	complete,	you	opened	the
database	with	the	resetlogs	command.	However,	after	opening	the	database	you	discover
that	your	tables	are	still	not	there—so	you	obviously	restored	too	much	redo	during	your

first	restore	attempt,	and	the	tables	were	still	dropped.

After	some	research,	you	determine	the	correct	SCN	to	which	you	should	restore.	You
start	the	restore	and	get	the	following	error:

This	message	indicates	that	you	are	trying	to	restore	to	a	point	in	time	before	that	of	the
current	incarnation	of	the	database.	In	order	to	perform	this	restore,	we	need	to	indicate	to
RMAN	which	incarnation	you	actually	want	to	recover	back	to.	To	do	that,	you	use	the
reset	database	to	incarnation	command.	In	this	case,	you	will	reset	to	incarnation	2,
because	you	know	that’s	where	the	backup	taken	nearest	to	the	point	you	want	to	restore
to	resides.

Executing	the	Restore
Now	that	you	know	which	incarnation	you	want	to	recover,	you	can	proceed	to	do	the
recovery.	The	basic	process	is	the	same	regardless	of	whether	or	not	you	are	using	a
recovery	catalog.	You	will	do	the	following:

1.			Shut	down	the	database	and	then	mount	it.

2.			Restore	the	control	file	associated	with	the	incarnation	you	want	to	restore.

3.			Reset	the	database	incarnation.

4.			Execute	the	restore	and	recovery	based	on	the	time	you	wish	to	restore	to.

5.			Open	the	database.

As	we	suggested,	there	are	two	different	cases	here	you	need	to	consider.	The	first	is	a
recovery	when	you	have	a	recovery	catalog.	In	this	case,	you	would	connect	to	the
recovery	catalog	and	run	the	following	commands:

Notice	that	the	first	thing	you	need	to	do	is	reset	the	database	incarnation.	Then	you
restore	the	control	file.	You	need	a	copy	of	the	control	file	from	the	time	period	within	the
incarnation	to	which	you	are	restoring.	Note	that	when	you	are	connected	to	a	recovery
catalog,	you	can	set	the	incarnation	you	are	working	with	before	the	database	is	mounted.
Once	you	have	restored	the	control	file,	you	proceed	to	restore	and	recover	the	database	to

the	point	in	time	you	have	identified.

If	you	are	not	using	a	recovery	catalog,	then	the	process	you	will	follow	changes	just	a
bit.	Here	are	the	commands	you	would	run	if	you	are	not	using	a	recovery	catalog:

As	you	can	see,	the	steps	required	if	you	are	not	using	a	recovery	catalog	are	ordered
differently.	Also,	you	will	reset	the	database	incarnation	at	a	different	place	in	the
workflow.	Still,	it’s	a	pretty	easy	process.	Something	else	that’s	thrown	in	here	is	a	mix	of
restoring	the	control	file	based	on	a	date	and	the	database	based	on	an	SCN.	When
restoring	your	control	file	with	an	autobackup,	you	can	only	limit	the	restore	by	date.
However,	when	you	do	the	database	restore	afterward,	you	can	use	SCN,	time,	change,
and	even	restore	points,	as	discussed	earlier	in	this	chapter.

Table	and	Partition	Point-in-Time	Recovery
There	are	many	scenarios	in	which	tables	(partitioned	and	nonpartitioned)	may	need	to	be
restored.	For	example,	a	data	load	failure	might	impact	only	certain	tables.	Or	perhaps
your	database	is	subdivided	into	many	schemas	and	you	need	to	restore	only	the	objects	in
one	specific	schema.	These	kinds	of	restores	could	be	problematic	because	a	physical
database	restore	requires	that	you	restore	the	entire	database	and	then	roll	it	forward	in	its
entirety.

A	second	option	is	to	use	Oracle	Data	Pump	to	restore	individual	tables	and/or
schemas.	The	problem	with	this	option	is	that	it	is	not	possible	to	roll	the	data	backed	up
in	the	Data	Pump	export	forward	in	time	after	it	has	been	restored.	Thus,	if	your	export
was	taken	three	days	ago	at	4	P.M.,	then	that	is	the	image	of	the	data	you’re	going	to	see
when	you	restore	the	export	file	to	the	database.

Yet	another	method	sometimes	used	is	to	create	a	second	database	(often	called	a	stub
database)	using	the	backup	of	the	first	database.	In	this	situation,	you	restore	the
SYSTEM,	SYSAUX,	and	UNDO	tablespaces.	Additionally,	you	restore	the	individual
tablespaces	that	contain	the	data	you	want	to	restore.	After	the	restore	is	complete,	you

alter	any	tablespaces	that	you	did	not	restore	offline.	You	then	apply	the	archived	redo
logs	to	the	point	in	time	to	which	you	want	to	restore	the	individual	objects.	Having
restored	the	database	to	the	appropriate	point	in	time,	you	then	use	Oracle	Data	Pump	to
export	the	objects,	and	then	you	import	them	into	the	original	database,	again	using	Oracle
Data	Pump.	As	you	can	probably	tell,	the	problem	with	this	option	is	that	it	is	a	fairly
convoluted	process	to	do	manually.	Fortunately,	Oracle	Database	12c	introduces	new
functionality	in	RMAN	that	supports	point-in-time	restore	of	individual	database	tables
and	individual	table	partitions.

In	this	section	we	discuss	the	following	topics:

			Prerequisites	for	restoring	and	recovering	tables	and	partitions

			Restrictions	on	restoring	and	recovering	database	tables	and	partitions

			Options	to	consider	when	restoring	tables	and	table	partitions

			How	RMAN	implements	the	restore	and	recovery	of	tables	and	partitions

			An	example	of	using	RMAN	to	restore	and	recover	a	database	table

Prerequisites	for	Restoring	and	Recovering	Database	Tables
and	Partitions
If	you	want	to	take	advantage	of	RMAN’s	ability	to	restore	tables	and	table	partitions,	you
need	to	follow	a	few	rules.	The	following	are	the	prerequisites	to	be	able	to	restore	tables
or	table	partitions:

			The	database	was	in	ARCHIVELOG	mode	when	it	was	backed	up,	and	it
remained	in	ARCHIVELOG	mode	up	until	the	point	in	time	to	which	you	want	to
restore	the	database.

			If	you	want	to	recover	individual	partitions,	the	COMPATIBLE	parameter
must	be	set	to	11.1.0	or	later.

			An	RMAN	backup	of	the	SYSTEM,	SYSAUX,	and	UNDO	tablespaces	must
be	available,	and	this	backup	must	have	been	completed	before	the	point	in	time	to
which	you	want	to	restore	the	object(s).

			One	or	more	backups	of	the	tablespace	(or	tablespaces)	that	contains	the
objects	you	want	to	restore	must	be	available.	This	backup	(or	backups)	must	have
been	completed	before	the	time	to	which	you	want	to	restore	the	objects.

			All	tablespaces	in	the	restore	set	must	be	restored	to	the	same	point	in	time.

			You	must	have	all	the	archived	redo	logs	generated	from	the	point	of	the	start
of	the	backup	that	is	being	used	to	recover	the	objects	until	the	point	in	time	to
which	you	are	trying	to	restore	the	object(s).

			The	database	you	are	restoring	the	table	or	partitions	to	(the	target	database)
must	be	open	in	read-write	mode.

			The	target	database	must	also	be	in	ARCHIVELOG	mode.

A	table	or	partition	restore	is	like	any	other	RMAN	point-in-time	recovery	in	that	you

will	need	to	know	the	time,	log	sequence	number,	or	SCN	to	which	you	want	to	restore	the
table	or	partitions.	Having	met	these	prerequisites,	you	are	ready	to	perform	a	restore	of
tables	or	table	partitions	using	RMAN.	First,	though,	let’s	take	a	look	at	some	of	the
restrictions	related	to	restoring	and	recovering	database	tables	and	table	partitions.

Restrictions	on	Restoring	and	Recovering	Database	Tables
and	Partitions
As	always,	there	are	a	few	restrictions	you	need	to	be	aware	of.	First,	you	cannot	restore
tables	that	belong	to	the	SYS	schema.	Also,	you	can’t	restore	tables	that	are	stored	in	the
SYSTEM	and	SYSAUX	tablespaces,	and	you	can’t	restore	tables	and	table	partitions	in
standby	databases.

You	cannot	perform	these	restores	on	stand-by	databases.

Also,	Oracle	provides	a	remap	option	for	the	recover	table	command	(discussed	in	the
next	section)	that	allows	you	to	restore	tables	to	a	different	name.	If	the	table	has	a	NOT
NULL	constraint,	you	can’t	use	the	remap	option.

Options	to	Consider	when	Restoring	Tables	and	Partitions
When	you’re	recovering	tables	and	table	partitions,	you	have	a	number	of	options	you	can
take	advantage	of.	The	following	table	provides	a	list	of	these	parameters	and	describes
the	purpose	of	each.

How	RMAN	Implements	the	Restore	and	Recovery	of	Tables
and	Partitions
The	process	of	restoring	individual	tables	and	partitions	with	RMAN	is	started	with	the
execution	of	the	RMAN	restore	command.	RMAN	first	creates	an	auxiliary	database	and
then	restores	to	that	database	all	the	tablespaces	it	needs	from	the	physical	backups	that
were	previously	taken.	RMAN	restores	only	the	SYSTEM,	SYSAUX,	UNDO,	and
SYSEXT	(if	it	exists)	tablespaces,	as	well	as	the	tablespaces	that	contain	the	specific
objects	being	restored.	RMAN	does	not	restore	other	tablespaces	and	associated	datafiles.

After	RMAN	restores	the	auxiliary	database,	it	rolls	that	database	forward	to	the	point
in	time	you	indicated	in	the	restore	command.	RMAN	then	creates	an	Oracle	Data	Pump
export	of	the	objects	to	be	restored.	After	it	has	created	that	export,	RMAN	will	then,
optionally,	import	the	objects	into	the	target	database.	You	can	instruct	RMAN	to	not
import	the	objects	into	the	target	database,	leaving	this	task	to	complete	yourself.	RMAN
will	clean	up	the	auxiliary	database	once	the	operation	is	completed.

Restoring	Tables	and	Partitions	from	PDBs

The	process	of	restoring	a	table	or	partition	from	a	PDB	is	generally	the	same	as	it	is	when
you	are	restoring	from	a	non-CDB.	Differences	include	the	following:

			You	must	use	the	auxiliary	destination	clause.

			Use	the	recover	table	command	along	with	the	of	pluggable	database	option.

Using	RMAN	to	Restore	and	Recover	a	Database	Table:	An
Example
This	example	uses	a	database	called	ORCL,	which	includes	a	schema	named	SCOTT.	This
example	assumes	that	an	RMAN	backup	of	the	database	exists	and	that	all	of	the
database’s	archived	redo	logs	are	either	backed	up	by	RMAN	or	available	on	disk.	You	are
going	to	restore	the	tables	owned	by	the	SCOTT	schema	by	using	the	RMAN	restore	file
command,	after	making	some	changes	to	those	tables.	First,	take	a	look	at	the	current	time
before	any	changes	were	made:

The	SCOTT	schema	has	four	tables,	as	shown	in	this	query:

The	row	counts	in	the	table	are	shown	here:

For	the	purposes	of	this	example,	assume	that	something	terribly	bad	happened	when
developers	were	testing.	Instead	of	deleting	individual	rows,	the	new	bulk	update
application,	lacking	an	appropriate	where	clause	in	the	delete	statement,	managed	to
remove	all	the	records	in	all	the	tables	instead	of	removing	unique	ones.	After	the	run	of
the	application,	this	is	what	the	row	counts	looked	like:

It’s	a	shame,	but	the	developers	also	forgot	to	do	an	export	of	their	test	schema	before
the	test.	It’s	not	a	good	day	for	the	developers:	not	only	did	they	lose	their	data,	but	they
also	know	that	the	whole	database	will	probably	have	to	be	restored	instead	of	just	the
SCOTT	schema	(and	lots	of	good	and	important	data	exists	in	the	other	schemas).

The	developers	call	you,	their	brilliant	DBA,	and	ask	how	they	can	get	their	data
restored.	Fortunately	for	you,	the	database	is	running	Oracle	Database	12c.	You	tell	them
to	hang	tight	and	you	will	take	care	of	the	problem	for	them.	After	asking	them	what	time
they	started	their	testing,	you	tell	them	you	will	restore	SCOTT	to	the	second	before
testing,	and	that	you’ll	get	back	to	them	when	you	are	done.	One	important	bit	of
information	that	the	developers	were	able	to	give	you	is	the	specific	point	in	time	to	which
you	need	to	recover	the	table	objects.	Assume	that	it’s	the	same	time	and	date	for	the
query	against	V$DATABASE	provided	earlier	in	this	section.

Sitting	down	at	your	laptop,	you	set	your	Oracle	environment	for	the	correct	database
and	you	start	RMAN.	Next,	you	use	the	RMAN	recover	command	to	recover	the	tables	in
the	SCOTT	schema.	Knowing	that	you	can’t	recover	a	specific	schema,	but	only	the	tables
in	it,	you	specify	in	your	recover	command	the	schema	and	names	of	the	tables	you	need
to	restore.

NOTE

Recovery	of	any	object	with	RMAN	implies	that	you	have	completed	a
successful	backup	of	the	tablespace	the	object	is	in	and	have	all	of	the	archived
redo	logs	and	online	redo	logs	generated	since	the	beginning	of	that	backup.

Before	you	start	the	restore,	you	need	to	decide	where	you	want	the	auxiliary	database–
related	files	to	be	stored.	For	this	example,	assume	you	have	chosen	to	use	the	directory
/u01/app/oracle/aux.	So,	you	first	make	sure	the	directory	exists.

Additionally,	you	will	want	to	decide	if	you	want	to	use	the	same	object	names	as
before,	or	if	you	want	to	remap	the	newly	restored	objects	to	different	names.	Once	you
decide	these	things,	you	log	into	RMAN	and	enter	the	following:

If	this	restore	had	been	from	a	PDB,	the	command	would	be	slightly	different	in	that
you	would	add	the	of	pluggable	database	option,	including	the	name	of	the	pluggable
database,	as	shown	here:

Once	you	press	ENTER,	RMAN	will	start	the	restore.	The	output	of	the	restore	is	quite
lengthy,	so	we’ve	decided	not	to	waste	trees	by	printing	it	here.	In	summary,	you	will	see
the	following	in	the	output:

			Allocation	of	channels

			Creation	of	the	auxiliary	instance

			Restore	of	the	control	file	for	the	auxiliary	instance

			A	list	of	datafiles	that	will	be	restored,	followed	by	their	restore	and	recovery
in	the	auxiliary	instance

			Export	of	tables	from	the	auxiliary	instance	via	Oracle	Data	Pump

			Import	of	tables,	constraints,	indexes,	and	other	dependent	objects	into	the
target	database	from	the	Data	Pump	export	file

			Cleanup	of	the	auxiliary	instance

NOTE

If	the	tables	you	are	trying	to	move	are	already	in	the	schema,	you	will	get	an
error.	You	need	to	rename	or	drop	those	tables	before	you	restore	them	via	RMAN.

Tablespace	Point-in-Time	Recovery
RMAN	provides	the	ability	to	perform	a	tablespace	point-in-time-recovery.	This
functionality	enables	the	DBA	to	restore	tablespaces	within	the	database	at	a	point	in	time
that	is	different	from	the	rest	of	the	database.	In	a	way,	this	potentially	results	in	the
database	data	being	logically	inconsistent.	However,	as	far	as	Oracle	is	concerned,	it	will
consider	the	database	to	be	totally	consistent	after	the	restore.

Tablespace	point-in-time	recovery	provides	a	great	deal	of	flexibility	to	deal	with	the
needs	a	database	might	have.	Perhaps	you	want	to	have	a	set	of	tablespaces	that	always
contain	the	same	data	every	morning.	Tablespace	point-in-time	recovery	makes	this	easy.
Perhaps	a	set	of	tables	contained	in	a	tablespace	have	been	accidently	changed	or	dropped.
Tablespace	point-in-time	makes	it	easy	to	correct	these	kinds	of	problems.	The	nice	thing
is	that	if	you	have	properly	configured	your	relationships,	all	the	various	objects	that
might	span	tablespaces	will	be	restored	together.	This	ensures	that	at	least	these	objects
will	be	restored	in	a	consistent	way.

A	tablespace	point-in-time	recovery	(TSPITR)	uses	an	Oracle	auxiliary	instance	to
create	a	temporary	work	area.	A	long	time	ago,	DBAs	used	to	have	to	do	all	sorts	of	things
to	set	up	the	environment	for	the	auxiliary	instance.	Now,	it’s	all	pretty	much	automatic.
The	only	thing	you	might	have	to	worry	about	is	where	you	want	to	put	the	files	for	the
auxiliary	instance	if	you	are	not	using	a	Fast	Recovery	Area.

There	are	a	few	things	you	will	need	to	do	to	prepare	for	a	TSPITR.	Let’s	look	at	these
items	next.

Preparing	for	the	TSPITR
Before	you	can	begin	the	TSPITR,	you	need	to	complete	the	following	steps:

			Determine	what	point	in	time	to	restore	to.

			Make	sure	the	objects	are	fully	contained	within	the	tablespace(s)	you	want	to
restore.

			Preserve	objects	or	data	that	will	otherwise	be	lost.

Determine	the	Point	in	Time	to	Restore	To
The	most	critical	factor	here	is	to	determine	what	point	in	time	you	want	to	restore	your
tablespace	to.	Be	cautious	here,	because	recovery	of	the	tablespace	is	a	one-shot	deal	if
you	are	not	using	a	recovery	catalog.	If	you	misidentify	the	point	in	time	to	recover	to,	you
will	not	be	able	to	retry	the	recovery.	On	the	other	hand,	if	you	are	using	a	recovery
catalog,	this	restriction	does	not	exist.

Make	Sure	the	Objects	in	the	Transport	Set	Are	Self-Contained
You	should	also	use	the	TS_PITR_CHECK	view	to	make	sure	your	recovery	set	is
complete,	and	identify	any	other	tablespaces	that	might	need	to	be	included.	For	example,
assume	that	you	have	a	tablespace	called	TEST_RECOVER	and	need	to	restore	it	using
TSPITR.	You	first	need	to	check	the	TS_PITR_CHECK	view	to	make	sure	there	are	no
other	dependent	tablespaces.	Here	is	an	example	of	a	query	to	check	whether	the
TEST_RECOVER	tablespace	can	be	transported	alone:

This	would	return	no	rows	if	there	were	no	conflicts.	If	there	were	conflicts,	you	would
see	a	row	describing	each	conflict,	as	shown	here:

In	this	case,	we	have	an	index	that	appears	to	be	created	in	another	tablespace.	This
index	is	associated	with	the	TEST_TSPITR	object.	We	need	to	find	out	what	tablespace
that	index	is	in	and	restore	that	tablespace	too.

Preserve	Objects	or	Data	that	Might	Be	Lost	in	the	Recovery
Obviously,	if	you	are	going	to	restore	the	TEST	tablespace	to	2	P.M.,	any	changes	to	that
tablespace	(new	objects	or	update,	insert,	or	delete	operations)	will	be	lost	after	that	point.
Losing	those	objects	may	be	fine,	but	suppose	that	you	need	to	preserve	that	data.	If	this	is
the	case,	you	need	to	export	the	data	to	be	preserved	(or,	alternatively,	copy	it	to
somewhere	else	in	the	database).	Oracle	provides	a	view,
TS_PITR_OBJECTS_TO_BE_DROPPED,	that	lists	all	objects	that	will	be	lost	during	the
recovery	operation.	Use	this	view	to	determine	what	the	status	of	the	objects	in	the
tablespace	will	be	after	the	recovery.

For	example,	if	you	were	going	to	restore	the	TEST_TSPITR	tablespace	to	a	point	in
time	of	02/20/2015	at	23:40:00,	you	would	lose	the	TEST_TSPITR_TWO	object,	as
shown	in	this	sample	output:

Performing	the	Actual	TSPITR
RMAN	will	perform	automated	TSPITR	for	you,	which	means	that	it	will	create	the
auxiliary	instance	for	you.	In	this	case,	all	you	need	to	do	is	connect	to	the	target	database
and	the	optional	recovery	catalog	(if	you	use	one)	and	issue	the	recover	tablespace
command.	RMAN	will	do	the	rest	of	the	work	for	you.

In	the	following	code	snippet,	we	provide	an	example	of	using	the	recover	tablespace
command	to	recover	the	TEST_RECOVER	tablespace.	In	this	example,	we	use	the
optional	parameter	auxiliary	destination	to	indicate	where	RMAN	and	Oracle	should
create	the	files	associated	with	the	auxiliary	database.	Using	this	parameter	makes	this

recovery	a	customized	TSPITR	with	an	automatic	instance.	If	you	do	not	use	this
parameter,	the	TSPITR	is	known	as	a	fully	automated	TSPITR	recovery.

Note	that	if	you	use	the	auxiliary	destination	parameter,	the	destination	directory
should	already	be	created,	and	Oracle	must	be	able	to	write	to	that	destination.	Also	note
that	there	is	no	trailing	slash	(either	\	or	/,	depending	on	your	OS)	in	the	destination
pathname.	Including	a	slash	will	cause	TSPITR	to	fail	(and	the	message	you	get	isn’t
exactly	all	that	descriptive).	Here	is	an	example	of	the	recover	tablespace	command	that
we	used	to	successfully	perform	TSPITR:

NOTE

To	do	automatic	TSPITR,	you	must	have	configured	channels	on	the	target.
That	way,	channels	used	in	the	auxiliary	instance	will	be	the	same	as	those	on	the
target.

Once	the	TSPITR	has	been	completed,	you	should	be	able	to	look	at	the	objects	in	the
recovered	tablespace	and	find	that	they	have	been	recovered	to	the	point	in	time	you
requested.	You	need	to	bring	the	tablespaces	recovered	back	online	to	use	them.	From
RMAN,	you	can	issue	the	command

If	an	error	occurs,	Oracle	leaves	the	auxiliary	instance	and	its	related	datafiles	intact.
You	can	try	to	correct	the	problem	and	restart	the	recovery.	In	this	case,	you	would	restart
RMAN	using	the	auxiliary	parameter,	connecting	to	the	auxiliary	instance.

If	the	auxiliary	instance	creation	is	not	entirely	successful,	it	may	be	easier	to	just
remove	the	auxiliary	instance	and	its	service	than	to	restart	the	recovery	using	the	manual
TSPITR	process.	First,	figure	out	what	failed,	and	then	remove	the	auxiliary
instance/service	and	restart	the	automated	TSPITR	process.	You	can	remove	the	auxiliary
instance/service	by	issuing	the	following	command	from	SQL*Plus	when	logged	in	as
SYSDBA:

Note	that	you	need	to	put	the	SID	that	Oracle	assigned	to	the	auxiliary	instance	in	the
place	of	the	auxiliary_sid_name	placeholder.	The	name	of	the	SID	will	be	listed	in	the
RMAN	output.	This	will	clean	up	any	old	auxiliary	instances	before	you	start	your
TSPITR	recovery.	You	will	want	to	go	to	the	auxiliary	destination	directory	after	you
execute	this	command	and	remove	any	files	that	are	in	that	directory.

Customized	Automated	TSPITR	with	an	Automatic

Instance
We	already	mentioned	that	you	can	customize	some	aspects	of	the	automatic	instance
creation	when	performing	TSPITR.	We	demonstrated	the	use	of	the	auxiliary	destination
parameter	to	indicate	where	the	recovery	set	should	be	created.	Other	ways	of	customizing
the	creation	of	the	TSPITR,	while	still	allowing	Oracle	to	create	the	instance	for	you,
include	the	following:

			Using	the	set	newname	command	to	indicate	the	location	of	the	individual
datafiles	of	the	recovery	set.

			Using	the	configure	auxname	command	to	define	the	name	of	the	auxiliary
instance.

			Creating	your	own	parameter	file	for	the	auxiliary	instance	and	supplying
parameters	such	as	db_file_name_convert	in	that	parameter	file.	This	can	be	done
by	creating	a	file	called	parms_auxint.ora	in	$ORACLE_HOME/rdbms/admin	(this
filename	and	location	are	OS	dependent).	Optionally,	you	can	use	the	RMAN
command	set	auxiliary	instance	parameter	file	to	indicate	the	path	on	the	client
where	the	auxiliary	instance	parameter	file	resides.

Once	you	have	customized	your	auxiliary	instance,	you	can	have	RMAN	create	it	for
you	by	issuing	the	recover	tablespace	command.

Summary
We	have	covered	a	lot	of	ground	in	this	chapter.	Everything	from	restoring	CDBs	and
PDBs	to	incomplete	recoveries	of	non-CDB	databases	and	CDB	databases.	We	covered
other	database	restore	topics	such	as	the	recovery	of	read-only	tablespaces,	archived	redo
logs,	and	datafile	copies.	We	discussed	recovery	of	corrupted	database	blocks,	recovery	of
database	tables,	and	tablespace	point-in-time	recoveries.	There	are	still	many	more	topics
to	discuss,	such	as	cloning	databases,	as	well	as	maintaining	and	monitoring	database
backups.	Those	topics	are	coming	up!

CHAPTER
10

Duplication:	Cloning	the	Target	Database

W
e’ve	hinted	at	this	chapter’s	content	since	the	earliest	part	of	the	book:	RMAN	will	help
you	leverage	your	backups	beyond	disaster	recovery.	We	covered	using
RMAN	for	corruption,	but	one	of	the	most	highly	leveraged	ways	to	use
backups	is	to	make	copies	of	the	production	database	for	testing	and
development	purposes.	In	the	database	world,	we	refer	to	this	as	cloning.

Database	cloning	can	provide	an	excellent	way	to	test	version	upgrades,	new
application	rollouts,	and	even	bug	patches.	Cloning	can	also	be	used	to	prepare	reporting
databases	that	are	kept	separate	from	transaction	processing	databases,	and	finally	the
backups	are	tested	to	ensure	they	are	valid.	In	these	ways,	database	backups	can	be	put	to
work.	They	can	be	used	to	restore	the	database	to	another	system,	or	even	just	to	another
disk	on	the	same	system.	We	can	then	do	load	testing	for	performance	reasons,	or	try	out	a
new	hardware	configuration.	With	clone	databases	at	our	disposal,	we	can	leave	little	to
chance	and	have	an	almost	perfect	grasp	of	what	will	happen	if	we	change	our	production
environment.	RMAN	can	be	also	be	used	to	create	a	standby	database	that	can	be	kept	up
to	date	for	disaster	recovery—but	we	are	getting	ahead	of	ourselves.

RMAN	helps	you	create	clones	via	the	duplicate	command.	This	simple	little
command	hides	many	levels	of	complexity	that	are	worth	knowing	about	before	you	begin
to	use	it.	In	addition,	there	is	a	fair	amount	of	prep	work	required	so	that	duplication	goes
smoothly.	But	once	understood,	and	after	you’ve	had	a	little	time	to	practice,	you’ll	find
that	database	duplication	is	one	of	the	real	“killer	apps”	within	the	backup	and	recovery
world.	Or	perhaps	you	already	know	this.	Regardless,	leveraging	the	RMAN	interface	will
save	you	hours	of	scripting	pain.

RMAN	Duplication:	A	Primer
The	RMAN	duplicate	command	is	a	simple	command	that	hides	a	high	level	of
complexity.	If	you’ve	ever	been	through	the	process	of	restoring	image	copy	backups	of
your	database	to	another	system,	you	know	the	amount	of	information	that	you	have	to
keep	track	of:	filenames,	file	locations,	backup	locations,	archive	log	information,	ftp
processes,	moving	tapes	around…	there’s	plenty	to	keep	track	of.	RMAN,	on	the	other
hand,	has	a	straightforward	command:

This	will	perform	the	entire	process	of	cloning	your	target	database	to	another	database.
Granted,	you	have	to	do	a	little	legwork	first,	but	once	you	become	familiar	with	the
architecture,	you’ll	see	that	the	legwork	is	not	too	bad	a	trade-off.

Why	Use	RMAN	Duplication?
Why	is	duplication	necessary?	Why	can’t	we	just	copy	the	control	file	to	a	new	location
and	run	a	restore	and	recovery?	The	answer	is,	you	can!	There	is	no	reason	that	this	won’t
work.	The	only	problem	is,	you	will	have	an	exact	copy—not	just	of	the	data	in	the
database	(the	part	you	want	to	be	the	same),	but	also	of	the	metadata	about	the	database
(this	will	cause	headaches).	If	you	use	a	recovery	catalog,	you	will	run	into	problems	if
you	clone	your	database	without	using	duplication.	You	see,	RMAN	registers	databases	in

the	catalog	based	on	the	database	ID	(DBID),	which	is	a	number	that	identifies	your
database	as	unique,	even	if	it	has	the	same	DB_NAME	as	another	database.	If	you	don’t
use	the	duplicate	command,	you	will	have	two	databases	with	the	same	DBID.	If	you	try
to	register	your	clone	in	the	same	catalog	as	your	production	system,	you	will	get	an	error:

This	error	can	be	a	little	misleading:	you	haven’t	registered	the	database!	If	you	shrug
your	shoulders	at	this	and	go	ahead	and	try	to	back	up	your	database,	it	will	give	you	an
even	stranger	error:

“Whoa,”	you	say,	“what	does	that	mean?”	So	you	go	ahead	and	issue	a	reset	database,
as	you	think	you	should,	and	this	works.	You	can	now	back	up	your	database.	Sweet.
However,	you	have	caused	bigger	problems.	Now,	you	connect	RMAN	to	your	original
production	server	and	try	to	back	it	up.	But	when	you	do,	you	get	a	hauntingly	similar
error:

The	reason	for	this	error	is	that	RMAN	considers	your	clone	no	more	than	a	restored
version	of	your	production	system,	so	it	now	thinks	the	clone	is	the	current	incarnation	of
your	production	server,	and	it	has	no	idea	what	your	production	server	is.	You	can	reset
the	incarnation	back	to	the	one	that	actually	matches	your	production	database,	but	you’ve
essentially	corrupted	your	catalog	and	should	unregister	your	database	and	reregister	it	in
the	catalog	(see	Chapter	6).	It	should	be	noted,	of	course,	that	the	Oracle	documentation
clearly	states	in	each	release	that	you	should	never	connect	RMAN	to	a	test	database	and
the	recovery	catalog	because	of	this	very	problem.

If	you	don’t	use	a	catalog,	nonduplicated	clones	can	wreak	havoc	as	well.	Let’s	lay	it
out	in	an	example.	You	clone	your	database	to	the	same	system	as	your	primary	database.
You	are	using	RMAN	to	back	up	both	databases	to	tape,	and	because	you	aren’t	using	a
catalog,	you	have	automatic	control	file	backups	turned	on	for	both	instances.	One	day,
you	lose	a	disk	array,	and	your	entire	system	goes	belly	up.	Both	databases,	and	all	of	their
control	files,	are	lost.	“No	problem,”	you	think,	“I’ve	got	control	file	autobackup	turned
on.	I’ll	just	use	one	of	those	to	restore	my	systems.”

But	here’s	the	stickler:	the	command	restore	controlfile	from	autobackup	uses	the
DB_ID	to	track	down	the	control	file	autobackup.	Because	both	of	your	databases	back	up
to	the	same	tape,	it	may	try	to	restore	the	control	file	from	the	wrong	database,	giving	you
the	wrong	files	with	the	wrong	data.

A	third	reason,	new	to	environments	where	you	are	using	Oracle	Enterprise	Manager
Grid	Control,	also	comes	to	the	surface.	Grid	Control	needs	to	understand	all	of	its
managed	targets	as	unique	snowflakes.	If	you	clone	a	database,	and	you	leave	the
metadata	the	same	for	both	databases,	and	then	try	to	use	Grid	Control	to	manage	both
databases,	you	give	Grid	Control	brain	damage.	It	will	either	refuse	to	discover	one	of	the
databases,	or	make	you	go	through	some	gyrations	to	rectify	how	the	new	clone	registers

itself	with	the	listener	(note:	this	problem	can	occur	even	if	your	clone	database	is	on	a
different	server).

Obviously,	any	of	these	scenarios	can	be	fixed,	and	they	don’t	cause	a	loss	of	data.	But
they	cause	a	loss	of	time.	They	can	potentially	extend	your	downtime	past	your	agreement
levels.	In	addition	to	these	problems,	using	duplication	in	RMAN	provides	the	power	of
the	RMAN	interface	to	keep	things	as	simple	as	possible.	And	simple	is	good.	Simple	is
wise.

Different	Types	of	RMAN	Duplication
Oracle	12c	offers	multiple	ways	to	perform	database	cloning	using	RMAN.	In	the	past,
you	always	needed	a	few	critical	things	to	perform	duplication:	access	to	the	target
database	(the	one	you	want	to	copy)	and	access	to	existing	backups.	In	different	situations,
both	of	these	dependencies	have	been	stripped,	allowing	for	more	flexibility	in	how	you
plan	and	execute	a	clone	operation	with	RMAN.

Duplicate	Using	RMAN	Backups	and	with	Access	to	the	Target	Database
This	is	the	“traditional”	RMAN	duplication	from	versions	9i	and	10g:	we	leverage	our
existing	RMAN	backups	to	create	a	copy	of	an	existing	target	database	to	a	new	location.
To	understand	how	far,	and	what,	to	duplicate,	RMAN	connects	to	the	existing	database’s
control	file	throughout	the	duplication	operation.

Duplicate	Using	RMAN	Backups	and	No	Access	to	the	Target
Starting	with	11g,	now	you	have	the	option	of	performing	a	duplication	when	the	target	is
not	available.	This	is	useful	in	situations	where	the	target	database	is	in	a	different
incarnation,	is	in	an	inaccessible	network	location,	or	is	simply	not	at	your	disposal	for	the
duplication.	In	this	case,	RMAN	can	pull	most	of	what	it	needs	from	the	recovery	catalog.
There	are	only	a	few	additional	parameters	you	will	pass	to	the	duplicate	command.	We
cover	this	near	the	end	of	the	chapter,	in	the	section	“Targetless	Duplication	in	12c.”

Duplicate	an	Active	Database	Without	Using	Backups
Duplicating	an	active	database	sounds	new,	but	this	operation	was	actually	introduced	in
Enterprise	Manager	in	the	10g	timeframe.	At	that	time,	Enterprise	Manager	would	clone	a
database	by	calling	the	package	dbms_backup_restore	directly,	instead	of	using	the
RMAN	client	command	syntax,	and	it	would	make	a	live	copy	of	each	datafile	in	the
database	in	real	time	and	then	would	move	each	datafile	to	the	new	location.

In	11g,	this	was	codified	in	the	RMAN	command	syntax,	but	it’s	the	same	operation.
Instead	of	relying	on	an	existing	RMAN	backup,	RMAN	simply	connects	to	the	target
database,	runs	a	backup	operation	directly	against	the	database	in	real	time,	and	writes	the
file	to	the	specified	location.	So,	nothing	all	that	special,	other	than	a	syntactic	difference
in	what	you	call	the	operation.

All	three	of	these	duplication	types	rely	on	the	same	underlying	architecture.	We	will
walk	through	the	operations	for	the	backup-based,	target	database–connected	duplication

so	that	the	underlying	principles	can	be	observed.

The	Duplication	Architecture
Here’s	how	duplication	works:	RMAN	connects	to	your	target	database	or	to	the	catalog,
if	you	use	one.	This	connection	is	necessary	to	gain	access	to	the	target	database	control
file	for	details	about	where	to	locate	backups.	After	you	connect	to	the	target	or	catalog,
you	must	connect	to	your	auxiliary	instance	(the	instance	that	will	house	your	cloned
database).	Before	duplication	starts,	you	must	have	already	built	an	init.ora	file	for	the
auxiliary	instance	and	have	started	it	in	NOMOUNT	mode.	This	way,	the	memory
segment	has	been	initialized,	and	therefore	RMAN	can	make	a	SYSDBA	connection	to	it.
The	auxiliary	instance	does	not	have	a	control	file	yet	(duplication	will	take	care	of	that),
so	you	cannot	mount	the	auxiliary	instance,	even	if	you	want	to.

With	these	connections	made,	you	can	issue	your	duplicate	command.	It	can	look	as
simple	as	this:

Or	it	can	be	complicated,	depending	on	where	the	auxiliary	instance	is,	as	shown	here:

The	duplication	process	can	be	broken	down	into	its	distinct	phases:

1.			RMAN	determines	the	nature	and	location	of	the	backups.

2.			RMAN	allocates	an	auxiliary	channel	at	the	auxiliary	instance.

3.			RMAN	restores	the	datafiles	to	the	auxiliary	instance.

4.			RMAN	builds	a	new	auxiliary	control	file.

5.			RMAN	restores	archive	logs	from	backup	(if	necessary)	and	performs	any
necessary	recovery.

6.			RMAN	resets	the	DBID	for	the	auxiliary	instance	and	opens	the	auxiliary
database	with	open	resetlogs.

First,	RMAN	sets	any	run-time	parameters,	such	as	an	until	time	clause	on	the
duplicate	command.	Then,	based	on	these	parameters,	it	checks	the	target	database
control	file	(or	recovery	catalog)	for	the	appropriate	backups.	It	then	builds	the	RPCs	for
how	to	access	the	backups,	and	which	ones	to	access,	but	it	does	not	execute	the	code	at
the	target.	Instead,	RMAN	creates	a	channel	process	at	the	auxiliary	instance,	referred	to

as	the	auxiliary	channel,	and	to	this	channel	RMAN	passes	the	call	to
DBMS_BACKUP_RESTORE.	The	auxiliary	instance,	then,	accesses	the	backups	and
restores	all	necessary	datafiles.	Figure	10-1	illustrates	how	this	takes	place	for	both	disk
backups	and	tape	backups.

FIGURE	10-1.			A	bird’s-eye	view	of	duplication

Auxiliary	Channel	Configuration
For	duplication	to	work,	RMAN	must	allocate	one	or	more	channel	processes	at	the
auxiliary	instance.	From	Oracle9i	onward,	you	do	not	need	to	manually	allocate	an
auxiliary	channel	at	the	time	of	duplication,	because	one	will	automatically	be	created
using	permanent	configuration	parameters	stored	in	the	target	control	file.	The	makeup	of
the	auxiliary	channel	mainly	comes	from	parameters	you	established	for	target	channels:
the	default	device	type	and	the	degree	of	parallelism	both	get	set	using	the	same	persistent
parameters	that	set	the	target	channels.	Therefore,	if	you	are	duplicating	using	backups
taken	to	disk,	you	need	not	do	anything	to	configure	your	auxiliary	channels.	However,	if
you	are	duplicating	your	database	using	backups	taken	to	tape,	you	need	to	configure	your
auxiliary	channels	to	contain	any	media	manager	environment	parameters	your	target
channels	have.	For	example,	the	following	code	sets	the	default	device	type	to	tape,	sets
the	default	level	of	parallelism	to	2,	and	then	configures	two	auxiliary	channels	with	the
correct	parameters:

Restoring	Datafiles	to	a	Different	File	Location
After	mounting	the	new	control	file,	RMAN	moves	forward	with	the	datafile	restore.	If
you	are	duplicating	your	database	to	the	same	server	on	which	your	target	resides,	it	is
obviously	necessary	to	change	the	location	to	which	the	files	will	be	restored.

Even	when	you’re	restoring	to	a	different	server,	differences	in	mount	points	and
directory	structures	can	require	a	new	file	location.	The	datafile	restore	step	of	the
duplication	process	can	be	modified	to	point	to	a	new	file	location	in	three	ways.

First,	you	can	use	the	configure	command	to	configure	the	auxname	for	any	(or	all)
datafiles	that	need	a	new	location.	These	configurations	are	stored	in	the	target	database
control	file.

Second,	you	can	specify	the	new	datafile	names	in	a	run	command	the	same	as	you
would	in	previous	versions,	as	shown	here:

Finally,	you	can	use	a	parameter	in	your	auxiliary	database’s	init.ora	file	to	set	a	new
location	for	the	files.	The	parameter	is	DB_FILE_NAME_CONVERT,	and	you	pass	two
strings	to	it:	first,	the	old	location	of	the	file	on	the	target;	second,	the	new	location	for	the
file	in	your	auxiliary	instance.	You	can	do	this	in	matched	file	pairs,	like	this:

NOTE

In	11gR2,	the	SET	NEWNAME	function	was	significantly	improved	to	make
scripting	even	simpler.	Now	you	can	do	a	SET	NEWNAME	for	an	entire
tablespace,	or	even	for	the	entire	database.	Here’s	an	example:

This	will	rename	all	datafiles	to	the	new	location,	with	unique	naming	as	defined	by	the
variable	%U.	This	greatly	simplifies	the	duplication	scripting	in	situations	where	the	new
location	will	have	a	different,	but	consistent,	file	location.

In	addition,	there	is	a	Metalink	note	for	those	with	Oracle	Support	access	that	provides
methods	for	dynamic	SQL	to	generate	the	SET	NEWNAME	commands	for	user-managed
files,	or	for	converting	files	to	Oracle’s	Automatic	Storage	Manager	(ASM)	and	Oracle
Managed	Files	(OMF)	infrastructure.	This	is	Note	549972.1,	“RMAN:	SET	NEWNAME
Command	SQL.”

This	is	a	simple	string	conversion	parameter,	so	you	can	simply	pass	a	single	directory
name	to	be	changed.	For	instance,	let’s	say	you	have	your	files	spread	over	four	mount
points,	but	they	all	have	prod	in	the	directory	structure,	so	that	a	select	from
V$DATAFILE	looks	like	this:

Instead	of	pairing	up	each	file,	you	can	simply	do	the	following:

This	works,	so	long	as	everything	else	about	the	file	location	is	the	same	for	your
auxiliary	database,	such	as	the	mount	point.

Creating	the	New	Control	File
The	new	control	file	is	created	for	the	auxiliary	instance	after	all	the	files	have	been
restored.	RMAN	just	issues	a	create	controlfile	command	at	the	auxiliary	instance,	using
the	parameters	you	outlined	in	your	duplicate	command.	After	creating	the	control	file,
the	auxiliary	database	is	mounted.	Now,	RMAN	performs	a	switch	operation	to	switch	to
the	new	files.	The	switch	is	the	means	by	which	RMAN	modifies	the	new	control	file	at
the	auxiliary	site	to	point	to	the	new	location	of	the	datafiles.

Recovery	and	Archive	Logs
After	the	files	are	restored	and	switched,	it	is	time	to	perform	recovery	on	the	database,
either	to	bring	it	to	the	current	point	in	time	or	to	bring	it	to	the	time	specified	in	the	until
time	clause.	To	perform	recovery,	RMAN	needs	access	to	the	archive	logs.	If	they	have
been	backed	up	by	RMAN,	then	RMAN	can	simply	restore	them	from	the	backup	location
to	the	LOG_ARCHIVE_DEST	specified	in	the	init.ora	file	of	the	auxiliary	database.	You
can	also	manually	move	archive	logs	to	the	location	required	by	the	new	instance	so	that
they	are	found	on	disk	by	RMAN	and	no	restore	is	required.	If	you	are	duplicating	to	the
same	server	as	the	one	on	which	the	target	currently	resides,	RMAN	can	find	the	archive
logs	in	the	LOG_ARCHIVE_DEST	of	the	target.

Once	the	archive	logs	are	restored,	RMAN	performs	the	required	amount	of	recovery.
If	you	did	not	specify	a	point	in	time	to	end	the	recovery,	RMAN	restores	up	to	the	last
available	archive	log	(as	found	in	the	view	V$ARCHIVED_LOG)	and	then	stops.	During
duplication,	RMAN	cannot	check	the	online	redo	log	files	for	further	recovery
information.	After	it	hits	the	end	of	the	archive	logs,	it	stops	recovery.	After	recovery	has
completed,	if	RMAN	restored	any	archive	logs	from	backup,	they	are	deleted.

Changing	the	Database	ID	(DBID)
After	media	recovery	is	complete,	the	database	is	in	a	consistent	state,	and	it	is	time	for
RMAN	to	change	the	database	ID	of	the	new	clone.	RMAN	has	to	wait	until	all	other
activity	in	the	database	has	completed,	as	all	operations	to	this	point	required	the	clone
database	to	have	the	same	DBID	as	the	target.	The	archive	logs	would	not	apply	to	the
clone	during	media	recovery	if	the	control	file	had	a	different	DBID.

The	process	of	changing	the	DBID	is	simple.	RMAN	has	at	its	disposal	a	little
procedure	called	dbms_backup_restore.zerodbid().	With	the	database	in	a	mounted	state
(not	open),	this	package	goes	into	the	file	headers	and	zeros	out	the	DBID	in	each	file
header.	Then,	RMAN	shuts	down	the	database	and	re-creates	the	auxiliary	control	file
again.	When	the	control	file	is	rebuilt,	Oracle	checks	the	file	headers	for	the	DBID.	When
it	does	not	find	one,	Oracle	generates	a	new	one	and	broadcasts	it	to	every	file	header.

Log	File	Creation	at	the	Auxiliary	Site
When	RMAN	issues	the	final	open	resetlogs	command	at	the	completion	of	the

duplication	process,	it	must	build	brand-new	log	files	for	the	auxiliary	database.	This
always	happens	when	you	issue	a	resetlogs	command,	but	with	a	duplicate	command,
you	need	to	take	into	consideration	what	you	want	the	new	redo	log	files	to	look	like.	If
you	are	duplicating	to	the	same	system	as	your	target,	at	a	minimum	you	will	have	to
rename	your	log	files.

The	zerodbid	Procedure:	Warning!	Achtung!
As	you	can	imagine,	the	following	is	a	very	vulnerable	state	for	a	database	to	be	in:
shut	down	without	a	DBID	in	the	file	headers	and	with	a	control	file	that	is	being
rebuilt.	In	the	RMAN	duplication	process,	however,	elements	that	could	go	wrong
are	tightly	controlled,	so	you	don’t	have	to	worry	too	much.	We	point	this	out
because	it	is	possible	to	execute	this	package	against	any	database	to	generate	a	new
DBID.	You	just	mount	the	database	and	run	the	following	code:

Then,	you	shut	down	the	database	and	rebuild	the	control	file	using	the	set
parameter:

And,	voilà,	you	have	a	new	DBID.	Seems	simple	enough,	doesn’t	it?

However,	a	lot	can	go	wrong	if	you	are	trying	to	do	this	without	the	complete
control	over	the	environment	that	RMAN	has	during	duplication.	For	instance,	if	you
did	not	get	a	clean	shutdown	and	you	need	to	perform	media	recovery	before	you	can
open	reset	logs,	you	are	out	of	luck.	The	archive	logs	have	a	different	DBID.	There	is
no	way	you	will	be	able	to	open	the	database—it	is	stuck	in	an	inconsistent	state,	and
you	cannot	fix	it.	The	same	thing	can	happen	if	a	file	was	accidentally	left	offline—it
won’t	get	the	new	DBID	when	you	do	an	open	resetlogs	command,	and	therefore
you	will	not	be	able	to	bring	it	online.	Ever.	Instead,	you	will	get	the	following	error:

The	moral	of	the	story	is	to	be	very	careful	if	you	decide	to	use	this	procedure
manually.	There	is	a	better	way.	As	of	Oracle9i	Release	2,	Oracle	has	a	utility	called
DBNEWID,	which	provides	a	safe	and	secure	way	of	generating	a	new	ID	for	a
database	without	making	a	manual	call	to	the	DBMS_BACKUP_RESTORE
package.	We	talk	about	DBNEWID	at	the	end	of	this	chapter	in	the	section
“Incomplete	Duplication:	Using	the	DBNEWID	Utility.”

You	can	specify	completely	new	redo	log	file	definitions	when	you	issue	the	duplicate
command.	Do	this	if	you	want	to	change	the	size,	number,	and/or	location	of	the	redo	logs
for	the	new	database.	This	would	look	something	like	the	following:

Alternatively,	you	can	use	the	existing	log	file	definitions	from	your	target	and	simply
move	them	to	a	new	location	using	the	init.ora	parameter
LOG_FILE_NAME_CONVERT.	This	parameter	acts	exactly	like
DB_FILE_NAME_CONVERT,	so	you	can	convert	the	log	files	in	coupled	pairs,	or	you
can	simply	use	string	conversion	to	change	a	single	directory	name:

Duplication:	Location	Considerations
So	far,	we’ve	completely	glossed	over	one	of	the	biggest	stumbling	blocks	to
understanding	duplication.	You	must	account	for	the	location	of	your	auxiliary	instance	in
relation	to	the	location	of	your	target	instance.	Duplicating	to	the	same	server	is	very
different	from	duplicating	to	a	remote	server.	There	are	elements	unique	to	each	that	you
must	understand	before	you	proceed	with	duplication.

Duplication	to	the	Same	Server:	An	Overview
You	must	tread	lightly	when	duplicating	to	the	same	server,	so	that	you	don’t	walk	all	over
your	existing	target	database.	Suppose	you	were	to	simply	make	a	copy	of	your	target
init.ora	file	and	then	run	the	following	code:

In	this	case,	you	would	run	into	a	series	of	problems	and	errors.	These	errors	would	be
related	to	the	fact	that	you	already	have	an	instance	running	with	the	same	name	and	have
the	same	file	locations	for	two	databases.

Memory	Considerations
The	first	memory	consideration	is	the	database	name.	Oracle	references	memory	segments
on	the	server	based	on	the	value	of	the	init.ora	parameter	DB_NAME.	Therefore,	Oracle
cannot	allow	two	instances	with	the	same	DB_NAME	to	run	on	the	same	system.	If	you
try	to	startup	mount	a	second	instance	with	the	same	name,	you	will	get	the	following
error:

Therefore,	when	duplicating	to	the	same	system,	you	need	to	change	the	DB_NAME
parameter	in	the	auxiliary	init.ora	file	to	be	different	from	the	database	name	of	your
target:

File	Location	Considerations
Okay,	you’ve	squared	away	your	memory	problems,	but	you	still	have	two	databases	that
are	trying	to	write	to	the	same	file	locations.	In	fact,	you	have	three	different	types	of	files
that	are	all	competing	for	the	same	name.	If	you	don’t	account	for	file	locations,
duplication	will	fail	at	the	step	of	trying	to	rebuild	the	control	file:

This	is	good	news	for	you,	because	otherwise	you	would	have	overwritten	your
production	control	file.	You	must	change	the	auxiliary	init.ora	parameter
CONTROL_FILES	to	point	to	a	new	location	on	disk,	as	this	is	the	means	by	which
RMAN	determines	where	to	restore	the	control	files	to.

After	we	change	the	location	of	the	control	files,	we	must	change	the	location	of	the
datafiles.	We	talked	about	this	previously:	your	three	choices	are	to	use	the	configure
command,	use	the	DB_FILE_NAME_CONVERT	parameter,	or	use	a	run	block,	Oracle8i
style.	If	you	fail	to	change	the	datafile	locations	when	duplicating	to	the	same	server,	you
will	get	an	error	very	similar	to	the	preceding	control	file	error,	telling	you	that	the	files
are	currently	in	use	and	cannot	be	overwritten.

Finally,	you	must	change	the	redo	log	file	location.	We	talked	about	this	previously,
when	we	discussed	the	different	steps	that	duplication	walks	through.	You	can	use	the
logfile	keyword	as	part	of	the	duplicate	command	to	build	completely	different	redo	files,
with	different	sizes,	number	of	groups,	and	number	of	members.	This	option	essentially
rewrites	the	similar	logfile	parameter	of	the	create	controlfile	stage	of	duplication.
Alternatively,	you	can	simply	use	the	LOG_FILE_NAME_CONVERT	parameter	in	the
auxiliary	init.ora	file.

Duplication	to	the	Same	Server,	Different	ORACLE_HOME
It	is	common	practice	to	clone	the	production	database	from	its	location	to	a	different
location	on	the	same	server	but	to	have	it	be	hosted	by	a	different	Oracle	software
installation.	When	you	have	a	different	ORACLE_HOME	for	the	auxiliary	instance,
slightly	different	rules	apply.	All	the	rules	about	hosting	on	the	same	system	apply	as

outlined	previously.	However,	you	must	also	consider	the	location	of	the	backup	pieces.	If
you	are	duplicating	from	disk	backups,	this	won’t	be	a	problem—just	make	sure	you	have
your	OS	permissions	worked	out	ahead	of	time.	If	you	are	duplicating	from	tape	backups,
however,	you	need	to	make	sure	you	have	your	MML	file	appropriately	linked	with	the
auxiliary	ORACLE_HOME	in	the	same	way	as	it	is	linked	in	your	target’s
ORACLE_HOME.	Otherwise,	your	tape	backups	will	be	inaccessible	by	the	auxiliary
instance,	and	duplication	will	fail	because	the	media	manager	will	be	inaccessible.

Duplication	to	a	Remote	Server:	An	Overview
A	successful	duplication	to	an	auxiliary	instance	on	a	different	server	from	the	target	is	no
more	or	less	complicated	than	duplication	to	the	same	server.	It’s	just	complicated	in
different	ways.

Memory	Considerations
Unlike	duplication	to	the	same	server,	you	do	not	have	to	worry	about	the	DB_NAME
parameter	in	the	init.ora	file.	Because	you	are	on	a	different	server,	Oracle	has	no	hang-
ups	about	the	LOCK_NAME	used	for	memory.

Of	course,	it	is	good	operational	procedure	to	always	be	mindful	of	the	DB_NAME
parameter	during	a	duplication	process	and	crosscheck	all	other	instances	running	on	the
same	server	before	beginning	the	duplication.	That	way,	you	have	no	unexpected	errors
down	the	road.	In	addition,	from	a	management	perspective,	it	makes	the	most	sense	to
always	have	every	database	in	your	ecosystem	with	a	unique	name.

File	Location	Considerations
Again,	because	we	are	on	a	new	server,	there	is	not	quite	the	urgency	to	change	any	of	the
file	location	specifications	for	your	auxiliary	instance.	No	database	already	is	running	with
the	same	files,	so	we	can	leave	all	file	specifications	the	same	as	for	the	target	instance,
and	thus	avoid	any	possible	errors	in	the	configuration.	Again,	we	can	simplify	much	of
this	process	when	we	are	on	a	different	system.	If	you	do	not	change	the	location	of	the
files,	you	must	specify	nofilenamecheck	in	the	duplicate	command.	This	tells	duplication
not	to	confirm	that	the	filenames	are	different	before	performing	the	restore.	If	this	is	not
specified,	RMAN	will	give	you	an	error.

The	one	caveat	to	this	simplicity	is	if	the	auxiliary	host	does	not	have	the	same	file
structure	and	mount	point	setup	that	the	target	host	has.	If	you	have	different	mount	points
or	drive	configurations,	you	still	need	to	change	your	file	specifications	for	the	auxiliary
instance	so	that	RMAN	can	restore	to	a	location	that	actually	exists.

The	Backup	Location:	Disk
The	complicating	factor	for	restoring	to	a	different	server	comes	from	providing	the
auxiliary	channel	process	access	to	backups	that	were	taken	at	a	different	server.	You	must
account	for	whether	you	backed	up	to	disk	or	to	tape.

If	you	are	duplicating	from	disk	backups,	your	choices	are	limited.	Remember	that

RMAN	passes	the	calls	to	DBMS_BACKUP_RESTORE	to	a	channel	process	at	the
auxiliary	instance,	but	it	cannot	take	into	account	any	file	system	differences.	It	must	look
for	the	backup	pieces	in	the	exact	location	and	format	recorded	in	the	target	database
control	file.	For	example,	suppose	you	took	a	full	database	backup	at	your	target	system
using	the	following	command:

This	creates	your	backup	piece	as	a	file	called	01DSGVLT_1_1	in	the	directory
/u04/backup/prod.	This	is	recorded	in	the	target	control	file.	Then,	during	duplication,
RMAN	passes	the	file	restore	command	to	the	auxiliary	instance	and	tells	it	to	restore
from	/u04/backup/prod/01DSGVLT_1_1.	That	means	your	auxiliary	instance	must	have	a
mount	point	named	/u04,	and	there	must	be	a	directory	named	backup/prod	in	which	a	file
called	01DSGVLT_1_1	resides.	If	not,	the	duplication	will	fail	with	an	error:

You	can	make	duplication	from	disk	work	in	three	ways.	The	first,	and	most
straightforward,	is	to	simply	copy	the	backups	from	your	target	host	to	the	auxiliary	host
and	place	them	in	the	same	location.	Obviously,	this	involves	a	huge	transfer	of	files
across	your	network.

The	second	way	to	proceed	is	to	NFS	mount	the	backup	location	on	the	target	host
from	the	auxiliary	host.	This	works	only	if	you	can	mount	the	target	location	with	the
same	mount	point	name	as	RMAN	will	use	(in	the	preceding	example,	you	would	have	to
NFS	mount	/u04/backup/prod	as	/u04/backup/prod).	For	example,	you	would	need	to	do
the	following	from	your	auxiliary	instance:

That	way,	from	your	auxiliary	node,	you	should	be	able	to	do	the	following:

If	you	get	an	error	when	you	try	to	change	directories,	or	when	you	try	to	touch	a	file,
you	need	to	sort	out	your	NFS	and	permissions	issues	before	you	proceed	with
duplication.	Figure	10-2	illustrates	the	mounted	file	system	approach	to	duplicating	to	a
different	server	using	disk	backups.

FIGURE	10-2.			Duplication	to	a	different	server	using	disk	backups

If	you	are	on	a	Windows	platform	instead	of	NFS,	you	will	be	mounting	a	network
drive.	The	same	rule	applies:	the	drive	specification	must	be	the	same	on	the	auxiliary	as	it
is	on	the	target.	So	if	the	backup	was	written	to	F:\backup,	you	must	be	able	to	use	F:	as	a
network	drive;	otherwise,	duplication	will	fail.	In	addition,	you	will	have	to	set	up	your
auxiliary	service	(oracleserviceaux1)	and	your	listener	service
(oracleOraHome92tnslistener)	to	log	on	as	a	domain	administrator	that	has	read/write
privileges	at	both	the	auxiliary	host	and	the	target	host.	Otherwise,	you	will	not	be	able	to
access	the	backups	over	the	networked	drive.

As	you	may	have	already	noticed,	it	could	be	difficult	to	make	a	network	file	system
operation	be	successful.	If	you	have	the	same	file	systems	on	both	the	target	and	the
auxiliary	servers,	you	would	not	be	able	to	use	a	straight	NFS	mount	from	the	auxiliary
node	to	the	target	location	of	the	backups	on	disk.	Therefore,	your	only	option	would	be	to
copy	the	backup	pieces	from	one	node	to	the	other.

The	source	of	these	types	of	headaches,	of	course,	is	the	fact	that	RMAN	hard-codes
the	backup	location	when	we	back	up	to	disk,	and	this	location	cannot	be	changed.	RMAN
provides	a	solution	with	two	options	for	us	to	change	the	backup	location:	the	backup
backupset	command	and	the	catalog	backupset	command.

With	the	backup	backupset	command,	we	can	back	up	a	previous	backup	set	that	was
on	disk	and	move	it	to	a	different	disk	location.	This	gives	us	considerable	flexibility.

Now,	we	can	move	the	backup	pieces	from	/u04/backup/prod	to,	say,	/u06/backup/prod,
which	could	then	be	NFS	mounted	from	our	auxiliary	system.	Alternatively,	from	the
target	host,	we	could	NFS	mount	a	drive	at	the	auxiliary	host	and	then	use	the	backup
backupset	command	to	move	the	backups	to	the	auxiliary	host.	For	more	information	on
this	command,	see	Chapter	9.

The	catalog	backupset	(and	catalog	datafilecopy)	command	offers	another,	simpler
means	of	relocating	backup	sets	on	a	new	server.	To	make	RMAN	aware	that	a	backup	set
exists	in	any	location,	you	need	only	tell	RMAN	to	catalog	a	certain	file	(or	a	certain
directory),	and	it	will	look	for	any	valid	backups	in	that	location	and	generate	metadata	for
them.	For	more	details	on	the	catalog	command,	see	Chapter	6.

The	Backup	Location:	Tape
By	all	estimations,	duplicating	to	a	remote	server	using	tape	backups	is	far	less
complicated	or	demanding	than	using	disk	backups,	because	a	tape	backup	does	not	have	a
location,	per	se,	just	a	file	handle.	This	file	handle	is	all	that	RMAN	knows	or	cares	about;
how	that	file	handle	relates	to	a	location	on	a	specific	tape	is	completely	controlled	by	the
media	manager.	Therefore,	all	configuration	steps	that	occur	for	duplication	from	tape
come	from	the	media	management	layer.

First,	you	must	configure	your	MML	file	at	the	auxiliary	site	in	the	same	way	as	at	the
target	site.	Because	an	auxiliary	channel	is	doing	the	restore	operations,	it	must	be	able	to
initialize	the	MML,	as	outlined	in	Chapter	21.	So,	make	sure	you’ve	linked	your	MML	at
the	auxiliary	site.

Next,	you	need	to	make	sure	that	your	media	management	server	is	configured
correctly.	This	means	that	your	auxiliary	node	must	be	registered	as	a	client	in	the	same
media	management	server	that	your	target	node	is	registered	in,	and	it	must	have	the
necessary	privileges	to	access	the	tapes	for	restore	purposes.	In	particular,	you	must	enable
the	auxiliary	node	to	restore	backups	that	were	taken	from	a	different	server.	This
functionality	is	usually	disabled	by	default	in	most	media	management	software,	because
allowing	files	to	be	restored	from	one	client	to	another	is	a	potential	security	hole.	The
steps	for	enabling	clients	to	restore	files	from	a	different	client	are	outlined	in	each	of	our
five	media	management	chapters	(Chapters	22,	23,	24,	25,	and	26),	depending	on	your
software	vendor.

After	configuring	your	media	management	server,	your	final	configuration	step	is	to	set
up	your	auxiliary	channels.	As	mentioned	earlier,	RMAN	allocates	one	or	more	channels
at	the	auxiliary	instance	to	perform	the	restore	and	recovery	steps	of	duplication.	You
configure	these	channels	via	the	configure	command	when	you	are	connected	to	your
target	database	from	RMAN.	The	parms	parameter	for	the	auxiliary	channels	must
contain	the	usual	media	management	environment	control	variables.	In	particular,	it	needs
to	specify	the	client	from	which	the	backups	were	taken.	For	instance,	let’s	say	your	target
node	is	named	cervantes,	and	your	auxiliary	node	is	named	quixote.	Because	you	have
been	backing	up	from	cervantes,	this	client	name	is	encoded	with	your	RMAN	backups	at
the	media	management	server.	So,	to	be	able	to	access	these	backups	from	the	client
quixote,	you	must	specify	from	within	RMAN	that	the	client	name	is	cervantes.	In	other
words,	where	the	backup	database	is	RAC	and	all	the	nodes	have	participated	in	the

backup,	a	channel	must	be	allocated	with	the	client	name	of	all	the	participating	nodes.
Your	auxiliary	channel	configuration	command,	then,	would	look	something	like	this
(given	a	NetBackup	media	management	system):

Then,	when	the	auxiliary	channel	makes	its	sbt()	calls	to	the	MML,	it	is	telling	the
media	management	server	to	access	backups	that	were	taken	using	the	client	cervantes,
instead	of	checking	for	backups	made	by	quixote.

Duplication	and	the	Network
Take	a	deep	breath;	we’re	almost	through	explaining	all	the	intricacies	of	duplication	and
are	about	to	walk	you	through	the	steps	themselves.	There’s	one	more	area	you	need	to
prepare	prior	to	running	a	duplicate	command	from	RMAN:	the	network.	By	network,	we
mostly	mean	configuring	your	Oracle	Net	files—tnsnames.ora	and	listener.ora.	However,
take	this	opportunity	to	consider	your	overall	network	as	well.	Make	sure	that	the	target
node,	auxiliary	node,	and	media	management	server	can	all	access	each	other	okay	and
that	you	have	plenty	of	bandwidth.

From	an	Oracle	perspective,	we	have	to	configure	the	Oracle	Net	files.	As	discussed	in
Chapter	2,	RMAN	must	make	a	SYSDBA	connection	to	the	target	database.	If	you	are
connecting	remotely,	you	have	to	configure	a	password	file	for	the	target	node.	In
addition,	you	need	a	TNS	alias	that	uses	a	dedicated	server	process	instead	of	a	shared
server	process.	For	duplication,	this	still	holds	true,	but	you	must	also	be	able	to	connect	to
the	auxiliary	instance	as	SYSDBA	using	only	dedicated	servers.

This	means	that,	no	matter	what,	you	have	to	create	a	password	file	for	either	your
target	or	your	auxiliary	machine.	You	may	have	been	forgoing	this	step	until	now	by
always	making	a	local	connection	to	the	target	database.	However,	you	cannot
simultaneously	make	a	local	connection	to	both	the	target	and	the	auxiliary	instance.	So
now,	if	you	haven’t	done	so	already,	it’s	time	to	build	a	password	file.

After	your	password	file	has	been	created	for	your	auxiliary	instance,	you	need	to
configure	the	listener	to	route	incoming	connections	to	the	auxiliary	instance.	As	you	may
have	already	noticed,	there	is	no	need	starting	with	10g	for	a	listener.ora	file	if	you	will	be
connecting	only	to	open	databases.	This	is	because	the	database	PMON	process
automatically	registers	the	database	with	a	running	listener	daemon	on	the	system	if	the
listener	is	using	the	default	port	of	1521.	So,	you	will	often	see	that	after	a	default	12c
installation,	a	listener	is	running,	and	it	is	listening	for	your	database,	even	though	you’ve
done	no	configuration.

RMAN	Workshop:	Build	a	Password	File

Workshop	Notes
On	Unix	platforms,	the	name	of	the	password	file	must	be	orapw<sid>,	where	<sid>
is	the	value	of	the	ORACLE_SID	to	which	the	password	is	giving	access.	In	this
workshop,	the	ORACLE_SID	is	prod.	On	Windows,	the	filename	must	be	in	the
format	pwd<sid>.ora.	The	locations	given	in	this	workshop	must	be	used;	the
password	file	cannot	be	created	anywhere	else,	or	it	will	be	unusable.

Step	1.			Edit	the	init.ora	file	and	add	the	following	parameter:

If	you	are	using	an	SPFILE,	you	need	to	execute	the	following:

Both	operations	require	a	database	restart	to	take	effect.

Step	2.			Decide	what	your	password	will	be,	and	then	navigate	to	your
ORACLE_HOME/dbs	directory	(ORACLE_HOME/database	on	Windows)	and
type	the	following:

Step	3.			Check	that	the	file	was	created	successfully,	and	then	test	it	by	making	a
remote	connection	as	SYSDBA.

While	this	is	excellent	news,	it	does	nothing	for	us	in	a	duplication	environment,
because	we	must	be	able	to	make	a	remote	connection	to	an	auxiliary	instance	that	is
started	(in	NOMOUNT	mode)	but	not	open.	Because	it	is	not	open,	there	is	no	PMON
process	to	register	the	auxiliary	instance	with	the	listener,	so	the	listener	has	no	idea	the
auxiliary	instance	exists.	To	get	past	this,	you	must	set	up	an	old-fashioned	listener.ora
file,	with	a	manual	entry	for	the	auxiliary	database.	We	recommend	using	the	Oracle	Net
Manager	utility,	shown	here,	to	build	this	entry:

After	you	have	configured	the	listener.ora	at	your	auxiliary	instance	location,	you	must
also	build	a	tnsnames.ora	entry	at	the	site	from	which	you	will	be	running	RMAN.	This	is
the	same	as	almost	any	other	entry,	except	that	when	you	build	it,	you	must	specify	the
auxiliary	SID_NAME	instead	of	the	SERVICE_NAME.	From	the	Net	Manager,	you	fire
up	the	Net	Service	Name	Wizard	by	clicking	Service	Naming	and	then	going	to	the	menu
and	choosing	Edit	|	Create.	After	you	give	the	Net	Service	name	(Step	1),	then	provide	the
protocol	(Step	2),	provide	the	hostname	and	port	number	(Step	3),	and	finish	with
specifying	the	service	name.

Duplication	to	the	Same	Server
Okay,	so	enough	of	the	explanations,	it’s	time	to	run	through	the	duplication	itself.	First,
we	give	a	detailed	step-by-step	workshop	for	duplicating	to	the	same	server	on	which	the
target	resides,	using	disk	backups.	Then,	we	briefly	explain	what	you	would	need	to	do	the
same	thing	with	tape	backups.

Setting	an	until	Clause	when	Duplicating
When	performing	duplication,	you	sometimes	will	encounter	a	situation	that	requires
you	to	specify	an	until	clause.	If	you	have	ever	used	RMAN	to	restore	your	database
using	a	backup	control	file,	and	you	are	now	attempting	to	duplicate	that	database,
you	will	be	required	to	set	an	until	clause.	Starting	with	10g,	if	you	omit	the	until
clause,	RMAN	will	use	the	last	archive	log	in	the	backup	to	set	the	until	value.

Or,	as	a	fix-all,	you	can	set	the	SCN	to	an	impossibly	high	value:

RMAN	Workshop:	Duplication	to	the	Same	Server	Using
Disk	Backups
Workshop	Notes
Make	sure	that	your	OS	has	been	configured	to	handle	another	Oracle	instance	and
that	adequate	memory	and	disk	space	exist.	In	the	following	example,	our	target
database,	v121,	has	all	of	its	datafiles,	control	files,	and	redo	log	files	located	at
/u01/app/oracle/product/oradata/v121.	All	backups	have	been	going	to	the	local
FRA	at	/u01/app/oracle/product/flash_recovery_area.	We	will	set	the	ORACLE_SID
for	the	auxiliary	instance	to	be	aux1.

Step	1.			Build	your	auxiliary	database	directory	structures:

Step	2.			Copy	the	target	init.ora	file	to	the	auxiliary	location.	If	your	target	database
uses	an	SPFILE,	you	need	to	create	a	PFILE	from	the	SPFILE	to	capture	parameters
to	move	over.

If	you	use	an	SPFILE	at	your	target,	enter	the	following:

If	you	use	an	init.ora	file	at	your	target,	enter	the	following:

Step	3.			Make	all	necessary	changes	to	your	aux1	init.ora	file:

Step	4.			Build	your	aux1	password	file.	See	the	“Build	a	Password	File”	RMAN
Workshop	earlier	in	this	chapter.

Step	5.			Start	up	the	aux1	instance	in	NOMOUNT	mode:

Step	6.			Configure	your	network	files	for	connection	to	aux1.	After	making	any
changes	to	your	listener.ora	file,	be	sure	that	you	bounce	your	listener;	otherwise,
the	change	will	not	take	effect.

The	tnsnames.ora	file	should	have	an	entry	like	this:

The	listener.ora	file	should	have	an	entry	like	this:

Step	7.			From	RMAN,	connect	to	the	target	and	auxiliary	instance	and	run	the
duplicate	command:

Using	Tape	Backups
If	you	were	to	perform	the	preceding	exercises	but	with	your	backups	on	tape,	little	would
change.	In	fact,	none	of	the	code	itself	would	change;	you	would	simply	insert	an
additional	step	prior	to	running	the	duplicate	command	itself.	That	step	would	be	to
configure	your	auxiliary	channel(s)	to	resemble	the	channels	with	which	the	backups	were
taken.	In	other	words,	do	a	show	command:

Then,	simply	create	the	auxiliary	channels	to	match:

Duplication	to	a	Remote	Server
Duplication	to	a	remote	server	has	many	of	the	same	configuration	steps	as	duplication	to
the	same	server.	In	particular,	if	you	are	duplicating	remotely	but	will	use	disk	backups,
the	steps	would	be	identical,	although	you	could	forgo	all	file-renaming	steps.	In	addition,
you	would	have	to	either	copy	your	backups	to	the	remote	server	or	use	NFS	to	mount	the
backups	at	the	remote	site.	Covering	NFS	is	outside	the	scope	of	this	book,	so	we	assume
in	the	following	RMAN	Workshop	that	you	have	the	same	file	systems	on	both	the	target
and	auxiliary	servers	and	have	copied	the	backups	to	the	auxiliary	system.

RMAN	Workshop:	Duplication	to	a	Remote	Server	Using
Disk	Backups
Workshop	Notes
This	workshop	assumes	the	use	of	two	servers:	dex	(the	target)	and	horatio	(the
auxiliary).	It	assumes	that	you	have	the	same	file	system	on	both	nodes	and	have
copied	your	backups	from	dex	to	horatio.	The	most	important	thing	to	note	here	is
that	we	maintain	the	v121	database	SID	throughout	the	process	(instead	of	changing
it	to	aux1,	which	we	do	when	duplicating	to	the	same	server).

Step	1.			At	horatio	(the	auxiliary	server),	build	your	auxiliary	database	directory
structures:

Step	2.			At	dex	(the	source	server),	make	a	copy	of	the	target	init.ora	file	so	that	it
can	be	moved	to	the	auxiliary	server.	If	your	target	database	uses	an	SPFILE,	you
need	to	create	a	PFILE	from	the	SPFILE	in	order	to	capture	parameters	to	move
over.

If	you	use	an	SPFILE	at	your	target,	enter	the	following:

If	you	use	an	init.ora	file	at	your	target,	enter	the	following:

Step	3.			Move	the	target	init.ora	file	to	the	auxiliary	site:

You	also	need	a	local	copy	of	the	init.ora	file	at	the	target	server	dex	for	reference
by	RMAN	in	the	duplicate	command	itself.	We	will	reference	the	copy	that	we	left
in	/home/oracle/scratchpad/init.ora	when	we	run	the	duplicate	command	in	Step	9.

Step	4.			Start	the	auxiliary	instance	in	NOMOUNT	mode	at	quixote:

Step	5.			Configure	the	listener.ora	at	the	auxiliary	site	(proto):

Step	6.			Configure	the	tnsnames.ora	file	at	the	target	site	(dex):

Step	7.			Create	a	password	file	at	the	remote	server	(proto).	Follow	the	instructions
from	the	earlier	RMAN	Workshop	titled	“Build	a	Password	File.”

Step	8.			Move	the	FRA	files	from	dex	to	horatio.

Step	9.			From	the	target	system	(dex),	run	your	duplicate	command:

Using	Tape	Backups	for	Remote	Server	Duplication
All	the	steps	in	the	preceding	RMAN	Workshop	apply	if	you	are	using	tape	backups

instead	of	disk	backups;	again,	the	only	difference	is	that	you	would	also	have	to	configure
your	auxiliary	channels	to	reflect	the	needs	of	your	media	manager.	In	addition	to
specifying	the	media	management	server,	and	any	classes	or	pools	that	you	have	for	your
regular	channels,	you	also	need	to	specify	the	target	client	name:

Targetless	Duplication	in	12c
Starting	in	11gR2,	RMAN	was	innovated	to	break	some	of	the	dependencies	that	made	the
duplication	process	complex	in	previous	versions.	Then,	it	became	possible	to	duplicate	a
database	from	RMAN	backups,	without	making	a	connection	to	the	actual	target	database
the	backup	was	created	on.	Although	providing	this	made	some	aspects	of	duplication
simpler,	it	still	sometimes	wasn’t	possible.	Perhaps	Oracle	heard	our	cries	of	anguish.
Now,	we	can	truly	perform	targetless	database	duplication.

To	duplicate	without	a	target,	the	next	best	thing	is	a	connection	to	your	recovery
catalog,	where	the	requisite	target	database	metadata	can	be	extracted	with	little	effort.
The	primary	element	to	be	concerned	with	in	this	situation	is	to	care	for	the	database	ID
(DBID)	when	performing	the	duplication.	When	you	are	connected	to	the	target	database,
RMAN	has	no	difficulty	understanding	what	“prod”	means.	But	if	you	have	multiple
“prod”	databases	in	your	catalog,	you	may	run	into	ambiguity	issues.	Therefore,	you
should	dig	into	the	recovery	catalog	and	get	your	DBID:

Once	the	DBID	is	known,	you	can	kick	off	your	nontarget	duplication	in	much	the
same	way	as	our	previous	workshops:

Incomplete	Duplication:	Using	the	DBNEWID	Utility
One	of	the	most	frustrating	elements	of	performing	duplication	is	that	there	is	no
“restartable	duplication.”	What	we	mean	by	this	is	that	if	you	make	it	through	the	step	that
restores	all	your	files—arguably	the	longest	step	of	the	process—but	a	failure	occurs,	say,
during	the	recovery,	you	must	restart	the	duplication	process	from	scratch	and	restore	all
the	files	again.	There	is	no	way	to	correct	the	recovery	process	(by	making	missing
archive	logs	available,	for	instance)	and	then	pick	up	where	you	left	off.

With	RESTORE	OPTIMIZATION	turned	ON,	RMAN	will	not	restore	files	again	that
already	exist	in	the	restore	location	with	the	same	datafile	header	SCN	information.	This
applies	to	duplication	as	well:	if	duplication	restores	a	file	and	then	duplication	restarts,
RMAN	will	not	restore	the	file	again.	However,	if	you	have	applied	even	one	archive	log
to	the	file,	it	will	be	restored	again.

Starting	in	version	9i	Release	2,	Oracle	Database	includes	the	DBNEWID	utility,	which
gives	your	clone	database	a	new	DBID	in	a	safe	and	controlled	manner.	This	allows	you	to
do	manual	recovery	against	a	duplicated	database,	prepare	all	the	elements,	and	then	run
DBNEWID,	which	will	complete	the	process	started	by	duplication.	This	allows	you	to	at
least	manually	complete	a	duplication.

DBNEWID	usage	is	simple.	First,	you	must	make	sure	you	have	a	good	backup	taken
prior	to	using	DBNEWID.	Although	it	has	a	verification	process,	DBNEWID	can	still
encounter	unrecoverable	errors	during	the	changing	of	the	DBID.	After	confirming	a	good
backup,	you	need	to	get	the	database	shut	down	in	a	consistent	state	and	then	brought	back
up	to	a	mounted	state:

Then,	run	the	DBNEWID	utility	from	the	command	line:

New	RMAN	Cloning	Features	for	12c
As	previously	discussed,	11gR2	added	a	feature	that	allowed	cloning	by	streaming	the
data	files	directly	from	the	target	database,	with	no	backup	required.	Streaming	the	data
files	from	the	target	does	provide	advantages,	but	there	are	tradeoffs	compared	to	using	a
backup	set	as	the	source	for	copying	the	data	files.	In	this	section	we	review	the	tradeoffs
and	how	12c	is	an	improvement.

Using	Compression
When	you’re	backing	up	a	database	using	RMAN,	it	is	possible	to	compress	the	backup	as
it’s	written	to	disk	or	tape.	You	may	be	wondering	what	benefit	there	is	to	compressing	the
backup	set	files	when	the	FROM	ACTIVE	clause	doesn’t	use	backup	sets.	The	answer	lies
in	where	the	compression	takes	place	when	backing	up.	Many	file	systems	and	tape
libraries	offer	the	ability	to	compress	files	when	they	are	written	to	the	file	system.	RMAN
is,	of	course,	not	a	file	system,	so	RMAN	compresses	the	data	before	it	is	sent	to	the	file

system	or	tape	library.	Having	RMAN	compress	the	data	has	two	benefits:	reduced	file
size	and	reduced	network	traffic.	The	first	benefit	is	not	realized	because	backup	sets	are
not	used,	but	the	network	compression	can	be	a	major	benefit.	It’s	no	secret	that	databases
are	only	getting	bigger,	and	it’s	no	surprise	that	it	takes	less	time	to	copy	a	smaller	file
than	a	larger	file.	So	if	the	duplicate	process	is	network	bound,	then	compressing	the	data
on	the	wire	could	provide	a	significant	duplicate	performance	increase.	Having	RMAN
compress	the	data	before	it	is	sent	is	easily	done	using	a	single	clause:

The	USING	COMPRESSED	BACKUPSET	clause	instructs	RMAN	to	compress	the
data	before	sending	it	to	the	target.	Be	aware	that	compression	happens	on	the	source	side,
which	is	usually	production,	and	that	compressing	data	does	require	resources.	Therefore,
you	should	ensure	there	is	adequate	CPU	resources	to	compress	the	data	without
impacting	source-side	workloads.

Duplicating	Large	Tablespaces
The	fact	that	databases	continue	to	grow	ever	larger	has	had	the	effect	of	tablespaces	also
growing	larger.	An	Oracle	database	using	8K	block	size	limits	the	size	of	a	single	data	file
to	32GB.	For	example,	a	nonpartitioned	750GB	table	would	require	24	data	files.
Although	a	single	table	and	24	data	files	may	not	seem	like	much	of	a	issue,	once	you
compound	the	problem	with	other	very	large	tables	that	are	growing	rapidly,	you	quickly
have	a	database	with	hundreds	of	data	files.	Those	data	files	have	to	be	created,	so	it	could
become	almost	a	weekly	or	even	daily	routine	to	add	data	files	to	your	tablespaces.

In	11gR1,	Oracle	addressed	this	issue	with	BIGFILE	tablespaces.	BIGFILE	tablespaces
are	tablespaces	that	only	allow	a	single	data	file.	With	an	8K	block	size,	the	file	can	be	up
to	32TB	in	size.	The	major	benefit	is	that	when	you	create	a	BIGFILE	tablespace,	you
never	have	to	worry	about	adding	data	files	again.	One	downside	with	only	having	a
single	very	large	data	file	is	backups.	Suppose	a	regular	tablespace	is	320GB	in	size	and
contains	ten	data	files;	the	same	tablespace	created	as	a	BIGFILE	tablespace	would	only
have	a	single	data	file.	The	regular	tablespace	could	use	ten	RMAN	processes	to	back	up
the	data	files	in	parallel,	whereas	the	BIGFILE	tablespace	would	be	limited	to	a	single
backup	process	and	would	likely	take	far	longer	to	complete.	In	11gR2,	a	feature	was
added	that	allowed	a	single	data	file	to	be	broken	up	into	sections	during	a	backup.	Each
section	of	a	data	file	can	be	backed	up	with	a	different	RMAN	process,	allowing	a	parallel
backup	of	a	single	data	file.	With	12c,	this	feature	is	now	available	when	performing	a
duplicate.	Using	the	SECTION	SIZE	parameter	specifies	how	large	each	section	of	a	data
file	should	be,	as	demonstrated	in	the	following	sample	command:

In	this	example,	the	dev_db	database	will	be	duplicated	by	streaming	the	data	files
directly	from	the	target	database,	and	data	files	over	500MB	in	size	will	be	divided	into
500MB	sections.

Summary
In	this	chapter,	we	discussed	the	architecture	behind	the	RMAN	duplication	process.
Using	duplication,	we	can	produce	clone	databases	from	our	RMAN	backups	to	either	the
local	system	or	a	remote	server.	There	are	different	configuration	steps,	depending	on
whether	you	will	be	duplicating	locally	or	remotely.	In	addition,	you	have	specific
guidelines	to	follow,	depending	on	whether	your	backups	are	on	disk	or	on	tape.	We
offered	RMAN	Workshops	that	gave	step-by-step	instructions	for	duplication.	We
wrapped	everything	up	with	a	brief	discussion	of	some	of	the	new	RMAN	12c	features
that	can	greatly	help	in	cloning	your	databases.

PART
III

RMAN	Maintenance	and	Administration

CHAPTER
11

Maintaining	RMAN

E
ntropy	is	a	nasty	result	of	the	second	law	of	thermodynamics.	Basically,	entropy	describes
the	tendency	of	an	ordered	system	to	become	disordered,	the	result	of	which	is
the	requirement	to	maintain	that	system.	RMAN	is	no	different.	When	using
RMAN,	you	have	to	maintain	a	number	of	things	to	keep	it	running	smoothly.

In	this	chapter,	we	talk	all	about	maintaining	RMAN.	From	the	crosscheck	command
to	retention	policies	to	redundancy	policies,	everything	you	need	to	know	about	keeping
RMAN	from	falling	apart	is	provided	here.	After	we	have	talked	about	RMAN
maintenance	issues,	we	discuss	some	issues	specific	to	the	recovery	catalog,	including	an
introduction	to	the	recovery	catalog	schema	itself.

RMAN	Maintenance
You	didn’t	think	you	could	just	continue	using	RMAN	without	having	to	maintain	it,	did
you?	The	truth	is,	RMAN	is	fairly	maintenance	free,	but	you	need	to	be	aware	of	a	few
maintenance-related	things,	which	we	address	in	this	section.	First,	we	are	going	to	talk
about	the	crosscheck	command,	followed	by	a	discussion	of	retention	policies.	Next,	we
discuss	the	change	command,	and	then	the	delete	command.	Finally,	we	end	this	section
with	a	discussion	of	cataloging	your	existing	database	backups	in	RMAN.

Crosschecking	RMAN	Backups
You	may	encounter	situations	in	which	backup	set	pieces	or	copies	are	listed	in	the	control
file	or	recovery	catalog	but	do	not	physically	exist	on	the	backup	media	(disk	or	tape).	The
physical	files	constituting	the	backup	or	copy	might	have	been	deleted,	either	by	some
process	(for	example,	a	separate	retention	policy	for	the	tape	management	system	that	you
are	using	or	a	damaged	tape)	or	perhaps	by	the	loss	of	a	physical	device	that	had	backup
set	pieces	on	it.

In	cases	where	the	RMAN	catalog	and	the	physical	backup	destinations	are	out	of
synchronization,	the	crosscheck	command	is	used	to	validate	the	contents	of	the	RMAN
information	in	the	control	file	or	in	the	recovery	catalog	against	the	actual	physical	backup
set	pieces	that	are	on	the	backup	media.

When	using	the	crosscheck	command,	we	are	interested	in	the	status	of	each	backup
set	or	copy.	Each	backup	set	or	copy	has	status	codes	that	are	listed	in	the	STATUS
column	of	the	views:	V$BACKUP_SET	for	backup	set	pieces	and	V$DATAFILE_COPY
for	copies	if	you	are	using	a	control	file,	and	RC_BACKUP_SET	for	backup	set	pieces
and	RC_DATAFILE_COPY	for	copies	if	you	want	to	look	in	the	recovery	catalog.	There
are	several	different	backup	status	codes,	but	for	now	we	are	interested	primarily	in	two:

			A			AVAILABLE;	RMAN	assumes	the	item	is	available	on	the	backup	media.

			X			EXPIRED;	the	backup	set	piece	or	the	copy	is	stored	in	the	RMAN	catalog
(meaning	the	control	file	or	the	recovery	catalog),	but	is	not	physically	on	the
backup	media.

When	the	crosscheck	command	is	executed,	RMAN	checks	each	backup	set	or	copy
listed	in	the	catalog	and	determines	if	it	is	on	the	backup	media.	If	it	is	not,	that	piece	will

be	marked	as	EXPIRED	and	will	not	be	a	candidate	for	any	restore	operation.	If	the	piece
exists,	it	will	maintain	its	AVAILABLE	status.	If	a	backup	piece	or	copy	was	previously
marked	EXPIRED	and	it	becomes	available	again	(for	example,	after	the	recovery	of	a
failed	disk	drive),	then	the	crosscheck	command	will	return	that	piece’s	status	to
AVAILABLE.

If	the	backup	set	piece	is	on	disk,	RMAN	simply	makes	sure	that	the	piece	is	there,	but
does	no	checks	for	physical	or	logical	corruption.	If	the	backup	set	piece	is	on	tape,
RMAN	will	query	the	media	management	software	to	ensure	the	backup	set	piece	is
present.	It	is	up	to	the	media	management	software	to	determine	how	it	will	service	the
request.	It’s	possible	it	will	just	check	the	command	against	its	own	metadata,	or	it	may
actually	go	out	and	verify	the	backup	set	piece	is	physically	present.

You	must	be	connected	to	a	target	database	to	run	the	crosscheck	command.	There	is
no	requirement	to	be	connected	to	a	recovery	catalog.	If	your	backups	are	on	disk,	you
will	not	need	to	allocate	a	channel	before	issuing	the	crosscheck	command.	If	you	are
backing	up	to	a	tape	device	(via	MML,	for	example),	you	will	need	to	either	have	a
preconfigured	channel	defined	for	that	device	or	use	the	allocate	channel	for
maintenance	command	before	you	can	issue	the	crosscheck	command.	This	is	not
required	if	you	have	configured	predefined	channels.	If	you	use	mixed	channels	(some	to
disk	and	some	to	SBT,	for	example),	then	the	crosscheck	command	will	only	check	the
backups	that	were	made	with	the	channel	used	during	the	backup.

In	the	following	example	of	the	execution	of	the	crosscheck	command,	we	are
checking	the	status	of	all	backup	sets	and	determining	whether	they	exist	on	the	backup
medium:

In	this	example,	we	have	crosschecked	a	total	of	three	backup	set	pieces.	Notice	that
the	crosscheck	command	lists	all	the	backup	set	pieces	that	were	found	to	be	available.	It
also	lists	those	backup	set	pieces	that	were	not	found	on	the	backup	media,	shows	them	to
be	EXPIRED,	and	sets	their	status	to	EXPIRED	at	the	same	time.	Note	that	the

crosscheck	command	will	not	change	a	backup	set	piece	with	a	status	of	DELETE	to
AVAILABLE.	Any	backup	marked	with	a	status	of	DELETE	cannot	be	changed.

You	can	also	crosscheck	datafile	backups,	tablespace	backups,	control	file	backups,	and
SPFILE	backups.	Additionally,	you	can	be	selective	in	the	specific	backup	you	want	to
crosscheck	by	identifying	the	tag	associated	with	that	backup.	You	can	even	crosscheck	all
backups	taken	based	on	the	device	used	or	based	on	a	time	period.	The	following	are
several	examples	of	crosschecking	backups:

You	can	crosscheck	archived	redo	log	backups	based	on	a	number	of	criteria,	including
time,	SCN	(specific	or	high/low	range),	or	log	sequence	number.	You	can	even	use	the
like	parameter,	along	with	wildcards,	to	crosscheck	specific	archive	log	backups.	Here	are
some	variations	in	the	crosscheck	command:

To	crosscheck	copies,	use	the	crosscheck	copy	command.	You	can	crosscheck	datafile
copies,	control	file	copies,	archived	redo	log	copies,	and	archived	redo	logs	(on	disk).
Here	are	two	examples	of	crosschecking	these	kinds	of	objects:

RMAN	Workshop:	Using	the	Crosscheck	Command
Workshop	Notes
This	workshop	assumes	that	you	have	a	functional	Oracle	database	running	in
ARCHIVELOG	mode.	Additionally,	this	workshop	assumes	that	you	are	backing	up
your	database	to	disk,	that	you	have	a	tablespace	called	USERS	in	your	database,
and	that	one	datafile	is	associated	with	the	USERS	tablespace.	Note	that	our	sample
output	might	look	different	than	your	output	does.

Step	1.			Using	RMAN,	back	up	the	USERS	tablespace	(your	output	will	look
different,	of	course):

Step	2.			Look	at	the	output	of	the	backup	and	determine	the	backup	set	piece	that
has	just	been	created.	The	backup	set	piece	is	highlighted	in	the	output	in	Step	1.
Note	that	we	are	not	removing	the	control	file	autobackup	set	piece.

Step	3.			Remove	the	backup	piece	from	the	disk.

Step	4.			Issue	the	crosscheck	command	to	determine	the	status	of	the	backup	set
piece.	RMAN	will	detect	that	the	backup	set	piece	has	been	removed	and	mark	it
EXPIRED.	Note	that	the	control	file	autobackup	piece	is	still	available.

Verifying	Your	Backups
Perhaps	the	worst	feeling	in	the	world	is	the	moment	when	you	have	a	real	database
recovery	going	on,	and	you	find	out	that	the	media	storing	the	backups	is	corrupted.	This
happens,	and	probably	more	frequently	than	anyone	would	like	to	believe.	The	second
worst	feeling	is	the	frustration	involved	when	you	are	starting	a	restore,	and	you	realize
that	you	are	not	sure	which	RMAN	backup	set	pieces	you	need	to	restore.

There	are	solutions	to	these	problems,	and	we	discuss	them	in	this	section.	First,	we
discuss	the	restore	database	preview	command,	which	will	help	you	figure	out	what
datafiles	you	need	to	restore	your	database	and	if,	in	fact,	your	database	can	be	recovered
to	a	consistent	point	in	time.	Then	there	is	the	restore	database	validate	command,	along
with	the	check	logical	RMAN	command,	which	can	be	used	to	check	the	RMAN	backup
images	on	your	backup	media.

The	Restore…Preview	Command
The	restore…preview	command	is	used	to	check	that	various	kinds	of	RMAN	backups
can	be	restored.	As	with	regular	restores,	you	can	use	various	restore	criteria	(such	as	the

use	of	the	until	time	option)	successfully.	One	main	reason	to	use	this	command	is	that	it
can	be	used	to	generate	a	list	of	all	of	the	backup	files	that	will	be	needed	to	facilitate
some	type	of	recovery.	The	files	listed	will	be	the	RMAN	backup	set	pieces	needed	to
restore	whatever	objects	you	are	restoring.	If	you	are	previewing	a	database	restore
(restore	database	preview),	then	both	the	database	and	those	backup	set	pieces	that
contain	the	archived	redo	logs	will	be	needed.	If	any	piece	is	missing,	RMAN	will
generate	an	error,	indicating	what	needs	to	be	done	to	correct	the	situation.

The	restore…preview	command	is	especially	helpful	if	you	are	using	some	method
other	than	RMAN	to	manage	the	backup	set	pieces	created	by	RMAN.	For	example,
suppose	you	back	up	to	the	FRA	with	RMAN	and	then	subsequently	move	those	backup
set	pieces	to	some	other	disk	location.	In	this	case,	RMAN	will	not	be	aware	that	the	piece
has	been	moved,	and	any	effort	to	use	that	piece	in	a	database	restore	or	recovery	will	fail.
Running	the	restore	database	preview	command	will	provide	a	list	of	the	backup	set
pieces	you	will	need	to	recover	from	the	non-RMAN-aware	backup	set	piece	storage.	This
can	ease	your	recovery	significantly.	The	restore…preview	command	requires	minimal
I/O,	and	it	does	not	check	to	ensure	that	the	backup	set	pieces	actually	exist	on	disk	or	if
they	are	not	corrupt.	The	command	only	reports	based	on	the	backup	set	pieces	that	are
contained	in	either	the	control	file	or	the	recovery	catalog.

Note	that	the	restore…preview	command	can	also	be	used	to	perform	these	functions
for	backups	of	datafiles,	tablespaces,	archived	redo	logs,	control	files,	and	SPFILE
backups.	Also,	you	can	run	a	preview	of	an	entire	database	restore,	which	will	check	the
database	backup	files	and	the	archived	redo	log	files	that	need	to	be	restored.	Here	are
some	examples	of	the	use	of	the	restore…preview	command:

Using	the	Restore…Validate	and	Check	Logical	Commands
Media	becomes	corrupted	for	many	reasons,	and	we	want	to	avoid	corruption	at	all	costs.
RMAN	provides	a	way	of	checking	the	backup	set	images	on	media	for	corruption	both
physically	and	logically	on	a	regular	basis.	Through	the	use	of	the	restore…validate
check	logical	command	set,	you	can	check	the	backup	set	pieces	on	media	to	ensure	that
they	are	physically	and	logically	sound	on	a	regular	basis.	You	can	validate	database
backups,	tablespace	backups,	backups	of	specific	datafiles,	and	backups	of	archive	logs.
Here	are	some	examples	of	the	command	set’s	use	for	different	object	types:

This	command	set	reads	the	backup	set	pieces	and	checks	them	for	corruption.
Therefore,	it	requires	a	considerable	amount	of	I/O	on	the	part	of	the	backup	media	itself.
It	also	requires	CPU	to	read	and	process	the	backup	set	pieces.	Additionally,	it	will
consume	network	bandwidth,	just	as	would	be	the	case	with	a	regular	restore.	All	that
being	said,	it	can	be	a	significant	consumer	of	resources.	This	fact	needs	to	be	balanced
against	the	benefits	it	provides	and	the	availability	of	resources	in	order	to	determine	how
often	to	run	the	command	and	when	to	run	it.	We	typically	run	the	restore	database
validate	check	logical	command	frequently	(say,	daily)	in	a	newly	created	database
infrastructure	environment.	Once	we	are	satisfied	that	the	environment	is	stable,	we
reduce	the	executions	of	this	command	(say,	once	a	week).

Using	the	validate	Command
The	little	sister	to	the	restore	database	validate	command	is	the	RMAN	validate
command.	The	validate	command	checks	the	headers	of	the	backups,	whereas	the	restore
database	validate	command	does	a	block-by-block	check	of	the	backups.	Here	are	some
examples	of	the	use	of	the	validate	command:

Note	that	the	validate	command	is	similar	to	the	backup	validate	command,	with	a
few	extra	bells	and	whistles.	With	this	command,	you	can	choose	which	backup	sets	to
verify,	whereas	the	validate	parameter	of	the	backup	or	restore	command	allows	RMAN
to	determine	which	backup	set	to	validate.	Typically,	in	a	production	environment,	you
would	use	the	backup	validate	check	logical	command	after	you	have	completed	a
backup	to	perform	database	validation.	Thus,	the	validate	command	is	most	often	used	for
specific	occasions	where	you	want	to	check	specific	backup	sets,	or	perhaps	you	want	to
check	all	backup	sets	in	the	Fast	Recovery	Area.

The	validate	command	does	not	check	all	database	blocks.	Those	blocks	that	have
never	been	used	will	not	be	checked.	If	you	are	running	with	compatibility	set	to	10.2	or
greater,	then	blocks	contained	in	locally	managed	tablespaces	that	were	once	used	but	are
now	unused	will	not	be	checked.

The	validate	command,	by	default,	will	only	check	for	physical	corruption,	and	logical
corruption	is	not	considered.	If	you	want	to	also	check	for	logical	corruption	of	the	block,
use	the	check	logical	option	of	the	validate	command.	When	the	validate	command	has
completed	its	checks,	it	will	populate	the	V$DATABASE_BLOCK_CORRUPTION	view.
It	might	be	a	good	idea,	if	you	have	configured	monitoring	of	your	databases,	to	include
the	count	of	the	number	of	rows	in	this	view	in	that	monitoring.	This	way,	you	can	tell	if
you	have	corruption	issues	you	need	to	deal	with.

The	validate	command	will	not	discover	certain	types	of	corruption.	Therefore,	it’s
possible	to	run	this	command	and	still	experience	problems	with	your	database.	These

situations	are	rare,	but	they	do	happen.	One	example	of	this	is	interblock	corruption.	This
is	corruption	that	occurs	between	two	blocks,	as	might	be	the	case	in	a	block-chaining
situation.	The	validate	command	will	not	detect	interblock	corruption.

Backup	Retention	Policies
We	have	already	mentioned	that	you	can	configure	a	retention	policy	for	RMAN	backups
and	copies.	A	retention	policy	is	a	method	of	managing	backups	and	copies	and	specifying
how	long	you	want	to	keep	them	on	your	backup	media.	You	can	define	two	basic	types	of
retention	policies:	the	recovery	window	backup	retention	policy	and	the	backup
redundancy	backup	retention	policy.	We	will	talk	more	about	those	shortly.

Each	redundancy	policy	is	persistent	until	changed	or	removed	(or	until	the	control	file
is	rebuilt	using	the	create	controlfile	command).	Additionally,	the	two	redundancy
policies	are	mutually	exclusive.	Finally,	even	with	a	redundancy	policy,	physical	backup
pieces	are	not	removed	until	you	use	the	delete	command	with	the	obsolete	parameter	to
remove	them.

Retention	policies	are	based	on	backup	sets,	not	individual	copies	of	a	given	backup.
So	a	single	backup	set	of	a	tablespace	with	two	copies	will	just	count	as	just	one	backup
toward	the	retention	policy.

Now,	let’s	look	at	each	of	these	retention	policies	in	more	detail.	After	that,	we	will
look	at	how	we	manage	RMAN	backups	and	copies	that	are	made	obsolete	as	a	result	of
the	retention	policies.

Recovery	Window	Backup	Retention	Policy
The	use	of	this	type	of	retention	policy	is	based	on	the	latest	possible	date	to	which	you
want	to	be	able	to	recover	your	database.	With	a	recovery	window	backup	retention
policy,	you	can	direct	Oracle	to	make	sure	that	if	you	want	to	be	able	to	recover	your
database	to	a	point	in	time	two	weeks	ago,	you	will	be	able	to	do	so.

For	example,	assume	that	today	is	Monday	and	you	have	three	backups.	The	first
backup	was	taken	the	day	before,	on	Sunday;	the	second	backup	was	taken	on	the
previous	Thursday;	and	the	last	backup	was	taken	ten	days	ago,	last	Saturday.	If	the
recovery	window	is	set	to	seven	days,	then	the	first	two	backups	(Sunday’s	and
Thursday’s)	would	be	considered	current.	However,	the	backup	taken	ten	days	ago,	on	the
previous	Saturday,	would	be	considered	obsolete.	If	we	wanted	to	establish	this	seven-day
redundancy	policy	for	RMAN,	we	would	use	the	configure	command	with	the	retention
policy	to	recovery	window	parameter:

Backup	Redundancy	Backup	Retention	Policy
When	the	backup	redundancy	backup	retention	policy	is	used,	RMAN	will	maintain	x
number	of	database	backups,	starting	with	the	most	current	backup.	For	example,	suppose
you	have	configured	a	backup	redundancy	of	3	and	you	did	backups	on	Monday,	Tuesday,
Wednesday,	and	Thursday.	Because	the	retention	policy	is	set	to	3,	Oracle	will	obsolete	the

Monday	backup	as	soon	as	the	Thursday	backup	is	successfully	completed.

The	backup	window	backup	retention	policy	is	enabled	using	the	configure	command
with	the	retention	policy	to	redundancy	parameter.	If	you	wanted	to	set	the	backup
window	backup	retention	policy	to	3,	you	would	use	the	following	command:

Archive	Log	Retention	Policies
Archive	log	retention	policies	are	supported	by	RMAN.	Archive	log	deletion	policies	can
be	complicated	by	the	presence	of	standby	databases	and	multiple	archive	log	destinations.
Archive	log	deletion	policies	are	automatically	applied	to	archive	logs	that	are	copied	to
the	FRA.	If	you	are	not	using	the	FRA,	you	can	run	the	list	obsolete	command	to	list	files
that	are	eligible	for	deletion	based	on	the	deletion	policies.	The	delete	obsolete	command
is	used	to	apply	the	retention	policies	to	archived	redo	logs	present	in	non-FRA
destinations.	We	discuss	the	list	command	later	in	this	book	when	we	discuss	reporting	on
RMAN.

Default	Archive	Log	Retention	Policies
When	you	are	using	an	FRA,	there	is	a	default	archive	log	deletion	policy	that	will	be
followed.	In	this	case	archived	redo	logs	will	be	deleted	when

			The	archived	redo	logs	have	been	backed	up	to	the	remote	destination	defined
by	LOG_ARCHIVE_DEST_n.

And	one	of	the	two	following	conditions	is	met:

			The	archived	redo	logs	have	been	backed	up	at	least	once	to	a	disk	or	SBT
device.

Or

			The	log	files	are	obsolete	as	a	result	of	the	backup	retention	policy	established
for	the	FRA.

If	an	archived	redo	log	is	needed	for	Flashback	Database	operations	or	if	a	guaranteed
restore	point	has	been	created,	then	those	archived	redo	logs	will	not	be	eligible	for
removal	regardless	of	the	deletion	policy.	Oracle	will	attempt	to	keep	logs	in	the	FRA
beyond	the	retention	period,	and	will	only	delete	those	eligible	for	the	retention	policy
when	space	requires	it.

Defining	Archive	Log	Retention	Policies
You	can	modify	the	default	archive	log	deletion	policy	when	you	are	using	the	FRA.	This
is	done	with	the	RMAN	configure	archivelog	deletion	policy	command.	You	can
configure	the	following	retention	policies:

			Application	of	redo	logs	has	occurred	on	standby	databases.

			Archived	redo	logs	have	been	backed	up	n	times	on	a	specific	device.

Let’s	look	at	each	of	these	in	more	detail,	including	how	to	remove	the	deletion	criteria.

Application	or	Shipped	Redo	Logs	to	Standby	Databases			You	issue	the	command
configure	archivelog	deletion	policy	to	[applied||shipped]	on	[all]	standby	to	configure
a	retention	policy.	This	policy	is	specific	to	the	application	of	the	archived	redo	logs	on
configured	standby	databases.	When	the	applied	option	is	used,	the	retention	criteria	will
apply	to	archived	redo	logs	that	are	applied	on	the	standby	databases	based	on	the
following	criteria:

			If	the	all	parameter	is	included,	the	criteria	applies	to	all	standby	database
sites.

			If	the	all	parameter	is	not	included,	the	archived	redo	log	must	have	been
applied	to	all	mandatory	archive	log	destinations.

			The	archived	redo	log	meets	the	requirements	of	the	applied	n	times	archived
redo	log	policy,	if	one	is	set.	This	policy	is	discussed	in	the	next	section.

The	shipped	option	applies	the	same	criteria,	but	only	requires	that	the	archived	redo
logs	be	shipped	to	the	standby	databases,	and	not	applied.	You	cannot	configure	both	the
shipped	and	applied	policies	at	the	same	time.	Here	is	an	example	of	configuring	these
archive	log	deletion	policies:

If	an	appropriate	archive	log	destination	to	a	standby	database	does	not	exist,	then	an	error
will	be	returned	by	RMAN.

Archived	Redo	Logs	Have	Been	Applied	n	Times		You	can	configure	an	archived	redo
log	retention	policy	that	is	specific	to	the	number	of	times	that	the	archived	redo	log	has
been	backed	up	to	a	specific	device	type.	In	this	case,	the	policy	will	be	applied	with	the
following	criteria:

			The	specific	number	of	archive	log	backups	exist	on	the	device.

			The	requirements	of	any	configured	policy	to	[applied||shipped]	on	standby
have	been	met.

The	setting	of	this	policy	will	also	impact	the	backup	of	an	archived	redo	log.	Once	the
archived	redo	log	has	been	backed	up	the	number	of	times	defined	in	the	policy,	it	will	no
longer	be	backed	up	by	RMAN,	unless	you	use	the	force	option	of	the	backup	command.
Here	is	an	example	of	the	use	of	configure	archivelog	deletion	policy	to	backed	up	n
times	to	device	type:

Clearing	Archive	Log	Deletion	Policies		If	you	have	configured	an	archive	log	deletion
policy	by	using	the	configure	archivelog	deletion	policy	to	none	command.	When	you
do	this,	the	default	retention	policy	for	archived	redo	logs	will	apply	in	the	FRA	and	will
also	be	applied	when	you	run	the	list	obsolete	archivelog	command.

Retention	Policy	Maintenance
When	a	given	backup	or	copy	meets	the	criteria	of	a	backup	retention	policy	and	becomes

obsolete,	what	happens	depends	on	whether	you	are	using	the	FRA	or	a	manual	backup
location.	You	may	also	want	to	change	a	backup	so	that	its	retention	policy	is	different
from	the	default	retention	policy.	Let’s	look	at	these	options	next.
Retention	Policy	Maintenance	When	Using	the	FRA		If	you	are	using	the	FRA,	RMAN
will	eventually	remove	the	backup	set	pieces,	image	copies,	or	archived	redo	logs	(we	will
just	call	these	backups	for	now)	from	the	FRA	based	on	space	demands.	This	means	that
the	backups	will	remain	in	place	potentially	for	some	time,	until	the	space	is	needed	by
another	backup	or	archive	log.	As	a	result,	you	might	look	at	FRA	space	utilization	and	be
concerned	because	it’s	growing	when	you	feel	it	should	be	steady	state.	You	can	determine
the	amount	of	FRA	space	that	is	consumed	by	obsolete	backups	by	querying	the
V$RECOVER_FILE_DEST	view	column	SPACE_RECLAIMABLE.	By	using	this	view,
you	can	determine	if	you	have	allocated	sufficient	space	to	the	FRA.	Here	is	an	example
of	a	query	against	V$RECOVER_FILE_DEST:

In	this	case,	we	find	that	about	23MB	of	space	is	reclaimable.	RMAN	will	clear	these
files	once	there	is	a	need	for	the	free	space.	If	we	were	to	find	that	the	amount	of	used
space	is	quite	high	and	the	amount	of	reclaimable	space	is	low,	we	may	have
underallocated	the	amount	of	space	to	the	FRA.	If	you	find	the	amount	of	reclaimable
space	is	quite	high,	then	you	might	want	to	review	your	retention	criteria	and	make	sure
they	are	set	correctly.	You	will	also	want	to	make	sure	you	have	not	overallocated	space	to
the	FRA.

If	you	see	that	you	have	space	being	allocated	to	obsolete	backup	sets,	you	can	use	the
RMAN	report	obsolete	command	to	see	details	of	the	obsolete	backups,	as	seen	here:

Retention	Policy	Maintenance	When	Using	a	Manual	Backup	Location		If	you	are	not
using	the	FRA,	you	are	backing	up	to	a	manual	backup	location.	In	this	case,	you	will
need	to	manage	the	expired	backups	a	little	differently.	As	with	the	FRA,	once	a	backup	is
no	longer	needed,	RMAN	will	mark	the	backup	or	copy	as	OBSOLETE.	You	can
determine	which	backups	RMAN	has	marked	as	OBSOLETE	with	the	report	obsolete

command	(we	will	look	at	the	report	command	in	the	next	chapter):

In	the	case	of	a	manual	backup	area,	you	will	need	to	perform	one	more	step	to	get
RMAN	to	remove	the	obsolete	backups.	This	extra	step	is	the	execution	of	the	delete
obsolete	command.	This	command	tells	RMAN	to	physically	delete	the	backup	on
physical	disk.	It	will	also	mark	the	metadata	related	to	the	backup	in	the	control	file	as
deleted,	and	it	will	remove	all	records	associated	with	the	backup	in	the	recovery	catalog.

Retention	Policy	Maintenance	When	Using	the	FRA		Of	course,	you	might	take	a
backup	and	decide	that	you	want	to	change	its	retention	policy.	In	this	event,	you	would
use	the	RMAN	change	command	to	change	the	retention	policy	of	the	backup	you	want	to
retain.	When	you	use	this	command,	the	backups	or	copies	impacted	are	considered	to	be
long-term	backups	and	are	not	subject	to	the	defined	retention	policy.

You	can	create	an	archival	backup	by	using	the	change…keep	command.	An	archival
backup	contains	all	of	the	datafiles	and	archived	redo	logs	required	to	restore	a	database	at
a	given	point	in	time.	It	is	a	wholly	self-contained	backup	that	allows	you	to	restore	the
database	to	the	point	in	time	that	the	backup	was	completed.	You	must	be	using	a	recovery
catalog	in	order	to	create	an	archival	backup.

The	change…nokeep	command	allows	you	to	remove	the	retention	policy	defined	by
the	change…keep	command.	Once	this	command	is	issued,	the	archived	redo	logs	will	be
subject	to	the	configured	retention	policy.

You	can	also	use	the	change	command	to	define	a	new	date	when	the	archival	backup
should	be	considered	obsolete.	If	the	retention	date	is	greater	than	365	days	from	now,	you
will	need	a	recovery	catalog.

You	can	reference	backups	in	the	change	command	by	using	the	backup	set	key
identifier	or	a	tag	associated	with	the	backup.	Both	of	these	identifiers	are	available	when
you	run	the	list	backup	{summary}	command.	You	can	also	get	the	backup	set	key	by
querying	the	V$BACKUP_SET	column	RECID.	Tags	can	be	found	in	the	TAG	column	of
the	V$BACKUP_FILES	data	dictionary	view.	Once	you	get	the	ID	of	the	backup	set	you
want	to	change,	you	can	then	issue	commands	to	alter	the	retention	criteria,	as	shown	in
these	examples:

NOTE

If	you	are	using	an	FRA,	you	cannot	use	the	keep	forever	clause	of	the	keep
command.

The	Change	Command
We	have	just	mentioned	the	change	command	and	explained	how	it	can	be	used	to	modify
the	retention	window	assigned	to	a	specific	backup.	The	change	command	allows	you	to
change	the	status	of	a	backup.	You	might	have	a	case	where	one	of	your	backup	media
devices	becomes	unavailable	for	a	period	of	time	(perhaps	someone	spilled	a	drink	down
the	power	supply).	In	this	event,	you	can	use	the	change	command	to	indicate	that	the
backups	on	that	device	are	unavailable.

Once	you	have	properly	scolded	the	employee	for	fiddling	around	in	your	hardware
area	with	a	drink	and	have	fixed	the	device,	you	can	change	the	status	of	that	backup	set
with	the	change	command	again	so	that	it	will	take	on	an	AVAILABLE	status.	You	can
also	change	a	backup	status	to	UNAVAILABLE,	indicating	that	the	backup	is	not
currently	available.	This	effectively	disqualifies	the	backup	from	consideration	during
restore	and	recovery	operations,	but	protects	the	backup	record	from	being	removed
during	the	execution	of	the	delete	expired	command.	Some	change	commands,	such	as
the	change…unavailable	command,	are	not	valid	when	the	backup	set	pieces	are	stored
in	the	FRA.	Here	are	some	examples	of	the	use	of	the	change	command:

Using	the	change	command,	you	can	modify	the	status	of	archived	redo	log	backups.
For	example,	you	can	modify	the	status	to	UNAVAILABLE	for	all	archived	redo	logs	that
have	been	backed	up	at	least	a	given	number	of	times.	You	can	also	change	the	status	of
all	backups	that	occurred	using	a	given	device.	Examples	of	these	operations	are	shown
next:

You	can	also	use	the	change	command	to	delete	backup	sets	(physically	on	the	backup
media	and	from	the	control	file	and	recovery	catalog).	The	delete	parameter	is	used	for
this	operation.	First,	you	need	to	identify	the	RMAN	backup	IDs	of	the	backups	that	you
want	to	remove,	or	the	tags	that	are	associated	with	a	given	backup.	You	can	use	the	list
backup	or	list	copy	command	(each	of	which	is	covered	in	detail	in	the	next	chapter)	to
perform	this	operation.	You	can	also	get	the	backup	set	(BS)	key	by	querying	the
V$BACKUP_SET	column	RECID.	Tags	can	be	found	in	the	TAG	column	of	the
V$BACKUP_FILES	data	dictionary	view.

Using	the	BS	key	or	tag,	we	can	then	remove	either	the	entire	backup	set	or	individual
backup	set	pieces.	Let’s	assume	we	want	to	remove	both	backup	sets.	For	example,	if	the
backup	set	IDs	for	a	given	backup	are	117	and	118,	we	can	use	the	change	command	with
the	delete	parameter,	and	our	backup	will	be	gone.	If	you	are	not	using	the	FRA,	the
physical	piece	will	be	removed.	If	you	are	using	an	FRA,	the	physical	file	will	be	removed
as	any	other	file	in	the	FRA	is	removed.	Here	is	what	we	would	do	to	remove	these

backup	sets:

Note	that	the	backups	assigned	to	these	IDs	will	be	displayed,	and,	by	default,	you	will
be	asked	to	confirm	whether	you	want	to	remove	the	backup.	If	you	do	not	want	to	be
prompted	to	confirm	the	action,	simply	use	the	noprompt	option.

Here	are	some	additional	examples	of	other	options	for	the	change	command	that	will
result	in	the	removal	of	backup	set	pieces:

Finally,	you	can	use	the	change	backuppiece	uncatalog	command	to	remove	backup
set	pieces	from	the	catalog.	If	the	change	backuppiece	uncatalog	command	removes	the
last	remaining	backup	set	piece,	it	will	also	remove	the	backup	set	record.	Here	is	an
example	of	using	the	change	backuppiece	uncatalog	command:

RMAN	Workshop:	Using	the	Change	Command
Workshop	Notes
This	workshop	assumes	that	you	have	a	functional	Oracle	database	running	in
ARCHIVELOG	mode,	that	you	are	backing	up	your	database	to	disk,	that	you	have
a	tablespace	called	USERS	in	your	database,	and	that	one	datafile	is	associated	with
the	USERS	tablespace.

Step	1.			Using	RMAN,	back	up	the	USERS	tablespace:

Step	2.			Look	at	the	output	of	the	backup	and	determine	the	backup	set	piece	that
has	just	been	created.	The	backup	set	piece	is	highlighted	in	the	output	in	Step	1.

Note	that	the	name	of	your	backup	set	piece	will	be	different	than	that	listed	in	Step
1.

Step	3.			Use	the	list	backup	of	tablespace	users	command	to	determine	the	backup
key	of	the	backup	set	piece	that	you	need	to	mark	as	DELETED	in	the	control	file	or
recovery	catalog.	Note	in	the	following	output	that	we	have	highlighted	the	backup
set	key	and	the	related	backup	set	piece:

Step	4.			Exit	to	the	operating	system,	and	do	a	directory	listing	on	the	backup	set
piece.	You	should	see	it.

Step	5.			Use	the	change	backuppiece	command	to	change	the	status	flag	of	this
backup	set	piece	from	AVAILABLE	to	DELETED:

Step	6.			Use	the	list	backup	of	tablespace	users	command	to	determine	that	the

backup	set	piece	is	no	longer	available	for	use	during	a	recovery:

Step	7.			Exit	to	the	operating	system,	and	do	a	directory	listing	on	the	backup	set
piece.	You	should	no	longer	see	the	backup	set	piece.	Oracle	removed	it,	if	it
existed.

The	Delete	Command
All	good	things	must	come	to	an	end,	and	the	same	is	true	about	the	life	of	a	given	backup
set.	With	a	retention	policy,	we	can	mark	backups	whose	usefulness	and	lifetime	are	at	an
end.	As	we	mentioned	already,	enforcement	of	a	redundancy	policy	does	not	remove	the
backups	from	the	catalog,	but	rather	just	marks	the	backups	with	a	status	of	OBSOLETE.
The	same	is	true	with	the	crosscheck	command,	which	we	discussed	earlier	in	this
chapter.	The	crosscheck	command	marks	obsolete	backups	and	copies	as	EXPIRED,	but
does	not	remove	them.	Marking	expired	records	as	deleted	will	help	keep	the	timing	to
resync	RMAN	at	a	minimum.

Enter	the	delete	command,	the	grim	reaper	of	RMAN.	It	is	the	raven	that	swoops	down
and	puts	the	kibosh	on	your	backups	and	copies.	With	the	delete	command,	you	can
remove	any	backups	that	have	been	made	obsolete	based	on	a	retention	criterion,	and	you
can	change	the	status	of	any	expired	backups	in	the	recovery	catalog	or	control	file	to	a
status	of	DELETED.	Here	are	a	couple	of	examples	of	the	delete	command	in	use:

When	you	issue	a	delete	command,	the	associated	RMAN	backup	records	will	be
removed	from	the	recovery	catalog.	You	can	see	this	by	looking	at	the	recovery	catalog
view	RC_BACKUP_PIECE.	Records	contained	in	the	database	control	file	will	be	kept	in
the	control	file	until	overwritten.	These	records	will	appear	in	the	V$BACKUP_PIECE
view	with	a	status	of	D.	These	deleted	records	will	not	appear	in	RMAN	command	output,
such	as	list	backup	of	database	summary.

When	you	issue	a	delete	command,	RMAN	will	request	that	you	confirm	your
instructions.	Once	you	have	confirmed	your	instructions,	RMAN	will	complete	the	delete
operation.	You	can	use	the	noprompt	option	of	the	delete	command	to	avoid	the
requirement	to	verify	the	execution	of	the	delete	command.	This	is	handy	if	you	are
writing	scripts	to	work	with	RMAN.	Here	is	an	example	of	using	the	delete	command
with	the	noprompt	option:

If	you	are	not	using	an	FRA	and	you	want	to	physically	remove	the	files	associated
with	the	backup,	you	will	need	to	use	the	force	parameter.	Note	that	force	will	ignore	any
I/O	errors	(such	as	the	case	when	the	physical	file	is	not	there).	You	can	see	the	use	of	the
force	parameter	in	this	example:

NOTE

Once	a	backup	has	been	marked	with	a	DELETED	status,	you	cannot	get	it
back.	You	can	still	recover	the	backup,	if	it’s	physically	available,	by	using	the
catalog	command	to	register	the	backup	sets	in	the	control	file/recovery	catalog.

RMAN	Workshop:	Using	the	Delete	Command
Workshop	Notes
This	workshop	builds	on	the	previous	RMAN	Workshop,	“Using	the	change
Command,”	which	deals	with	using	the	crosscheck	command.

Step	1.			Having	determined	that	the	backup	set	piece	is	missing,	we	want	to	mark	it
as	permanently	missing.	From	the	RMAN	prompt,	issue	the	delete	expired	backup
command:

Step	2.			Review	the	objects	listed	to	be	marked	with	a	DELETED	status.	If	they	can
all	be	marked	as	DELETED,	reply	to	the	prompt	with	a	YES	and	press	ENTER.
Review	the	output	for	a	successful	operation:

Cataloging	Other	Backups	in	RMAN
The	catalog	command	enables	you	to	record	datafile	backups,	archive	log	backups,	and
control	file	backups	in	RMAN,	and	these	backups	can	later	be	used	to	restore	and	recover
the	database.	Oracle	Database	allows	you	to	also	use	the	catalog	command	to	catalog
existing	backup	set	pieces	in	the	control	file.	This	is	a	nice	feature	if	you	have	to	restore
the	database	with	an	old	backup	control	file	that	might	not	have	the	most	current	RMAN
information	in	it.

Here	are	some	examples	of	the	use	of	the	catalog	command	to	catalog	old	datafile
backups:

The	catalog	command	allows	you	to	enter	new	backup	set–related	information	into	the
control	file	or	recovery	catalog.	RMAN	overwrites	any	preexisting	catalog	information
that	conflicts	with	the	information	being	cataloged.	This	command	can	be	handy	if	you
need	to	move	the	location	of	your	backup	set	pieces.	In	this	example,	we	have	moved	all
our	backup	set	pieces	to	a	new	directory.	We	use	the	catalog	command	to	load	the	correct
directory	location	for	each	of	the	moved	pieces	in	the	control	file:

You	can	also	use	the	catalog	command	with	the	start	with	option,	which	allows	you	to
define	the	directory	that	contains	the	RMAN	backup	set	pieces	to	be	cataloged.	RMAN
will	then	catalog	all	backup	set	pieces	in	that	directory.	Here	is	an	example	of	using	the
catalog	command	in	this	way:

Once	you	press	ENTER,	this	command	prompts	you	with	a	list	of	files	to	catalog	and
asks	if	you	wish	to	catalog	the	files	listed.	If	you	respond	in	the	affirmative,	RMAN
catalogs	all	the	backup	set	pieces	listed	(which	will	be	contained	in	the
/u01/oracle/RMAN/mydb	directory).	This	command	also	allows	you	to	catalog	several
like-named	backup	set	pieces.	For	example,	if	you	want	to	catalog	several	backup	set
pieces	that	start	with	the	name	“backup”	(for	example,	backupset01,	backupset02,	and	so
forth),	then	you	could	issue	the	following	command:

When	you	use	the	catalog	start	with	command,	it	is	indiscriminate	about	which	files	it
tries	to	catalog;	it	will	try	to	catalog	everything	that	matches	the	argument	list.	However,
as	the	catalog	process	proceeds,	files	that	are	not	backup	set	pieces	will	fail	the	catalog
process	and	an	error	will	occur.	Files	that	are	backup	set	pieces	will	be	cataloged
successfully,	in	spite	of	other	errors.

RMAN	Stored	Scripts
If	you	find	that	you	are	often	doing	the	same	RMAN	operations	over	and	over,	you	would
probably	like	to	be	able	to	store	those	operations	somewhere	and	execute	them	when
needed.	Of	course,	you	could	create	a	command	file,	which	is	just	a	text	file	physically
located	on	disk	somewhere,	with	the	RMAN	commands,	and	then	execute	the	command
file	from	the	RMAN	command-line	interface	using	the	cmdfile	parameter,	as	shown	in
this	example:

Alternatively,	you	can	run	a	command	file	from	within	RMAN	itself,	using	the	@
command:

RMAN	offers	another	option,	which	is	to	store	scripts	in	the	recovery	catalog.	As	you
might	guess,	this	requires	that	you	use	a	recovery	catalog,	so	if	you	are	not	using	one,	you
will	not	be	able	to	store	RMAN	scripts.	This	section	shows	you	how	to	store	scripts	in	the
recovery	catalog	and	how	to	manage	those	scripts.

Creating	Stored	Scripts
To	store	a	script	in	the	recovery	catalog,	you	use	the	create	script	RMAN	command.	Each
stored	script	is	assigned	a	name	when	you	create	it.	You	can	create	scripts	that	do	backups,
recoveries,	and	maintenance	of	your	databases.	To	create	a	script,	you	must	be	connected
to	the	recovery	catalog.	Here	is	an	example	of	using	the	create	script	command	to	create
a	backup	script.	RMAN	also	allows	you	to	store	comments	related	to	your	stored	scripts
by	using	the	comment	parameter:

Oracle	Database	supports	the	use	of	substitution	variables.	Each	substitution	variable	is
denoted	with	an	ampersand	and	a	number	that	makes	each	variable	unique.	For	example,
you	could	rewrite	this	script	as	follows:

When	you	execute	this	command,	RMAN	will	prompt	you	for	initial	values	for	the
substitution	variables.

Querying	the	Recovery	Catalog	for	Stored	Script
Information
You	can	use	the	recovery	catalog	views	to	determine	the	name	of	scripts	stored	in	the
recovery	catalog	by	querying	the	RC_STORED_SCRIPT	view.	You	can	see	the	contents
of	a	given	script	by	querying	the	RC_STORED_SCRIPT_LINE	view.

Changing	Stored	Scripts
You	use	the	replace	script	command	to	replace	stored	scripts	in	the	recovery	catalog.
Here	is	an	example	of	using	the	replace	script	command.	Note	that	we	also	add	a
comment	to	the	script.

Deleting	Stored	Scripts
To	drop	a	script,	you	use	the	delete	script	command.	You	must	be	connected	to	the
recovery	catalog	to	successfully	drop	a	stored	script.	Here	is	an	example	of	using	the
delete	script	command:

Using	Stored	Scripts
Now	that	you	have	created	some	stored	scripts,	you	probably	want	to	use	them.	This	is
what	the	execute	script	command	is	for.	Simply	connect	to	the	recovery	catalog	and	use
the	execute	script	command	within	the	confines	of	a	run	block,	as	shown	in	this	example:

If	you	are	using	substitution	variables,	you	can	use	the	using	parameter	to	include	the
values	of	those	parameters	in	the	execute	script	command,	as	shown	in	this	example:

Printing	Stored	Scripts
If	you	want	to	print	a	copy	of	your	stored	script,	you	can	use	the	print	script	command.
Connect	to	the	recovery	catalog	and	then	run	the	print	script	command,	as	shown	in	this
example:

You	can	also	use	the	RC_STORED_SCRIPT_LINE	recovery	catalog	view	to	display
the	contents	of	a	stored	script,	as	shown	in	this	example:

RMAN	Workshop:	Using	RMAN	Stored	Scripts
Workshop	Notes
This	workshop	expects	that	you	have	an	operational	Oracle	database	(called
recover)	and	that	you	are	also	using	a	separate	Oracle	database	to	store	the	recovery
catalog	in	(called	catalog).

Step	1.			Connect	to	the	target	database	and	to	the	recovery	catalog:

Step	2.			Create	a	stored	script	to	back	up	the	target	database:

Step	3.			Print	the	stored	script:

Step	4.			Execute	the	stored	script	to	back	up	your	database:

Step	5.			Delete	the	stored	script:

When	You	Just	Can’t	Take	It	Anymore
If	you	are	sick	and	tired	of	your	database	and	you	just	can’t	take	it	anymore,	RMAN	offers
the	perfect	response:	the	drop	database	command.	If	only	terrorists	were	as	easy	to	get
rid	of.	Simply	put	the	database	in	restricted	session	mode,	connect	to	the	target	database
with	RMAN,	issue	the	drop	database	command,	and	watch	your	database	quietly	go
away.	You	can	add	the	including	backups	parameter,	and	all	RMAN-related	backups	will
be	removed,	too.	When	you	issue	this	command,	RMAN	will	confirm	the	action	first	and
then	proceed	to	remove	the	database.	If	you	wish	to	not	be	prompted,	you	can	use	the
noprompt	parameter.	Here	is	an	example	of	the	use	of	the	drop	database	command:

Summary
In	this	chapter,	we	discussed	the	various	maintenance	operations	that	RMAN	may	require.
We	discussed	the	crosscheck	command	and	validating	RMAN	backups,	both	very
important	operations.	We	also	talked	about	retention	policies	and	how	RMAN	uses	them
to	control	how	long	your	backups	will	remain	available	to	you	for	recovery	purposes.

We	also	talked	about	the	change	and	delete	commands	and	how	they	can	be	used	to
modify	the	status	of	RMAN	records	in	the	control	file	or	recovery	catalog.	We	also
covered	adding	backups	to	the	control	file	or	recovery	catalog.	Finally,	we	discussed
maintenance	of	the	recovery	catalog	and	the	use	of	stored	scripts	for	RMAN	operations.

CHAPTER
12

Monitoring	and	Reporting	in	RMAN

B
ecause	everyone	wants	to	know	for	sure	that	their	databases	have	been	backed	up	and	are
currently	recoverable,	RMAN	comes	with	some	good	reporting	tools.	This
chapter	covers	RMAN	reporting	in	some	depth.	First,	we	look	at	the	RMAN	list
command,	followed	by	the	RMAN	report	command.	Each	of	these	commands
provides	facilities	for	in-depth	analysis	of	the	database	that	you	are	using

RMAN	to	back	up	and	its	backups.	These	commands	are	the	primary	ways	of	extracting
information	from	RMAN.	You	will	find	that	lists	and	reports	come	in	handy	not	only
during	recovery,	but	also	when	you	want	to	see	how	RMAN	is	configured	and	when	you
need	to	perform	other	administrative	tasks	(such	as	determining	if	a	tablespace	has	been
backed	up).

The	RMAN	List	Command
The	RMAN	list	command	is	a	method	of	querying	either	the	database	control	file	or	the
recovery	catalog	for	historical	information	on	backups.	Lists	provide	an	array	of
information,	from	lists	of	database	incarnations,	to	lists	of	backup	sets	and	archive	log
backups.	The	bottom	line	is	that	if	you	want	to	know	whether	the	database	was	backed	up
and	when,	then	you	want	to	generate	a	list.	The	format	of	lists	initially	tends	to	appear	not
very	reader	friendly.	Once	you	have	looked	at	a	few	lists,	though,	they	seem	a	little	easier
to	read.	So,	let’s	look	at	the	list	commands	and	how	they	can	be	interpreted.

Listing	Incarnations
The	list	incarnation	command	provides	you	with	a	list	of	each	database	incarnation	for
the	target	database.	This	list	can	be	used	to	recover	your	database	to	a	point	in	time	before
your	last	resetlogs	command	was	issued.	Here	is	an	example	of	the	list	incarnation
command	output:

In	this	listing,	we	find	that	our	database	has	had	several	different	incarnations,	with
each	incarnation	represented	in	each	row	of	the	report.	Each	individual	incarnation	has	its
own	key	(Inc	Key),	which	we	would	use	if	we	wanted	to	reset	the	database	incarnation
(refer	to	Chapter	9).	We	also	get	our	database	name	and	ID	in	this	report.

The	STATUS	column	displays	the	status	of	the	incarnation	listed.	It	indicates	whether
the	incarnation	is	an	older	incarnation	(PARENT),	the	current	incarnation	(CURRENT),

or,	if	a	recovery	past	resetlogs	has	occurred,	an	ORPHAN	incarnation.	Finally,	the	Reset
SCN	and	Reset	Time	columns	basically	indicate	when	the	database	incarnation	was
created	(which	is	why	the	Reset	SCN	for	the	first	entry	is	1).	This	column	helps	support
recovery	through	resetlogs	and	also	helps	support	easier	recovery	to	a	previous
incarnation.

An	important	point	to	note	is	that	output	generated	with	a	recovery	catalog	and	output
generated	without	a	recovery	catalog	generally	look	somewhat	different.	For	example,	this
is	the	output	of	the	list	incarnation	command	while	attached	to	a	recovery	catalog:

Note	in	this	example	that	both	the	DB	keys	and	the	incarnation	keys	are	different	from
those	reported	when	using	the	control	file.	This	leads	to	an	important	point:	many	reports
have	keys	that	identify	specific	items	in	the	reports,	and	you	will	use	these	keys	in	other
RMAN	commands	(such	as	in	the	reset	database	command).	Because	the	values	of	the
keys	change	depending	on	whether	you	are	connected	to	the	recovery	catalog,	you	need	to
be	careful	about	determining	which	keys	you	need.

Listing	Backups
The	list	command	comes	with	a	number	of	different	options	that	allow	you	to	report	on
the	status	of	database	backups	and	copies.	In	this	section,	we	are	going	to	look	at	several
of	these	reports.

Summarizing	Available	Backups
Let’s	first	look	at	a	few	ways	of	getting	summary	backup	information.	The	list	command
provides	a	couple	of	options.	The	first	option	is	the	list	backup	summary	report:

This	report	provides	us	with	some	nice	summary	information	on	backups.	The	backup
set	key	is	listed	in	the	Key	column.	The	TY	(type)	and	the	LV	(level)	columns	indicate	the
type	of	backup	listed	(B	=	backup,	F	=	full,	A	=	archive	log,	and	0	and	1	=	incremental
backups).	The	S	column	indicates	the	status	of	the	backup	(AVAILABLE,
UNAVAILABLE,	or	EXPIRED).	The	Device	Type	column	lets	us	know	whether	the
backup	is	a	tape	or	disk	backup.	We	also	have	columns	for	the	date	of	the	backup
(Completion	Time),	the	number	of	pieces	(#Pieces)	or	copies	(#Copies)	that	the	backup	set
consists	of,	whether	the	backup	was	compressed,	and	any	tag	that	was	assigned	to	the
backup	set	(Tag).

Most	of	the	list	commands	will	accept	the	summary	parameter	at	the	end.	Here’s	an
example:

Listing	Backups	by	Datafile
Another	way	to	summarize	backups	is	to	use	the	list	backup	by	file	command	to	list	each
backup	set	and	backup	set	piece.	Here	is	an	example	of	this	report	(we	have	removed
some	output	to	save	a	few	trees):

This	report	summarizes	each	backup	file	that	has	been	created	by	the	type	of	backup
(datafile	backup,	archived	log	backup,	control	file	backup,	and	SPFILE	backup)	and	then
by	datafile	for	the	datafile	backups.	In	this	report,	we	get	the	date	of	the	backup	and	the
specific	keys	associated	with	the	backup	file.	Depending	on	the	type	of	backup,	we	get
information	that	pertains	to	that	type	of	backup.

Additional	Backup	Information

If	you	want	as	much	information	reported	on	your	RMAN	backups	as	you	can	get,	then
the	list	backup	command	is	for	you.	It	provides	detailed	information	on	the	backups	you
have	taken,	including	backup	sets,	archived	redo	log	backups,	and	control	file/SPFILE
backups.	Let’s	look	at	an	example	of	the	results	of	the	execution	of	the	list	backup
command:

This	first	listing	is	an	archive	log	backup.	The	backup	set	key	(BS	Key)	is	509.	The
size	of	the	backup	is	listed,	and	we	see	that	it	went	to	disk	instead	of	to	SBT.	The	elapsed
time	of	the	backup	is	pretty	short,	at	four	seconds,	and	we	see	that	it	was	completed	on
September	8.	Later	in	the	report,	we	see	that	the	backup	is	available	and	that	it	is	a
compressed	backup.	We	also	find	the	backup	set	piece	name,	which	tells	us	where	the
backup	is	physically	located.	Finally,	a	list	of	archived	redo	logs	appears.	These	are	the
archived	redo	logs	contained	in	this	backup	set.	Here	is	an	example	of	the	listing	of	the
rest	of	this	backup:

This	is	an	actual	database	backup.	The	output	looks	much	like	the	previous	output,
except	that	now	we	get	a	full	list	of	all	the	datafiles	contained	in	the	backup.	We	see	that
the	datafile	backup	consists	of	one	backup	set	piece	(BS	Key	510).	Of	course,	when	we
perform	a	recovery,	RMAN	will	look	for	the	most	current	backup.	Once	it	knows	that,	it
will	pick	the	best	backups	to	use	to	perform	the	recovery.	Perhaps	this	is	a	small	point,	but
it’s	an	important	one.

Also	in	this	listing,	we	find	that	there	is	an	archive	log	backup	(backup	set	key	536)
with	a	single	archive	log	in	it.	On	the	final	section	of	the	report,	we	find	an	autobackup	of
the	control	file/SPFILE	(backup	set	555).	We	know	this	is	an	autobackup	by	virtue	of	the
“SPFILE	Included”	and	“Control	File	Included”	wording	in	the	output.

Let’s	look	at	the	archive	log	backup	output	a	bit	more	closely:

This	backup	set	has	a	backup	set	key	of	536.	The	header	information	looks	the	same	as
in	the	previous	backup	set.	However,	this	backup	is	an	archive	log	backup,	so	in
subsequent	lines,	RMAN	provides	a	list	of	the	archived	redo	logs	backed	up	in	the	backup
set.	The	thread	and	sequence	number	of	the	archive	log	are	listed,	along	with	the	low	SCN
and	time,	and	the	next	SCN	and	time.	The	low	time/SCN	and	high	(or	Next	SCN	as	listed
in	the	report)	time/SCN	ranges	allow	you	to	determine	when	the	archive	log	was	created.

Let’s	look	at	an	incremental	backup	set	report:

Again,	this	report	is	very	similar	to	the	other	reports.	The	only	differences	are	that	Incr
is	used	in	the	Type	field	to	indicate	that	the	backup	is	an	incremental	backup,	and	the	LV
(level)	column	shows	the	level	of	the	incremental	backup.	If	the	incremental	backup	were
a	level	0	backup,	then	the	LV	column	would	show	the	number	0,	which	corresponds	to	a

level	0	base	backup.

Listing	Backups	Eligible	for	Recovery
If	you	want	to	see	all	datafile	backups	or	copies	that	are	able	to	be	used	to	restore	and
recover	your	database,	then	use	the	list	recoverable	command.	This	list	command
provides	a	list	of	all	backups	with	a	status	of	AVAILABLE	that	can	be	used	to	restore	your
database	(this	is	only	for	the	current	incarnation).	Backups,	image	copies,	and	incremental
backups	will	all	be	included.	If	an	incremental	backup	does	not	have	a	valid	parent,	it	will
not	be	included	in	this	backup.

Listing	Expired	Backups
Using	the	list	backup	command	shows	you	both	available	and	expired	backup	sets.	If	you
want	to	see	only	expired	backups,	you	can	use	the	expired	keyword,	as	shown	in	this
example:

This	command	will	display	all	expired	backup	sets.	With	the	list	expired	backup
command,	you	can	also	get	a	list	of	expired	tablespace	and	datafile	backups	and	lists	of
expired	archive	log	backups	and	control	file/SPFILE	autobackups	by	inserting	the	correct
keyword,	such	as	list	expired	backup	of	datafile	3	or	list	expired	backup	of	archivelog
all.

Listing	Backups	by	Tablespace	Name	and	Datafile	Number
The	output	of	the	list	backup	of	tablespace	or	list	backup	of	datafile	command	is	very
similar	to	the	list	backup	output.	These	two	list	backup	commands	allow	you	to	list
output	specific	for	a	tablespace	or	a	datafile,	as	shown	in	this	example:

Note	in	this	example	that	this	backup	has	expired,	which	might	be	of	particular	interest
to	us,	especially	if	this	were	the	only	backup	of	the	USERS	tablespace	available!	Again,
you	can	use	the	expired	keyword	to	only	list	expired	backups	(list	expired	backup	of
tablespace).

In	much	the	same	way,	you	can	list	the	backups	of	a	specific	datafile	with	the	list
backup	of	datafile	command:

One	place	where	the	list	command	can	be	helpful	is	if	you	are	trying	to	do	a	point-in-
time	restore	and	you	are	getting	errors	that	indicate	no	backup	or	copy	is	found.	In	this
case,	try	a	list	command,	using	the	same	until	clause	to	see	if	it	lists	any	available
backups.	Doing	this	can	help	reveal	any	problems	with	your	until	clause,	and	you	can
adjust	the	until	clause	to	determine	from	what	point-in-time	recovery	is	truly	available.

Listing	Archive	Log	Backups
Several	options	exist	for	listing	archive	log	backups	in	RMAN.	To	obtain	a	complete
summary	of	archive	logs	currently	on	disk	(this	does	not	mean	that	they	have	been	backed
up),	the	list	archivelog	all	command	is	perfect,	as	shown	here:

Here,	we	find	a	list	of	each	archived	redo	log	that	Oracle	has	created	that	is	waiting	to
be	backed	up,	along	with	the	thread	number	and	the	sequence	number	of	that	archived
redo	log.

To	get	a	report	of	those	archive	logs	that	we	have	backed	up,	we	use	the	list	backup	of
archivelog	all	report,	as	shown	here:

Note	that	the	last	archive	log	backup	set	in	this	report	has	an	EXPIRED	status,	whereas
the	others	have	an	AVAILABLE	status.	Thus,	all	the	archived	redo	log	backup	sets	are
available	for	RMAN	recoveries,	whereas	the	last	is	not.	If	you	want	to	look	at	expired
backup	sets	only,	add	the	expired	keyword,	as	in	list	expired	backup	of	archivelog	all.

Listing	Control	File	and	SPFILE	Backups
As	you	might	expect,	you	can	also	list	control	file	and	SPFILE	backups.	The	list	backup
of	controlfile	command	provides	you	with	a	list	of	control	file	backups,	and	the	list
backup	of	spfile	command	provides	output	for	SPFILE	backups.	Here	is	an	example	of
each	command	and	its	results:

We’ll	bet	you	have	already	guessed	that	you	can	use	the	list	expired	backup	of
archivelog	all	command	here,	too.	Also,	you	can	limit	the	report	by	time	or	log	sequence
number.	For	example,	to	list	expired	archive	log	backups	until	a	given	sequence,	you
could	use	the	command	list	expired	backup	of	archivelog	until	sequence.

Listing	Image	Copies
Just	as	you	can	use	the	list	command	to	determine	the	status	of	backup	sets,	you	can	also
use	the	list	command	to	determine	the	status	of	database	image	copies.	In	this	section	we
discuss	producing	reports	on	image	copies	with	the	list	copy	command.	We	discuss	listing
all	copies	within	the	RMAN	catalog.	Then	we	look	at	listing	datafile	copies	and	archived
redo	log	copies.	Finally,	we	will	look	at	listing	control	file	copies.

Listing	RMAN	Copies
You	can	generate	a	list	of	all	copies	with	the	list	copy	command:

Listing	Datafile	Copies
Oracle	allows	you	to	generate	a	summary	list	of	all	database	datafile	copies	with	the	list
copy	of	database	command:

In	this	output,	we	have	two	copies	of	datafiles	that	belong	to	our	database:
datafile2.copy	and	datafile3.dbf.	While	the	actual	name	of	the	datafile	or	its	assigned
tablespace	name	is	not	listed,	the	file	number	is	listed	in	the	second	column	of	the	report.
We	could	relate	this	file	number	to	the	associated	tablespace	by	running	the	report
schema	command,	which	we	discuss	later	in	this	chapter.

If	you	want	to	know	whether	you	have	a	datafile	copy	of	a	tablespace	or	a	datafile,	you
can	use	the	list	copy	of	tablespace	or	list	copy	of	datafile	command,	as	shown	here:

Listing	Archived	Redo	Log	Copies
If	you	want	a	list	of	archived	redo	log	copies,	you	can	use	the	list	copy	of	archivelog	all
command:

You	can	also	list	copies	of	specific	archived	redo	logs	by	time,	sequence,	or	database
SCN.	Here	are	some	examples	of	listing	archived	redo	logs	based	on	differing	criteria:

Listing	Control	File	Copies
Finally,	RMAN	can	report	on	control	file	copies	with	the	list	copy	of	controlfile
command:

Listing	Restore	Points
The	list	command	also	provides	the	ability	to	generate	a	list	of	all	restore	points	in	the
database.	In	this	example	we	create	two	restore	points.	We	create	a	normal	restore	point
called	rsp_1,	and	we	create	a	second	guaranteed	restore	point	called	gur_1.	We	then	use
the	list	restore	point	all	command	to	list	these	restore	points:

We	can	also	list	an	individual	restore	point	as	seen	here:

Listing	the	DB_UNIQUE_NAME
There	are	times	where	the	setting	of	the	database’s	DB_UNIQUE_NAME	is	critical,	such
as	with	standby	databases.	In	cases	where	you	need	to	know	the	DB_UNIQUE_NAME	of
a	database,	the	RMAN	list	db_unique_name	command	will	help,	as	shown	here:

The	RMAN	Report	Command
The	RMAN	report	command	is	used	to	determine	the	current	recoverable	state	of	your
database	and	to	provide	certain	information	on	database	backups.	In	this	section,	we	look
at	reports	that	tell	you	which	datafiles	have	not	been	backed	up	in	a	specified	period.	We
also	look	at	reports	that	tell	you	when	specific	tablespaces	need	to	be	backed	up	because
of	UNRECOVERABLE	operations	on	datafiles.	Finally,	we	look	at	the	use	of	the	report
command	to	report	on	database	schemas	and	obsolete	database	backups.

Reporting	on	Datafiles	that	Have	Not	Been	Backed	Up
Recently
A	question	DBAs	frequently	ask	themselves	is,	“When	was	the	last	time	I	backed	up	this
tablespace?”	RMAN	provides	some	answers	to	that	question	with	the	report	need	backup
command.	For	example,	if	you	want	to	know	what	tablespaces	have	not	been	backed	up	in
the	last	three	days,	you	could	issue	the	report	need	backup	days=3	command	and	find
out.	Here	is	an	example	of	the	output	of	just	such	a	report:

From	this	report,	it	appears	that	two	datafiles	require	application	of	more	than	three
days’	worth	of	archived	redo	to	be	able	to	recover	them	(which	implies	that	these	datafiles
have	not	been	backed	up	in	the	last	three	days).	In	this	event,	we	might	well	want	to	back
up	the	datafiles	or	their	associated	tablespaces.

We	can	also	generate	reports	based	on	a	given	number	of	incrementals	that	would	need
to	be	applied,	as	shown	in	this	example:

In	this	example,	several	database	datafiles	require	four	RMAN	incremental	backups	to
be	applied.	This	may	well	indicate	that	we	need	to	perform	a	new	backup	on	these
datafiles	at	a	higher	incremental	level,	or	even	perform	a	new	incremental	base	backup.

Reporting	on	Backup	Redundancy	or	Recovery	Window
We	can	use	the	report	need	backup	redundancy	command	to	determine	which,	if	any,
datafiles	need	to	be	backed	up	to	meet	our	established	backup	redundancy	policy.	The
following	is	an	example	of	the	use	of	this	report.	In	this	case,	we	want	a	list	of	all	datafiles
that	do	not	have	at	least	two	different	backups	that	can	be	used	for	recovery.	These	may	be
backup	set	backups	or	datafile	copies.

Likewise,	we	can	establish	a	minimum	recovery	window	for	our	backups	and	report	on
any	datafiles	whose	backups	are	older	than	that	recovery	window.	This	is	done	with	the
report	need	backup	recovery	window	days	command:

In	this	case,	several	of	our	datafiles	require	application	of	more	than	two	days’	worth	of
archived	redo.	So,	if	our	recovery	policy	says	we	want	backups	where	we	only	need	to
apply	one	day	of	redo,	then	we	need	to	back	up	these	datafiles.

Reporting	on	Unrecoverable	Operations	on	Datafiles
Unrecoverable	operations	on	objects	within	tablespaces,	and	the	datafiles	that	make	up
those	tablespaces,	lead	to	certain	recoverability	issues.	For	example,	if	a	table	is	created
using	the	Unrecoverable	option	and	is	subsequently	loaded	using	the	direct	load	path,
then	the	tablespace	needs	to	be	backed	up,	or	else	the	data	that	was	loaded	will	not	be
recoverable.	It	is	for	these	circumstances	that	the	report	unrecoverable	command	is	used,
as	shown	here:

Reporting	on	the	Database	Schema

We	are	using	the	word	“schema”	here	to	mean	the	physical	structure	of	the	database.	The
schema	includes	the	datafile	name	and	number,	the	tablespaces	they	are	assigned	to,	the
size	of	the	datafiles,	and	whether	the	datafiles	contain	rollback	segments.	This	can	be	the
current	schema,	or	you	can	generate	a	report	on	the	database	schema	at	some	past	point	in
time.	Here	is	an	example	of	the	execution	of	the	report	schema	command:

Reporting	on	Obsolete	Backups
Backups	are	marked	with	an	OBSOLETE	status	if	you	are	using	a	retention	policy	(which
we	discussed	in	Chapter	9).	Here	is	an	example	of	the	execution	of	report	obsolete	with	a
retention	policy	set	to	redundancy	1:

This	report	has	several	different	backup	sets,	datafile	copies,	control	file	copies,	and
archive	log	copies	that	have	been	marked	OBSOLETE	by	Oracle.	If	you	want	to	mark
these	backups	as	DELETED,	run	the	delete	obsolete	command,	as	shown	in	Chapter	9.

Data	Dictionary	Views	for	Reporting
Oracle	provides	a	number	of	RMAN-related	data	dictionary	views	(V$views)	that	you	can

use	to	perform	reporting	from	the	SQL	prompt.	You	can	use	these	views	to	produce
customized	reports.	You	can	then	use	these	reports	for	a	number	of	purposes,	such	as
notifications	when	databases	have	not	been	backed	up,	or	of	databases	that	are	not
registered	with	the	recovery	catalog	(you	would	use	some	form	of	configuration	control
that	is	reliable	to	compare	against).	All	of	the	Oracle	views	related	to	RMAN	are	available
in	the	Oracle	Reference	Guide,	along	with	the	purpose	of	the	view	and	description	of	the
columns.	Many	of	the	RMAN	views	begin	with	V$BACKUP*,	V$RECOVERY*,	and
V$RMAN.	Some	of	the	more	useful	views	are	seen	in	the	following	table:

Many	of	the	RMAN	control	file	views	also	have	recovery	catalog	equivalents.	Each	of
these	views	starts	with	an	RC_	instead	of	a	V$	prefix.	The	names	are	generally	very
similar.	For	example,	V$ARCHIVED_LOG	shows	the	archived	redo	logs	listed	in	the
control	file.	The	RC_ARCHIVED_LOG	provides	the	same	view	sourced	from	the
recovery	catalog.	Finally,	you	will	find	that	many	of	the	performance-related	views	in
Oracle	can	be	used	to	help	performance-tune	RMAN	operations.	We	will	discuss	the	use
of	those	views	in	more	detail	next	in	Chapter	13.

Summary
Information!	We	want	information!	This	chapter	provides	you	with	the	commands	you	can
use	to	extract	information	from	RMAN.	The	list	and	report	commands	provide	a	wealth
of	information	that	you	can	use	to	administer	RMAN	and	make	sure	that	you	are	getting
good	backups	of	your	database.	We	think	it’s	a	good	idea	to	sit	down	and	determine	what
kinds	of	reporting	you	want	to	do	for	your	databases,	and	to	automate	that	reporting	so
that	you	always	know	the	backup	and	recovery	state	of	your	database.

CHAPTER
13

Performance	Tuning	RMAN	Backup	and
Recovery	Operations

R
MAN	actually	works	pretty	well	right	out	of	the	box,	and	you	generally	will	find	that	it
requires	very	little	tuning.	However,	a	number	of	other	pieces	fit	into	the
RMAN	architectural	puzzle,	and	when	all	those	pieces	come	together,	you
sometimes	need	to	tweak	a	setting	here	or	there	to	get	the	best	performance	out
of	your	backup	processes.	Generally,	then,	the	RMAN	tuning	you	end	up	having

to	do	involves	dealing	with	inefficiencies	in	the	logical	or	physical	database	design,	tuning
of	the	Media	Management	Library	(MML),	or	tuning	RMAN	and	the	MML	layer	to
coexist	better	with	the	physical	device	to	which	you	are	backing	up.

In	this	chapter,	we	look	at	what	you	need	to	tune	before	you	begin	to	tune	RMAN
itself.	We	then	provide	some	tuning	options	for	RMAN.

Before	You	Tune	RMAN
If	your	RMAN	backups	take	hours	and	hours	to	run,	it’s	probably	not	RMAN’s	fault.
More	likely,	it’s	some	issue	with	your	database	or	with	your	MML.	The	last	time	you
drove	in	rush-hour	traffic,	did	you	think	the	slow	movement	was	a	problem	with	your	car?
Of	course	not.	The	problem	was	one	of	too	many	cars	trying	to	move	on	a	highway	that
lacked	enough	lanes.	This	is	an	example	of	a	bandwidth	problem,	or	a	bottleneck.	Cities
attempt	to	solve	their	rush-hour	problem	by	expanding	the	highway	system	or	perhaps	by
adding	a	subway,	buses,	or	light	rail.

The	same	kind	of	problem	exists	when	it	comes	to	tuning	RMAN	and	your	backup	and
recovery	process.	It’s	often	not	the	fault	of	RMAN,	although	RMAN	often	gets	blamed.
More	likely,	the	problem	is	insufficient	bandwidth	of	the	system	as	a	whole	or	some
component	in	the	infrastructure	that	is	not	configured	correctly.	RMAN	often	gets	the
initial	blame,	but	in	the	end,	it	is	just	a	victim.

You	can	use	a	number	of	tools	to	test	the	throughput	of	the	media	to	which	you	are
backing	up	to	help	you	determine	the	baseline	throughput	you	can	expect	from	RMAN.
For	example,	if	you	are	backing	up	to	the	disk-based	FRA,	you	might	use	the	Oracle
Orion	tool	to	test	the	file	system	that	the	FRA	will	be	using.	You	can	use	Orion	to	test
disks	that	are	part	of	a	file	system	or	a	prepared	set	of	disks	to	which	ASM	would	attach.
The	nice	thing	about	Orion	is	that	it	has	the	ability	to	simulate	concurrent	load,	so	you	can
get	an	idea	of	how	many	parallel	processes	can	be	streaming	data	before	you	start	to	see
performance	being	impacted.

Most	MML	vendors	provide	some	method	of	measuring	throughput,	though	this	might
be	as	simple	as	copying	a	file	through	their	interface	and	timing	how	long	that	file	takes	to
copy.	You	will	want	to	make	sure	your	performance	tests	take	concurrency	into
consideration.	So,	if	you’re	going	to	be	using	four	RMAN	channels	for	your	backups,	you
need	to	make	sure	you	test	four	concurrent	read/write	processes	when	measuring
throughput.

These	tests	provide	a	baseline	for	performance	and	can	also	clearly	show	you	if	your
infrastructure	has	performance	issues	that	might	impact	RMAN.	Trying	to	tune	RMAN
when	you	don’t	really	know	what	your	goal	is,	is	futile.	First	of	all,	it	might	be	that	your
throughput	will	never	be	able	to	give	you	the	performance	you	want,	no	matter	what	you

do	with	RMAN.	In	that	case,	you	will	need	to	be	looking	at	fixing	the	architecture,	not
RMAN.	Second,	if	the	testing	does	prove	that	the	infrastructure	can	handle	the	throughput,
you	will	know	an	approximate	value	of	how	much	throughput	you	should	be	trying	to	tune
toward.	It	provides	you	a	goal,	of	sorts,	to	shoot	for.

Once	you	have	the	architecture	working	correctly,	and	you	understand	how	much
performance	you	can	get	out	of	your	architecture,	much	of	RMAN	tuning	really	turns	out
to	be	an	exercise	in	tuning	your	Oracle	database.	The	better	your	database	performs,	the
better	your	RMAN	backups	will	perform.	Very	large	books	have	already	been	written	on
the	subject	of	tuning	your	Oracle	database,	so	we	will	just	give	a	quick	look	at	these
issues.	There	are	a	number	of	good	titles	out	there	if	you	need	more	detailed	information
on	Oracle	database	performance	tuning.

NOTE

We	make	some	tuning	recommendations	in	this	chapter	and	in	other	places	in
this	book.	Make	sure	you	test	our	recommendations	on	your	system	before	you
decide	to	“fire	and	forget”	(meaning	to	make	a	change	without	checking	that	the
change	was	positive).	While	certain	configurations	may	work	for	us	in	our
environments,	you	may	find	that	they	do	not	work	as	well	for	you.

RMAN	Performance:	What	Can	Be	Achieved?
What	level	of	RMAN	performance	can	be	achieved?	The	answer	is,	it	depends	on	the
technology.	If	you	are	stuck	on	a	1GB	network	connection,	then	the	best	you	will	see	is
100MB/sec	to	125MB/sec.	A	10GB	network	connection	will	provide	significantly	more
throughput,	from	between	1GB/sec	and	1.25GB/sec.	If	you	are	using	Oracle	Exadata	and
taking	advantage	of	its	Infiniband	fabric,	you	might	well	see	throughput	rates	of	greater
than	2.5GB/sec	at	its	40Gb/sec	rate.	Later	versions	of	Exadata	provide	even	faster
potential	Infiniband	throughput.

If	you	are	directly	connected	to	your	media	devices	via	Fiber	Channel,	then	the	speeds
of	these	connections	might	vary	between	200MB/sec	for	2GB/sec	FC	up	to	800MB/sec	for
8GB/sec	FC.	This	throughput	can	be	increased	with	additional	channels,	of	course.	All	of
these	throughput	rates	have	a	direct	impact	on	the	performance	of	your	backups.	If	you
have	a	1TB	database	that	you	are	backing	up	over	a	10GB	network	connection,	then
1.25GB/sec	is	the	best	throughput	you	are	going	to	get.	That	would	mean	that	you	can
back	up	a	terabyte	of	data	in	about	14–15	minutes.

Also,	keep	in	mind	that	your	performance	is	limited	by	the	slowest	part	of	the	stack.
So,	it	does	not	matter	how	blazingly	fast	your	disks	are	if	your	infrastructure	can	only
handle	200MB/sec—that	is	the	best	throughput	you	will	get	in	that	environment.

So	the	answer	to	the	question	of	what	can	be	achieved	is	simply,	“It	depends.”	It
depends	on	everything	from	the	server	you	are	on,	the	network,	the	network	adapters,	the
speed	of	the	media	you	are	backing	up	to,	and	even	configuration	of	things	such	as	buffer

sizes.	With	an	Exadata	full	rack,	Oracle	whitepapers	document	backup	rates	to	local	disk
of	from	20TB/hr	for	image	copies	to	50TB/hr	for	incremental	backups	(that	is,	using
incrementally	updated	backups).	Documented	restore	rates	of	20TB/hr	are	also	reported.
When	you	include	database	compression	into	the	backup	picture,	you	can	easily	double
the	throughput	with	respect	to	TB	of	actual	records.	For	example,	if	you	have	on	average
of	2×	compression	in	your	database,	then	the	20TB/hr	of	data	movement	actually	turns
into	40TB/hr.	The	same	is	true	with	restores.	This	means	that	it	is	possible	to	back	up	and
restore	huge	amounts	of	data	in	a	period	of	time	that	even	a	few	years	ago	seemed
dizzying.

You	can	find	an	excellent	Oracle	whitepaper	on	the	backup	and	recovery	performance
that	can	be	gained	on	an	Exadata	Database	Machine	at
http://www.oracle.com/technetwork/database/features/availability/maa-tech-wp-sundbm-
backup-11202-183503.pdf.

Have	the	Right	Hardware	in	Place
If	you	want	high	backup	performance,	the	first	thing	to	look	at	is	the	backup	hardware	at
your	disposal.	This	consists	of	items	such	as	tape	drives,	as	well	as	the	associated
infrastructure	such	as	cabling,	robotic	tape	interfaces,	and	any	MML-layer	software	that
you	might	choose	to	employ.

Backup	media	hardware	will	provide	you	with	a	given	speed	at	which	the	device	will
read	and	write.	Of	course,	the	faster	the	device	writes,	the	faster	your	backups.	Also,	the
more	devices	you	can	back	up	to,	the	better	your	backup	timing	tests	will	be.	This	was
clearly	pointed	out	in	Oracle’s	RMAN	performance	whitepaper	mentioned	in	the
preceding	section.	The	doubling	of	the	number	of	drives	that	RMAN	could	write	to	causes
an	almost	linear	improvement	in	performance	of	both	backup	and	restore	operations.	The
ability	to	parallelize	your	backups	across	multiple	channels	(or	backup	devices)	is	critical
to	quickly	backing	up	a	large	Oracle	database.

RMAN	will	benefit	from	parallel	CPU	resources,	but	the	return	diminishes	much
quicker	with	the	addition	of	CPUs,	as	opposed	to	the	addition	of	physical	backup	devices.
The	bottom	line,	then,	is	that	in	most	cases,	having	multiple	backup	devices	will	have	a
much	greater	positive	impact	on	your	backup	and	restore	windows	than	adding	CPUs	will.

You	will	find	that	most	backup	devices	are	asynchronous	rather	than	synchronous.	An
asynchronous	device	allows	the	backup	server	processes	to	issue	I/O	instructions	without
requiring	the	backup	server	processes	to	wait	for	the	I/O	to	complete.	An	asynchronous
operation,	for	example,	allows	the	server	process	to	issue	a	tape	write	instruction	and,
while	that	instruction	is	being	performed,	proceed	to	fill	memory	buffers	in	preparation	for
the	next	write	operation.	A	synchronous	device,	on	the	other	hand,	would	have	to	wait	for
the	backup	operation	to	complete	before	it	could	perform	any	other	work.	Thus,	in	our
example,	the	synchronous	process	will	have	to	wait	for	the	tape	I/O	to	complete	before	it
can	start	filling	memory	buffers	for	the	next	operation.	Therefore,	an	asynchronous	device
is	more	efficient	than	a	synchronous	one.

Because	asynchronous	operations	are	preferred,	you	may	want	to	know	about	a	few	of
their	parameters.	First,	the	parameter	BACKUP_TAPE_IO_SLAVES	(which	defaults	to

http://www.oracle.com/technetwork/database/features/availability/maa-tech-wp-sundbm-backup-11202-183503.pdf

FALSE)	will	cause	all	tape	I/O	to	be	asynchronous	in	nature.	We	suggest	you	set	this
parameter	to	TRUE	to	enable	asynchronous	I/O	to	your	tape	devices	(if	that	setting	is
supported).	Once	this	parameter	is	established,	you	can	define	the	size	of	the	memory
buffers	that	are	used	by	using	the	parms	parameter	of	the	allocate	channel	command	or
configure	channel	command.

Performance	is	always	a	concern,	of	course.	There	are	views	that	will	help	you	monitor
performance	should	you	be	using	either	I/O	slaves	or	regular	I/O.	If	you	are	not	using	I/O
slaves	(the	default),	you	can	see	the	I/O	throughput	of	RMAN	through	the
V$BACKUP_SYNC_IO	view.	If	you	are	using	I/O	slaves,	you	can	use	the
V$BACKUP_ASYNC_IO	views	instead.

These	two	views	can	be	very	helpful	if	you	are	using	I/O	slaves	to	determine	if
enabling	backup	I/O	slaves	has	any	benefit	and	to	determine	how	many	slaves	you	should
enable.	Additionally,	these	views	can	help	you	determine	your	I/O	throughput	in	general
—which	can	be	useful	when	tuning	the	entire	backup	infrastructure.

The	tape	buffer	size	is	established	when	the	channel	is	configured.	The	default	value	is
OS	specific,	but	is	generally	64KB.	You	can	configure	this	value	to	be	higher	or	lower	by
using	the	allocate	channel	command.	For	the	best	performance,	we	suggest	that	you
configure	this	value	to	256KB	or	higher.	However,	this	value	is	really	dependent	on	the
hardware	and	how	the	infrastructure	is	configured.	Here	is	an	example	of	configuring	the
block	size	for	an	SBT	vendor:

If	you	are	backing	up	to	disk,	you	need	to	determine	whether	your	OS	supports
asynchronous	I/O	(most	do	these	days).	If	it	does,	then	Oracle	automatically	uses	that
feature.	If	it	does	not,	then	Oracle	provides	the	parameter	DBWR_IO_SLAVES,	which,
when	set	to	a	nonzero	value,	causes	Oracle	to	simulate	asynchronous	I/O	to	disks	by
starting	multiple	DBWR	processes.

When	either	DBWR_IO_SLAVES	or	BACKUP_TAPE_IO_SLAVES	is	configured,
you	may	also	want	to	create	a	large	pool.	This	will	help	eliminate	shared-pool	contention
and	memory	allocation	error	issues	that	can	accompany	shared-pool	use	when
BACKUP_TAPE_IO_SLAVES	is	enabled.	If	you	are	using	Automatic	Shared	Memory
Management	(ASMM),	Oracle	will	manage	the	memory	allocation	of	the	shared	pool	for
you.	If	you	want	to	manually	set	the	large	pool,	the	total	size	of	disk	buffers	is	limited	to
16MB	per	channel.	The	formula	for	setting	the	LARGE_POOL_SIZE	parameter	for
backup	is	as	follows:

LARGE_POOL_SIZE	=	(number	of	allocated	channels)	*	(16MB	+	(4	*	size	of	tape
buffer))

NOTE

If	DBWR_IO_SLAVES	or	BACKUP_TAPE_IO_SLAVES	is	not	configured,

RMAN	will	not	use	the	large	pool.	Generally,	you	do	not	need	to	configure	these
parameter	settings	to	get	good	performance	from	RMAN,	unless	your	OS	does	not
natively	support	asynchronous	I/O.

Note	that	if	you	are	using	ASM	with	Oracle	version	11.2	and	later,	ASM	will
automatically	tune	the	I/O	buffers	for	RMAN.	As	a	result,	no	tuning	should	be	required.
You	can	review	the	V$BACKUP*IO	views	to	determine	the	buffer	sizes	that	ASM	has
configured.	Usually	you	will	find	that	64	buffers	will	have	been	allocated,	each	at	4KB.

When	either	DBWR_IO_SLAVES	or	BACKUP_TAPE_IO_SLAVES	is	configured,
you	may	also	want	to	create	a	large	pool.	This	will	help	eliminate	shared-pool	contention
and	memory	allocation	error	issues	that	can	accompany	shared-pool	use	when
BACKUP_TAPE_IO_SLAVES	is	enabled.	If	you	are	using	Automatic	Shared	Memory
Management	(ASMM),	Oracle	will	manage	the	memory	allocation	of	the	shared	pool	for
you.	If	you	want	to	manually	set	the	large	pool,	the	total	size	of	disk	buffers	is	limited	to
16MB	per	channel.

Use	the	Correct	Backup	Strategy
In	looking	at	the	rates	of	backups	and	the	time	it	takes	to	restore	a	database,	one	thing	is
clear—incremental	backups,	along	with	the	use	of	the	block	change	tracking	file,	are
generally	the	way	to	go	if	throughput	is	your	concern.	That	being	said,	the	RMAN
“backup	once,	incremental	forever”	backup	strategy	is	perhaps	the	best	of	all	worlds.	With
these	types	of	backups	you	perform	a	level	0	base	backup	and	then,	after	that,	you	perform
incremental	backups	of	the	database.	We	discuss	this	backup	strategy	in	more	detail	in
Chapter	15,	and	the	mechanics	of	such	backups	are	discussed	in	Chapter	7.

Tune	the	Database
A	badly	tuned	database	can	have	a	significant	negative	impact	on	your	backup	times.
Certain	database	tuning	issues	can	also	have	significant	impact	on	your	restore	times.	In
this	section,	we	briefly	look	at	what	some	of	these	tuning	issues	are,	including	I/O	tuning,
memory	tuning,	and	SQL	tuning.

Tune	I/O
Most	DBAs	understand	the	impact	of	I/O	on	basic	database	operations.	Contention	on	a
given	disk	drive	for	database	resources	(say,	for	example,	that	the	online	redo	log	and	a
database	datafile	are	on	the	same	device)	can	cause	significant	system	slowdowns.	Just	as
poor	I/O	distribution	can	impact	your	database	performance,	it	can	also	affect	your	backup
and	restore	times.	This	makes	sense,	because	RMAN	is	going	to	be	just	another	process
(or,	more	likely,	many	processes	due	to	parallel	streams)	that	contends	for	I/O	time	on
your	devices.

Backing	up	is	a	read-intensive	operation.	If	you	have	poor	I/O	distribution,	not	only
will	RMAN	performance	suffer,	but	also	other	users	will	suffer,	if	not	even	worse,	during
the	backup	operation.	Recovery	may	be	somewhat	easier	if	all	of	your	recoveries	are	full
database	recoveries.	However,	if	you	are	just	recovering	a	datafile	or	a	tablespace,	while
the	database	is	open	and	in	use,	you	may	find	that	poor	I/O	distribution	impacts	your

recovery	window,	and	your	users.	The	bottom	line	is	that	bad	I/O	distribution	impacts	not
only	your	day-to-day	database	users,	but	also	your	backups	and	recoveries,	causing	them
to	take	longer.

Much	has	been	written	on	distribution	of	I/O	on	an	Oracle	database	and	how	to	do	it
properly.	We	suggest	that	you	take	a	look	at	the	Oracle	whitepaper	titled	“Oracle	Storage
Configuration	Made	Easy”	(Juan	Loaiza,	Oracle	Corporation,	available	at
www.oracle.com/technology/index.html).	In	this	paper,	Mr.	Loaiza	makes	a	compelling
argument	for	using	an	I/O	distribution	known	as	Stripe	and	Mirror	Everything	(SAME),
discusses	current	disk	speeds	and	feeds,	and	then	demonstrates	the	logic	of	his	SAME
methodology.	This	methodology	recommends	that	you	stripe	your	data	among	the	largest
number	of	disks	possible	and	suggests	this	is	a	much	better	approach	than	striping	across	a
few	disks	or	using	a	parity	disk	approach,	such	as	RAID-5	(mirroring	is,	of	course,	more
expensive).	Further,	this	paper	recommends	that	a	stripe	size	of	about	1MB	is	generally
optimal	and	demonstrates	that	such	a	configuration	in	Oracle’s	testing	resulted	in	a	13
percent	better	read/write	from	the	disk	than	nonstriped	systems,	with	an	associated	loss	in
CPU	overhead.	This	faster	disk	read/write	will	translate	into	faster	backup	timings.

Tune	Memory	Usage
Like	any	Oracle	process,	RMAN	uses	memory.	When	an	RMAN	operation	is	started,	a
buffer	is	allocated	to	the	operation	for	RMAN	to	work	out	of.	The	size	of	the	buffer
allocated	depends	on	a	number	of	different	factors,	including	the	following:

			RMAN	backup	and	recovery	multiplexing	effects

			The	device	type	used

			The	number	of	channels	allocated	during	the	operation

Each	of	these	factors	affects	how	much	memory	RMAN	will	require.	RMAN	allocates
memory	buffers	for	operations.	How	it	allocates	these	buffers	depends	on	the	type	of
device	you	are	going	to	use.	Let’s	look	at	the	different	buffer	allocation	methods	in	a	bit
more	detail	next.

Allocating	Memory	Buffers	for	Disk	Devices		When	backing	up	to	disk	devices,	RMAN
will	allocate	up	to	16MB	of	memory.	This	memory	is	allocated	based	on	the	level	of
multiplexing	(based	on	the	filesperset	setting).	If	the	level	of	multiplexing	is	4	or	less,
then	RMAN	will	allocate	16	buffers	of	1MB	each.	These	1MB	buffers	are	divided	among
the	number	of	datafiles	to	be	backed	up.	So,	if	filesperset	is	set	to	2,	then	each	datafile
will	be	allocated	eight	1MB	buffers.

If	filesperset	is	between	5	and	8,	then	512MB	buffers	are	allocated	and	distributed
evenly	between	the	different	datafiles.	This	way,	no	more	than	16MB	of	buffers	will	be
allocated.	Finally,	if	the	level	of	multiplexing	is	greater	than	8,	four	buffers	of	128MB	will
be	allocated	to	each	datafile,	which	amounts	to	512KB	per	datafile.

There	is	a	good	rule	of	thumb	with	the	filesperset	parameter—less	is	better.	We	suggest
that	you	set	filesperset	to	a	value	around	4.	This	will	generally	result	in	larger	buffers	and
better	performance.	What’s	more,	in	the	event	that	there	is	corruption	of	a	backup	file,	the
loss	of	four	datafiles	is	much	less	troublesome	than	the	loss	of,	say,	64	datafiles	in	a	single

http://www.oracle.com/technology/index.html

backup	set.

Allocating	Memory	Buffers	for	SBT	Devices		When	backing	up	to	an	SBT	device,
RMAN	allocates	four	buffers	for	each	channel	that	is	allocated.	These	buffers	are	256KB
in	size	generally,	and	thus	the	total	memory	allocated	per	channel	is	1MB.	The	buffer	sizes
can	be	managed	using	the	PARMS	and	BLKSIZE	parameters	of	the	allocate	and	send
commands.

This	memory	is	generally	allocated	from	the	PGA,	but	if	the
BACKUP_TAPE_IO_SLAVES	parameter	is	set	to	TRUE,	then	the	SGA	is	used	unless	the
large	pool	is	allocated,	in	which	case	the	large	pool	will	be	used.	Therefore,	if	you
configure	I/O	slaves	(and	generally	you	should	if	you	back	up	to	SBT	devices),	then	you
should	configure	a	large	pool	to	reduce	the	overall	memory	requirements	on	the	large
pool.

Tune	Your	SQL
You	might	ask	yourself	what	bad	SQL	running	in	your	database	has	to	do	with
performance-tuning	your	backup	and	recovery	times.	It’s	really	quite	simple.	The	negative
performance	impact	of	poor	SQL	statement	operations	has	an	overall	negative
performance	impact	on	your	database	and	the	system	the	database	is	on.	Anything	that	has
a	negative	impact	on	your	database	is	likewise	going	to	have	a	negative	impact	on	your
backup	operations.	Tune	your	SQL	operations	such	that	they	reduce	the	overall	number	of
I/Os	required	(logical	and	physical),	and	schedule	your	backups	to	occur	during	times	of
typical	low	system	usage	(if	that	is	possible).

Tune	Your	Environment
Carefully	consider	your	backup	schedules,	and	ensure	that	they	do	not	conflict	with	I/O-
intensive	database	operations	such	as	data	loads	or	reports.	Also,	if	you	find	your	backups
are	taking	too	long,	consider	an	incremental	backup	strategy,	and	analyze	your	database	to
determine	whether	certain	tablespaces	might	be	made	read-only,	so	you	don’t	have	to
continue	to	back	them	up	often.	Further,	if	you	are	running	in	ARCHIVELOG	mode,	you
can	consider	staggering	the	backups	of	tablespaces	on	different	days	to	reduce	the	overall
timeframe	of	your	backups	(at	the	cost	of	somewhat	longer	recovery	times,	of	course).

If	you	are	running	your	database	using	Oracle	Real	Application	Clusters,	then	RMAN
can	take	advantage	of	the	clustered	environment	to	parallelize	your	RMAN	operations.

Something	else	to	look	at	is	your	recovery	catalog.	You	should	ensure	that	you	are
running	statistics	on	the	recovery	catalog,	including	statistics	on	fixed	table	stats.

Tune	Your	Backup	and	Recovery	Strategy
We	already	mentioned	using	incremental	backups	as	your	primary	backup	strategy,	but
there	are	additional	things	you	might	want	to	do	with	your	backup	and	recovery	efforts.

First,	don’t	forget	that	RMAN	offers	multisection	backups,	which	provide	the	ability	to
back	up	a	large	datafile	over	more	than	one	channel	at	the	same	time.	This	means	that	if
you	have	several	smaller	datafiles	and	one	or	two	large	datafiles,	the	“single	channel	per

backup	set”	rule	can	cause	the	backup	or	restore	to	take	longer.	Using	multisection
backups,	you	can	spread	the	I/O	for	the	single	datafile	over	more	than	one	channel,	which
can	significantly	speed	up	the	backup	process.

Another	issue	to	consider	is	the	impact	of	your	backup	strategy	on	your	recovery.	One
of	the	more	painful	problems	with	RMAN	is	that,	depending	on	the	platform	(Unix	is	one
example;	the	following	three	paragraphs	do	not	apply	to	Oracle	on	Windows	NT),	if	you
restore	an	entire	database	with	the	restore	database	command,	you	must	be	careful	to
ensure	that	enough	space	is	available	for	the	restore.	Everything	is	just	fine	as	long	as	you
have	enough	disk	space,	but	consider	for	a	moment	a	true	disaster	recovery	situation
where	you	do	not	have	enough	disk	space	in	the	right	places.	In	this	case,	RMAN	is	going
to	spend	perhaps	an	hour	or	more	recovering	your	database.	Once	it	runs	out	of	disk	space,
you	would	assume	that	RMAN	would	just	stop	at	that	point,	alert	you	to	the	lack-of-space
problem,	and	then	just	stop	the	restore	at	that	position.	The	truth,	however,	is	a	bit	more
painful.

If	the	datafile	restore	process	fails,	RMAN	removes	every	incompletely	restored	file
from	that	restore	session.	Therefore,	if	you	spend	two	hours	restoring	all	but	one	database
datafile	and	then	you	run	out	of	space	during	that	restore,	you	are	in	deep	trouble,	because
RMAN	is	now	going	to	remove	that	one	datafile,	and	you	will	have	to	restore	it	again.
This	equates	to	a	very	unhappy	DBA.

Note	that	some	platforms,	such	as	Windows	NT,	do	check	for	available	space	before
you	actually	start	an	RMAN	database,	datafile,	or	tablespace	restore.	In	this	case,	the	issue
of	running	out	of	space,	while	still	a	problem,	is	not	as	much	of	a	time	waster.

Another	consideration	with	respect	to	restores	is	to	make	sure	you	are	doing	the
minimal	restore	required	by	the	failure	you	are	dealing	with.	If	you	have	just	lost	a
datafile,	you	don’t	need	to	restore	the	entire	database—a	datafile	restore	is	the	preferred
restore	method	in	that	case.

Tuning	RMAN
As	we	stated	at	the	beginning	of	the	chapter,	RMAN	out	of	the	box	works	pretty	well.
Still,	you	can	do	a	few	things	to	tune	it	so	that	you	get	better	performance,	which	is	what
this	section	is	all	about.	First,	we	discuss	the	tuning	options	in	RMAN	itself.	Then,	we
discuss	some	MML	tuning	issues.

Tuning	RMAN	Settings
We	discuss	a	few	ways	to	tune	RMAN	in	this	section.	Tuning	RMAN	itself	can	involve
tuning	parallel	operations	and	also	configuring	RMAN	to	multiplex	(or	not	to	multiplex,
that	is	the	question).	This	section	also	covers	some	things	that	you	can	do	to	actually	tune
down	RMAN.

Parallel	Channel	Operations
Perhaps	the	biggest	impact	you	can	make	when	tuning	your	database	backups	is	to
parallelize	them	by	using	multiple	RMAN	channels.	Typically,	you	configure	a	channel

for	each	device	you	are	going	to	back	up	to.	Therefore,	if	you	back	up	to	three	different
disks,	configure	three	different	channels.	You	will	see	little	or	no	benefit	of	paralleling
backups	on	the	same	device,	of	course;	so	if	you	have	a	D:	drive	and	an	E:	drive	on	your
Windows	NT	system	but	both	are	just	partitioned	on	the	same	disk,	you	will	derive	no
benefit	from	paralleling	backups	to	those	two	devices.

NOTE

The	memory	buffering	on	tape	systems	may	well	make	the	allocation	of
additional	channels	worthwhile,	so	you	should	always	do	some	timing	tests	to
decide	exactly	how	many	channels	you	need	to	use	on	your	system.

Paralleling	backups	is	accomplished	by	allocating	channels	to	the	backup.	Channels
can	have	default	values	configured	for	them	(along	with	the	default	degree	of
parallelization	that	will	determine	how	many	of	the	channels	are	used)	with	the	configure
command,	discussed	in	Chapter	5.	For	example,	if	we	have	two	tape	devices	that	we	are
going	to	back	up	to,	we’d	likely	configure	two	default	channels	and	a	default	level	of
parallelization,	as	shown	here:

This	would	serve	to	ensure	that	each	backup	or	recover	command	is	automatically
allocated	two	channels	to	parallelize	the	process.

Of	course,	depending	on	your	device,	you	may	well	be	able	to	run	parallel	streams	to
the	device.	The	best	thing	to	do	is	run	several	tests	and	determine	from	those	tests	the
performance	of	a	varying	number	of	backup	streams	from	both	a	backup	and	a	recovery
point	of	view.	It	may	be	that	a	different	number	of	streams	will	be	more	efficient	during
your	backup	than	during	your	recovery,	and	only	testing	will	determine	this.

We	have	already	discussed	the	multiplexing	of	backups	in	RMAN	and	how	to	tune	this
feature.	Tuning	multiplexing	can	have	significant	performance	impacts	on	your	backups
and	recoveries.	As	we	also	discussed	earlier,	how	you	configure	your	multiplexing	will
impact	the	amount	of	memory	that	is	allocated	to	the	RMAN	backup	process.	The	more
memory,	the	better,	as	long	as	you	do	not	start	to	induce	swapping	back	and	forth	to	disk.

Also,	properly	configuring	multiplexing	can	make	streaming	to	tape	devices	more
efficient.	The	more	memory	you	can	allocate	to	RMAN,	the	more	data	that	can	be
streamed	to	your	I/O	devices.	Finally,	tape	streaming	is	rarely	an	issue	with	newer-
generation	tape	drives.	Generally,	they	have	a	great	deal	of	onboard	buffer	memory	that	is
used	to	ensure	that	the	tape	is	written	to	at	a	constant	rate.

RMAN	Multiplexing
Before	we	dive	headfirst	into	performance	considerations,	we	should	take	a	moment	to
discuss	multiplexing	in	RMAN.	Multiplexing	allows	a	single	RMAN	channel	to
parallelize	the	reading	of	database	datafiles	during	the	backup	process	and	to	write	the
contents	of	those	datafiles	to	the	same	backup	set	piece.	Thus,	one	backup	set	piece	may
contain	the	contents	of	many	different	datafiles.

Note	that	the	contents	of	a	given	datafile	can	reside	in	more	than	one	backup	set	piece
(which	is	evidenced	by	the	fact	that	you	can	set	maxpiecesize	to	a	value	smaller	than	that
of	any	database	datafile,	but	maxsetsize	must	be	at	least	the	size	of	the	largest	tablespace
being	backed	up).	However,	in	a	given	backup,	a	given	datafile	will	only	be	backed	up
through	one	channel	(or	one	backup	set).	Thus,	if	you	allocate	two	channels	(and,	as	a
result,	have	two	backup	sets)	and	your	database	consists	of	one	large	datafile,	the	ability	of
RMAN	to	parallelize	that	datafile’s	backup	will	be	greatly	limited.

The	level	of	RMAN’s	multiplexing	is	determined	by	the	lesser	of	two	RMAN
parameters.	The	first	is	the	filesperset	parameter	(established	when	you	issue	the	backup
command),	and	the	second	is	the	maxopenfiles	parameter	(established	when	the	channel
is	allocated).

The	filesperset	parameter	establishes	how	many	datafiles	should	be	included	in	each
backup	set.	The	number	of	datafiles	in	a	given	backup	set	will	be	some	number	less	than
or	equivalent	to	filesperset.	When	you	do	a	backup,	RMAN	will	assign	a	default	value	for
filesperset	of	either	64	or	the	number	of	input	files	divided	by	the	number	of	allocated
channels,	whichever	is	less.	You	can	use	a	nondefault	value	for	filesperset	by	using	the
filesperset	parameter	of	the	backup	command,	as	shown	in	this	example:

The	maxopenfiles	parameter	establishes	a	limit	on	how	many	datafiles	RMAN	can
read	in	parallel	(the	default	is	8).	You	establish	the	maxopenfiles	limit	on	a	channel-by-
channel	basis.	Here	is	an	example	of	the	use	of	maxopenfiles:

For	example,	if	you	created	a	backup	set	with	filesperset	set	to	6	and	maxopenfiles	set
to	3,	RMAN	would	only	be	able	to	back	up	three	datafiles	in	parallel	at	a	time.	The
backup	sets	created	would	still	contain	at	most	six	datafiles	per	backup	set	(assuming	one
channel	is	allocated	and	a	degree	of	parallelism	of	1),	but	only	three	datafiles	would	be
written	to	the	backup	set	at	any	time.

NOTE

If	you	have	your	data	striped	on	a	large	number	of	disks,	you	will	not	need	to
multiplex	your	backups,	and	you	can	set	maxopenfiles	to	a	value	of	1.	If	you	are
striped	across	a	smaller	set	of	disks,	consider	setting	maxopenfiles	to	a	value

between	4	and	8.	If	you	do	not	stripe	your	data	at	all,	maxopenfiles	generally
should	be	set	to	some	value	greater	than	8.

Multiplexing,	and	the	establishment	of	the	filesperset	and	maxopenfiles	parameters,
can	have	a	significant	impact	(good	and	bad)	on	the	performance	of	your	backups.	Tuning
RMAN	multiplexing	can	decrease	the	overall	time	of	your	backups,	as	long	as	your
system	is	capable	of	the	parallel	operations	that	occur	during	multiplexing.	As	with	most
things,	too	much	of	a	good	thing	is	too	much,	and	certainly	you	can	over-parallelize	your
backups	such	that	the	system	is	overworked.	In	this	case,	you	will	quickly	see	the
performance	of	your	system	diminish	and	your	backup	times	increase.

Multiplexing	can	also	have	an	impact	on	tape	operations.	Because	tape	systems	are
streaming	devices,	it’s	important	to	keep	the	flow	of	data	streaming	to	the	device	at	a	rate
that	allows	it	to	continue	to	write	without	needing	to	pause.	Generally,	once	a	tape	has	a
delay	in	the	output	data	stream,	the	tape	device	will	have	to	stop	and	reposition	the	write
head	before	the	next	write	can	occur.	This	can	result	in	significant	delays	in	the	overall
performance	of	your	backups.	By	setting	filesperset	high	and	maxopenfiles	low,	you	can
tune	your	backup	so	that	it	streams	to	your	tape	device	as	efficiently	as	possible.	Beware,
of	course,	of	overdoing	it	and	bogging	down	your	system	so	much	that	the	I/O	channels	or
CPU	can’t	keep	up	with	the	flow	of	data	that	RMAN	is	providing.	As	always,	finding	the
proper	balance	takes	some	patient	tuning	and	monitoring.

Controlling	the	Overall	Impact	of	RMAN	Operations
Sometimes	you	want	to	tune	RMAN	down	rather	than	up.	Prior	to	Oracle	Database	10g,
you	would	use	the	RMAN	parameters	rate	and	readrate	to	throttle	RMAN	down,	thus
freeing	system	resources	for	other	operations.	These	parameters	would	be	set	when	you
allocated	channels	for	RMAN	operations.	These	parameters	are	still	available	in	Oracle
Database,	but	they	have	been	replaced.

Oracle	Database	makes	controlling	RMAN	backups	much	easier.	Now,	you	simply	use
the	duration	parameter	in	the	backup	command	to	control	the	duration	of	the	backup.
The	duration	parameter	has	an	additional	keyword,	minimize	load,	that	allows	you	to
indicate	to	RMAN	that	it	should	minimize	the	I/O	load	required	to	back	up	the	database
over	the	given	duration.	For	example,	if	the	backup	typically	takes	five	hours	and
consumes	90	percent	of	the	available	I/O,	you	can	indicate	to	RMAN	that	it	should	use	a
duration	of	ten	hours	for	the	backup.	When	this	is	included	with	the	minimize	load
parameter,	you	might	well	expect	to	see	only	45	to	50	percent	of	available	I/O	consumed,
rather	than	the	90	percent.	The	negative	side	of	this	is,	of	course,	that	your	backup	will
take	longer.	Here	is	an	example	of	using	the	duration	parameter	when	starting	a	backup;
in	this	case,	we	want	the	backup	to	run	ten	hours:

Of	course,	one	problem	with	the	use	of	the	duration	parameter	is	that	the	backup	could
actually	take	longer	than	ten	hours.	Any	completed	backup	set	can	be	used	for	recovery,
even	if	the	overall	backup	process	fails	due	to	duration	issues.	You	can	use	the	partial
keyword	to	suppress	RMAN	errors	in	the	event	that	the	duration	limit	is	exceeded	and	the
backup	fails.

One	final	thing	to	note	about	the	use	of	the	duration	parameter	is	that	the	database	files
with	the	oldest	backups	will	be	given	priority	over	files	that	have	newer	RMAN	backup
dates.	Thus,	if	the	backup	of	a	database	with	20	datafiles	fails	after	ten	are	backed	up,	the
next	time	the	backup	runs,	the	ten	that	were	not	backed	up	would	get	first	priority.

Tuning	the	MML	Layer
The	Media	Management	Layer	(MML)	is	an	Oracle-provided	API	that	interfaces	with	the
software	of	various	vendors	who	provide	external	backup	solutions	(such	as	tape	devices).
Each	component	of	RMAN	may	require	some	tuning	effort,	including	the	MML	layer.
You	need	to	consider	a	number	of	things	with	regard	to	the	MML	backup	devices.	Most
are	going	to	be	running	in	asynchronous	mode,	but	if	they	do	not,	that	may	be	a	big	cause
of	your	problems.	Also,	sometimes	DBAs	will	set	the	rate	parameter	when	they	allocate	a
channel	for	backups.	This	is	generally	something	you	do	not	want	to	do,	because	it	will
create	an	artificial	performance	bottleneck.

Also,	some	of	the	MML	vendors	provide	various	configurable	parameters,	such	as	a
configurable	buffer	size,	that	you	can	configure	in	vendor-specific	parameter	files.	Look
into	the	tuning	possibilities	that	these	parameter	files	offer	you.

There	are	other	factors	related	to	the	MML	layer,	such	as	the	supported	transfer	rate	of
the	backup	device	you	are	using,	compression,	streaming,	and	the	block	size.	You	must
analyze	all	of	these	factors	in	an	overall	effort	to	tune	the	performance	of	your	RMAN
backups.

Identifying	Database-Related	RMAN	Issues
In	many	ways,	RMAN	tuning	is	a	lot	like	SQL	tuning.	RMAN	uses	the	Oracle	Database	in
much	the	same	way	that	SQL	statements	do,	such	as	using	the	buffer	cache,	issuing
dynamic	SQL	calls,	and	calling	stored	PL/SQL	packages.	These	operations,	such	as	timed
wait	events,	show	up	in	the	Oracle	Database–generated	statistics.	As	a	result,	several
views	are	available	to	help	give	you	some	idea	as	to	the	kinds	of	problems	you	might	be
encountering	and	the	source	of	those	problems.

A	number	of	views	are	useful	for	RMAN	performance	tuning.	This	book	isn’t	a	tuning
book,	but	we	can	provide	a	few	RMAN-specific	insights.	Some	views	you	might	be
interested	in	with	respect	to	RMAN	tuning	would	include	the	following:

			V$RMAN_BACKUP_JOB_DETAILS

			V$ACTIVE_SESSION_HISTORY

			V$SESSION

			V$PROCESS

			V$SESSION_LONGOPS

			V$BACKUP_ASYNC_IO

			V$BACKUP_SYNC_IO

There	are	a	number	of	different	potential	sources	for	performance	problems.	When	you

are	performing	read	operations	with	RMAN,	such	as	reading	the	control	file,	these
components	can	be	involved	in	the	performance	issues:

			Control	file			RMAN	frequently	needs	to	read	the	control	file	for	RMAN
metadata.	If	the	control	file	is	experiencing	slow	I/O	(perhaps	due	to	slow	disk
response	times),	this	can	slow	down	RMAN	operations.	In	the	past,	certain	RMAN-
related	bugs	have	also	caused	performance	problems	related	to	the	database	control
file,	so	it’s	important	to	get	Oracle	involved	if	you	experience	unexplainable
performance	problems	involving	the	control	file.

			Recovery	catalog			If	you	are	using	the	recovery	catalog,	RMAN	will
frequently	access	the	catalog	to	read	the	RMAN	metadata.	If	the	recovery	catalog	is
experiencing	slow	I/O,	this	can	slow	down	RMAN	operations.	Keep	in	mind	that	the
recovery	catalog	is	often	a	separate	database	from	the	database	you	are	backing	up.
Thus,	performance	problems	can	be	a	result	of	the	recovery	catalog	database	or	of
the	database	being	backed	up.	When	performance-tuning	RMAN	problems,	then,
you	will	need	to	look	at	the	statistics	of	both	the	database	being	backed	up	and	the
recovery	catalog	database.	In	the	past,	certain	RMAN-related	bugs	have	also	caused
performance	problems	related	to	the	recovery	catalog,	so	it’s	important	to	get	Oracle
involved	if	you	experience	unexplainable	performance	problems	involving	the
control	file.

			Reading	memory	buffers			As	with	any	other	database	operation,	memory	is
important.	The	SGA	should	be	properly	configured.	Typically,	memory	issues	on	the
target	database	will	surface	for	problems	beyond	RMAN.	Memory	issues	on	the
recovery	catalog	database	can	cause	significant	performance	issues.

			Reading	database	blocks			RMAN	must	read	database	blocks	either	from
memory	or	from	disk.	If	the	disks	are	not	sufficiently	responsive,	then	I/O	rates	will
suffer.	This	can	cause	performance	impacts	on	RMAN	operations.	Likewise,	if	the
SGA	is	too	small,	you	will	end	up	reading	blocks	from	disk	more	frequently,	so	this
can	have	an	impact	on	RMAN	performance.

Write	operations	(such	as	a	datafile	restore)	can	also	cause	performance	issues.	Many
of	the	same	components	can	be	involved	in	write	operations	as	with	read	operations.
Database	components	that	can	be	involved	in	write-related	performance	issues	include	the
following:

			Control	file.

			Recovery	catalog.

			Writing	to	tape/disk.	As	with	reading	from	tape	or	disk,	the	I/O	rates	that	you
can	achieve	can	make	a	difference	with	respect	to	performance.

			Writing	to	memory	buffers.

We	mentioned	several	views	in	this	section	that	can	be	used	to	monitor	and	tune
RMAN	performance.	Using	these	views,	you	can	determine	how	well	the	database,
RMAN,	and	the	MML	are	performing.	You	can	also	use	these	views	to	determine	how
long	a	backup	or	recovery	process	has	taken	and	how	much	longer	you	can	expect	it	to
take.	Let’s	look	at	these	views	and	how	you	can	best	use	them.

V$RMAN_BACKUP_JOB_DETAILS
The	V$RMAN_BACKUP_JOB_DETAILS	view	provides	some	insight	into	each	backup
that	occurs	in	your	database.	The	view	provides	details	on	the	start	time,	stop	time,
elapsed	time,	and	bytes	associated	with	each	RMAN	backup	operation.	Here	is	an
example	of	V$RMAN_BACKUP_JOB_DETAILS:

In	this	example,	we	see	that	two	backup	operations	have	successfully	executed.	Over
time,	we	would	be	very	interested	in	how	long	the	backups	were	taking	and	whether	the
trend	is	increasing.	By	looking	at	the	trends	with	respect	to	backup	execution	times,	we
can	address	problems	before	they	actually	become	problems.

V$SESSION_LONGOPS	and	V$SESSION
The	V$SESSION_LONGOPS	view	is	useful	during	a	backup	or	restore	operation	to
determine	how	long	the	operation	has	taken	and	how	much	longer	it	is	expected	to	take	to
complete.	Join	this	view	to	the	V$SESSION	view	for	additional	information	about	your
RMAN	backup	or	recovery	sessions.	Here	is	an	example	of	a	join	between
V$SESSION_LONGOPS	and	V$SESSION	during	a	database	backup:

In	this	example,	we	have	an	RMAN	process	running	a	backup.	It	has	connected	to	the
database	as	SID	14.	The	time	remaining,	7390,	is	the	expected	time	in	seconds	that	this
backup	will	take.	You	can	thus	determine	how	long	your	backup	will	take	by	looking	at
this	report.	Note	that	we	also	did	a	join	to	V$SESSION	to	get	some	additional	information

on	our	RMAN	session,	such	as	the	username	and	the	program	name.

V$ACTIVE_SESSION_HISTORY
Oracle	Database	offers	a	feature	called	Active	Session	History	(ASH)	that	provides
historical	session-related	information	on	Oracle	database	operations.	ASH	is	a	very
powerful	tool	that	can	be	used	to	review	historical	run-time	information,	providing
information	that	can	be	effective	for	use	when	tuning	RMAN	operations.	One	use	of	ASH
is	to	look	at	wait	times	that	various	sessions	have	experienced	and	what	the	associated
waits	are.	Here	is	an	example	of	such	a	query:

V$BACKUP_ASYNC_IO	and	V$BACKUP_SYNC_IO
The	V$BACKUP_ASYNC_IO	and	V$BACKUP_SYNC_IO	views	contain	detailed
information	on	RMAN	asynchronous	and	synchronous	backup	operations.	These	views
are	transitory	in	nature	and	are	cleared	each	time	the	database	is	shut	down.	These	views
contain	a	row	for	each	asynchronous	or	synchronous	backup	or	recovery	operation.
Perhaps	the	biggest	benefit	from	this	view	is	the	EFFECTIVE_BYTES_PER_SECOND
column	in	rows	where	the	TYPE	column	is	set	to	AGGREGATE.	This	column	represents
the	rate	at	which	the	objects	are	being	backed	up	or	recovered	in	bytes	per	second.	This
number	should	be	close	to	the	listed	read/write	rate	of	your	backup	hardware.	If	the
EFFECTIVE_BYTES_PER_SECOND	column	value	is	much	lower	than	the	rated	speed
of	your	backup	hardware,	then	you	should	be	looking	for	some	sort	of	problem	with	your
backup	process.	The	problem	could	be	caused	by	any	number	of	things—from	an
overburdened	CPU,	to	a	saturated	network,	or	perhaps	a	configuration	issue	with	the
MML	interface	to	your	vendor’s	backup	solution.

NOTE

If	you	see	data	in	V$BACKUP_SYNC_IO,	this	implies	that	you	are	not	doing
asynchronous	backups.	If	this	is	the	case,	you	need	to	investigate	why	your
backups	are	occurring	in	synchronous	fashion.

Here	is	an	example	of	a	query	against	V$BACKUP_ASYNC_IO	and	its	results	after	a
database	backup	has	been	completed:

In	this	case,	we	can	see	the	effective	transfer	rate	from	the	database	to	the	backup	set
by	RMAN.	Further,	we	can	see	the	name	of	the	datafile	that	was	backed	up	and	the	actual
start	and	stop	time	of	the	backup	itself.

Another	way	to	measure	the	efficiency	of	your	backup	process	is	to	use	the
V$BACKUP_ASYNC_IO	view.	This	view	has	several	columns	of	interest,	which	are
listed	and	described	in	Table	13-1.

TABLE	13-1.			V$BACKUP_ASYNC_IO	Column	Descriptions

To	determine	whether	there	is	an	I/O	problem,	we	can	look	at	the	ratio	of	I/Os	to	long
waits	(LONG_WAITS/IO_COUNTS),	as	shown	in	the	following	code	segment:

The	numbers	returned	by	this	query	clearly	indicate	some	sort	of	I/O	bottleneck	is
causing	grief	(in	this	case,	it’s	an	overly	taxed	single	CPU).

Tracing	RMAN	Sessions
Sometimes	using	views	is	not	enough	to	track	down	problems.	Sometimes	you	need	to	get
down	to	the	nitty	and	the	gritty.	This	means	tracing	the	Oracle	sessions	related	to	the
RMAN	operation.	This	can	be	somewhat	complex,	because	RMAN	will	actually	create	a
number	of	Oracle	sessions	in	order	to	complete	its	work.	In	this	section,	we	introduce	you

to	the	notion	of	tracing	and	how	to	start	tracing.	Tracing,	like	tuning,	is	a	topic	unto	itself.
If	you	find	yourself	needing	to	actually	trace	RMAN	sessions,	then	you	have	a	serious
problem.	In	these	cases,	you	will	want	to	do	some	more	research	on	Oracle	tracing	and
consult	with	Oracle.

Depending	on	the	nature	of	the	RMAN	problem,	you	may	need	to	trace	one	or	all	of
those	sessions.	There	are	several	ways	to	start	tracing	RMAN	sessions.	Generally,	we	try
to	start	with	the	easiest	method	and	then	move	to	the	more	complicated	method	as
required.

Tracing	in	Oracle	is	done	by	enabling	an	Oracle	event.	An	Oracle	event	is	something	a
DBA	or	developer	“sets”	in	order	to	get	Oracle	to	do	something	that	it	does	not	normally
do.	Each	event	is	numbered,	and	in	our	case	the	event	we	are	interested	in	is	the	10046
event.	When	you	set	the	10046	event,	you	are	telling	the	Oracle	database	that	you	want	it
to	create	a	trace	file	and	start	tracing.	Tracing	can	be	enabled	at	the	database	or	session
level.	Because	of	the	overhead	involved,	you	want	to	be	cautious	about	tracing	and	only
trace	the	sessions	that	need	to	be	traced.

Reading	the	output	of	a	trace	file	is	beyond	the	scope	of	this	book,	and	the	need	to	do
such	a	thing	should	be	very	rare	indeed.	However,	you	may	want	to	investigate	such
things,	or	Oracle	might	ask	you	to	trace	your	RMAN	sessions.	So,	we	are	going	to	show
you	how	to	do	it!	Depending	on	your	needs,	you	might	want	to	enable	tracing	in	one	of
these	ways:

			From	the	RMAN	prompt,	use	the	SQL	command	to	enable	10046	tracing,	as
seen	in	this	example.	This	will	start	tracing	only	on	the	sessions	that	the	RMAN
client	is	already	connected	to.	As	a	result,	some	sessions	will	not	be	traced.	Usually,
this	is	the	easiest	way	to	trace	a	session,	and	it	may	produce	some	fruit.

			You	may	also	want	to	start	tracing	on	the	recovery	catalog	database.	You	can
trace	the	entire	database,	or	you	can	use	the	logon	trigger	demonstrated	in	the
following	bullet.	Here	is	an	example	of	enabling	tracing	for	the	recovery	catalog
database.	This	example	would	enable	tracing	for	the	whole	database.	If	you	wish	to
be	more	tactical,	you	could	use	the	trigger	code	in	the	next	bullet	to	just	trace
RMAN	connections.

			If	the	trace	files	in	the	first	session	do	not	help	identify	the	problems	you	might
be	dealing	with,	you	can	create	a	login	trigger	to	start	tracing	when	a	session	logon
occurs.	This	sample	trigger	will	enable	tracing	for	any	RMAN	session	that	connects
to	the	database:

In	Oracle	Database	versions	11g	and	later,	the	resulting	trace	file	can	be	found	in	the
Automatic	Diagnostic	Destination	directory	structure	pointed	to	by	the
DIAGNOSTIC_DEST	parameter.	You	can	use	the	show	parameter	to	find	the	setting	for
DIAGNOSTIC_DEST,	or	you	can	also	look	for	the	default	setting	for
USER_DUMP_DEST	to	find	this	directory	(this	parameter	is	deprecated	in	Oracle
Database,	but	is	still	handy	to	find	the	file	paths	for	various	files	in	the	ADR).	In	Oracle
Database	versions	previous	to	Oracle	Database	11g,	you	will	find	the	resulting	trace	files
in	the	directory	path	pointed	to	by	the	USER_DUMP_DEST	parameter.

You	can	find	the	location	and	name	of	a	specific	trace	file	if	you	can	identify	the
session	IDs	by	using	the	V$SESSION	and	V$PROCESS	views.	These	views	have	a
column	called	TRACEFILE	that	will	give	you	the	name	and	location	of	the	trace	file.

The	10046	trace	files	created	as	a	result	of	the	scripts	in	this	book	are	long	and	complex
beasts,	well	beyond	the	scope	of	this	book.	Most	DBAs	are	aware	of	the	tkprof	tool	that
Oracle	offers	for	reformatting	these	trace	files,	and	many	DBAs	are	also	aware	of
generally	how	to	read	and	interpret	the	resulting	output.	If	you	need	more	information	on
how	to	read	trace	files,	several	good	sources	of	information	are	available,	including	books,
the	Web,	and	Oracle	Metalink.

Summary
RMAN	will	support	very	fast	backup	and	recovery	schemes	given	that	the	appropriate
infrastructure	is	in	place	to	support	it.	Often,	we	find	the	reason	that	RMAN	does	not
perform	well	is	not	because	of	the	database,	or	because	of	RMAN,	but	because	of	the

underlying	network	or	insufficient	numbers	of	backup	devices.

We	also	talked	about	the	times	that	RMAN	is	too	fast	and	takes	up	too	much	CPU	or
floods	the	network.	Finally,	we	discussed	the	duration	parameter	and	its	various	options
that	allow	you	to	reduce	the	overall	run-time	impact	of	RMAN	operations.

CHAPTER
14

Using	Oracle	Cloud	Control	for	Backup
and	Recovery

U
p	to	this	point,	we	have	provided	guidance	on	interacting	with	RMAN	strictly	from	the
RMAN	client	utility.	Hopefully,	this	has	enabled	you	to	build	some	confidence
using	the	RMAN	command-line	syntax.	It	is	critical	to	become	comfortable
with	this	syntax	because	you	will	encounter	situations	in	which	the	command-
line	syntax	of	RMAN	is	the	only	thing	available	to	get	you	through	a	painful

downtime.	Oracle	also	provides	a	toolset	for	monitoring	the	entire	Oracle	infrastructure
throughout	your	business,	and	this	toolset	includes	a	graphical	user	interface	for	taking
database	backups	and	performing	recoveries.	This	product	is	Oracle	Enterprise	Manager
Cloud	Control	12c	(EM12c).	Coverage	of	everything	that	EM12c	can	do	is	beyond	the
scope	of	this	book	(we	recommend	Oracle	Enterprise	Manager	Cloud	Control	12c	Deep
Dive	from	Oracle	Press).	This	book	is	about	RMAN,	so	the	coverage	of	EM12c	is	limited
to	how	it	employs	RMAN	to	provide	a	backup	and	recovery	interface	from	its	console.
However,	it	is	worth	a	high-level	overview	to	familiarize	yourself	with	the	architecture
and	overall	function	of	EM12c	prior	to	any	discussion	of	its	backup	and	recovery
functions.

EM12c	Architecture
From	an	architectural	perspective,	EM12c	is	composed	of	five	main	parts:

			The	Oracle	Management	Repository

			The	Oracle	Management	Service

			Oracle	Management	agents

			The	Cloud	Control	console

			Plug-ins

Let’s	look	at	each	of	these	in	more	detail.

NOTE

A	discussion	of	the	licensing	for	EM12c	is	beyond	the	scope	of	this	book.	(An
entire	licensing	document	is	available	in	the	Enterprise	Manager	documentation
at	http://docs.oracle.com/cd/E24628_01/license.121/e24474/toc.htm.)	However,
it’s	worth	noting	that,	in	general,	most	of	the	basic	functionality	described	here
carries	a	restricted-use	license	and	therefore	is	free.	This	restricted-use	license
refers	specifically	to	Enterprise	Manager,	however,	and	many	add-on	options	do
come	with	license	costs.	Refer	to	the	licensing	documentation	for	full	details.

Oracle	Management	Repository
The	Oracle	Management	Repository	(also	called	the	repository	or	OMR)	is	an	Oracle
database	that	stores	all	the	information	collected	by	the	various	management	agents.	It	is
composed	of	database	users,	tablespaces,	tables,	views,	indexes,	packages,	procedures,

http://docs.oracle.com/cd/E24628_01/license.121/e24474/toc.htm

and	database	jobs.	Unlike	the	OMS,	the	installation	process	for	the	OMR	requires	that	a
database	already	exists	for	the	repository.	This	means	you	need	to	have	created	the
database	somewhere	in	your	environment	prior	to	installing	the	OMS.	Again,	it	is
typically	recommended	for	the	repository	to	be	created	in	a	dedicated	database.

Oracle	Management	Service
The	Oracle	Management	Service	(OMS)	is	a	web-based	application	that	communicates
with	the	agents	and	the	Oracle	Management	Repository	to	collect	and	store	information
about	all	the	targets	on	the	various	agents.	(Note	that	the	information	itself	is	stored	in	the
Oracle	Management	Repository,	not	the	OMS.)	The	OMS	is	also	responsible	for	rendering
the	user	interface	for	the	console.	The	OMS	is	installed	into	an	Oracle	middleware	home,
which	also	contains	the	Oracle	WebLogic	Server	(including	the	WebLogic	Server
administration	console),	an	Oracle	Management	agent	for	the	middleware	tier,	the
management	service	instance	base	directory,	the	Java	Development	Kit	(JDK),	and	other
configuration	files.	You	can	install	the	OMS	into	an	existing	WebLogic	Server	(WLS)
configuration	if	it	exists,	but	usually	it	is	better	from	an	availability	perspective	to	have	it
installed	in	a	dedicated	WLS	home.

Oracle	Management	Agents
An	Oracle	Management	agent	(usually	referred	to	as	simply	an	agent	or	abbreviated	to
OMA)	is	generally	installed	on	each	host	that	is	monitored	in	your	computing
environment.	(EM12c	also	introduces	the	capability	to	manage	environments	remotely	in
some	cases.)	These	agents	are	deployed	from	the	console,	and	they	monitor	all	the	targets
that	have	been	discovered	by	the	agents.	They	are	used	to	control	blackouts	on	those
targets,	execute	jobs,	collect	metrics,	and	so	forth,	and	in	turn	provide	details	such	as
availability,	metrics,	and	job	statuses	back	to	the	Oracle	Management	Service.

For	the	EM12c	release,	agents	were	completely	rewritten	from	the	ground	up	for
greater	reliability,	availability,	and	performance	(see	the	upcoming	section	on	plug-ins	for
details	of	how	this	was	achieved).	The	only	downside	of	this	change	is	that	you	must	use
an	EM12c	agent	to	talk	to	the	EM12c	Oracle	Management	Service.	Backward
compatibility	between	12c	and	earlier	agents	was	lost	because	of	the	number	of	changes
that	were	made	in	the	new	release.

The	Cloud	Control	Console
The	Cloud	Control	console	provides	the	user	interface	that	you	use	to	access,	monitor,	and
administer	your	computing	environment.	The	console	is	accessed	via	a	web	browser,	thus
allowing	you	to	access	the	central	console	from	any	location.	You	can	customize	the
EM12c	console	much	more	than	in	previous	releases,	allowing	you	the	following	options:

			Choosing	your	home	page	from	various	predefined	pages	(or	indeed	setting
any	page	you	want	to	be	your	personal	home	page)

			Moving	regions	around	on	a	target	home	page

			Adding	regions	that	might	be	of	more	interest	to	you	than	the	defaults

			Deleting	regions	that	aren’t	of	interest	to	you

The	graphical	user	interface	(GUI)	provides	a	history	of	the	most	recent	targets	you
have	visited	(the	standard	browser	history	is	also	available).	In	addition,	you	can	mark
pages	as	favorites	and	have	them	appear	in	a	favorites	list	on	the	new	menu-driven
interface.	Figure	14-1	shows	an	example	of	the	default	home	page.

FIGURE	14-1.			The	default	home	page	in	EM12c

Plug-Ins
Plug-ins	take	on	a	whole	new	meaning	in	EM12c.	In	earlier	releases,	plug-ins	were	largely
system-monitoring	utilities	used	to	monitor	and	manage	non-Oracle	(heterogeneous)
software,	including	databases	and	middleware.	Partners	or	Oracle	Corporation	itself
usually	built	them.	Some	technically	savvy	customers	built	their	own	as	well,	but	there
weren’t	many	plug-ins	overall.	In	the	EM12c	release,	a	few	of	these	monitoring	plug-ins
remain,	but	plug-ins	have	been	greatly	expanded	to	include	every	target	type	being
managed.	As	such,	there	is	now	an	Oracle	database	plug-in	to	manage	Oracle	databases,	a
Fusion	Middleware	plug-in	to	manage	Oracle’s	middleware,	a	Fusion	Applications	plug-in

to	manage	Oracle’s	Fusion	Applications,	and	so	on.	Because	new	releases	of	the	Oracle
software	will	include	plug-ins	used	to	manage	that	software,	this	means	EM12c	(and	later
releases)	will	be	able	to	monitor	and	manage	those	releases	much	more	quickly	than	has
been	the	case	in	the	past.	Plug-ins	can	be	downloaded,	applied,	and	deployed	using	the
new	Self	Update	functionality	available	from	the	Cloud	Control	console	(if	you	have
sufficient	privileges	to	use	it).	In	addition,	this	modular	plug-in	architecture	means	that	an
agent	is	no	longer	configured	to	be	able	to	monitor	any	target	type.	Now,	an	agent	will
download	only	the	plug-ins	that	are	needed	for	the	targets	that	the	agent	is	monitoring.
This	means	the	agents	themselves	are	smaller	than	they	were	in	previous	releases.	This
change	is	one	of	the	biggest	improvements	in	the	architecture	of	the	EM12c	release.

Installing	and	Configuring	Enterprise	Manager
Cloud	Control	12c	for	Database	Backups
A	complete	guide	to	installing	and	configuring	EM12c	is	well	beyond	the	scope	of	this
book.	Indeed,	there	are	at	least	two	manuals	in	the	documentation	set	for	EM12c	that
cover	this	specific	topic	(the	Basic	Installation	Guide	located	at
http://docs.oracle.com/cd/E24628_01/install.121/e22624/toc.htm	and	the	Advanced
Installation	and	Configuration	Guide	located	at
http://docs.oracle.com/cd/E24628_01/install.121/e24089/toc.htm).	Here	we	will	restrict
ourselves	to	covering	what	is	needed	to	ensure	you	can	back	up	a	database	using	EM12c.
The	answer	to	that	question	is	very	straightforward—you	need	a	standard	Enterprise
Manager	installation	(covered	in	the	aforementioned	manuals),	a	database	to	be	backed
up,	and	an	agent	to	communicate	between	the	two.	Let’s	assume,	for	the	sake	of	our
discussion	here,	that	EM12c	is	already	installed.	Let’s	assume	further	that	the	database	to
be	backed	up	is	not	the	first	database	installed	on	the	particular	host	it	is	residing	on,	and
in	fact	you	have	already	installed	an	agent	on	the	host.	When	that	combination	occurs,	if
you	install	a	database	using	the	Database	Configuration	Assistant	(DBCA),	DBCA	has
enough	smarts	built	into	it	to	realize	that	there	is	an	agent	already	running	on	the	host,	and
it	will	ask	you	if	you	want	to	add	the	new	database	to	the	EM12c	configuration,	and	there
will	be	little	else	for	you	to	do.

However,	what	happens	if	there	is	no	agent	installed	on	the	host?	In	that	case,	DBCA
cannot	determine	if	there	is	a	centralized	EM12c	configuration	that	can	manage	this	new
database,	and	you	will	need	to	perform	two	additional	steps:

1.			Install	an	agent	on	the	host.

2.			Use	EM12c	to	discover	the	targets	that	need	to	be	monitored	on	that	host.

Let’s	look	at	each	of	these	in	turn.

Installing	an	Enterprise	Manager	Agent
There	are	a	variety	of	ways	you	can	install	the	agent	for	Enterprise	Manager.	For	example,
you	can	use	the	Add	Host	Target	Wizard	to	do	the	following:

			Perform	a	fresh	agent	installation			This	is	probably	the	way	most	people	do

http://docs.oracle.com/cd/E24628_01/install.121/e22624/toc.htm
http://docs.oracle.com/cd/E24628_01/install.121/e24089/toc.htm

at	least	their	first	agent	installation.	The	wizard	walks	you	through	a	series	of
installation	questions,	including	what	the	host	name	is	for	the	agent	installation,	the
installation	directory,	and	so	forth.	If	you	have	access	to	a	named	credential	that	can
perform	root	tasks,	the	installation	can	be	done	without	any	manual	intervention.	If
not,	you	will	need	to	run	some	scripts	as	root	after	the	software	installation
completes	to	finalize	the	setup	of	the	agent.

			Clone	an	existing	agent			This	option	only	appears	when	you	are	installing	to
a	single	platform,	so	you	must	have	chosen	one	or	more	hosts	of	the	same	platform
on	an	earlier	screen	to	have	this	option	available	to	you.	This	allows	you	to	clone	an
existing	well-tested,	pre-patched,	and	running	management	agent.

			Add	the	host	to	an	existing	shared	agent			Again,	this	option	only	appears
when	you	are	installing	to	a	single	platform.	In	this	case,	it	uses	what	is	called	the
master	agent	(an	existing,	centrally	shared	agent)	to	install	a	new	agent	called	a
shared	agent.

You	can	also	install	the	agent	in	silent	mode	using	the	following	items:

			The	agentDeploy	script			To	use	this,	you	need	to	download	and	install	EM
CLI	on	the	host	being	deployed	to.	You	then	use	EM	CLI	to	download	the	agent
software	before	executing	the	agentDeploy	script	to	perform	the	actual	installation.

			The	AgentPull	script			For	a	simpler	installation,	you	can	use	the	AgentPull
script,	which	does	not	require	the	use	of	EM	CLI.	However,	this	script	also	only
supports	a	few	parameters,	so	it	would	be	used	for	a	more	basic	installation	than	the
agentDeploy	script.

			An	RPM	file			Again,	this	requires	the	use	of	EM	CLI	to	download	an	RPM
file	that	can	then	be	used	to	install	the	agent	to	an	existing	host	or	while
provisioning	a	bare-metal	host.

Each	method	using	the	Add	Host	Target	Wizard	can	be	performed	using	either	the	GUI
or	EM12c’s	command-line	interface	tool,	EM	CLI.	EM	CLI	is	used	more	frequently	when
you	want	to	deploy	many	agents	at	one	time	(though	this	can	be	performed	using	the	GUI
as	well),	or	when	you	want	to	perform	a	scripted	installation.

Silent	mode	installations	are	normally	used	when	you	want	to	install	an	agent	from	the
destination	host,	so	you	can	think	of	this	as	a	pull	method	of	installing	the	agent	as
opposed	to	the	push	method	of	using	the	GUI.	Silent	mode	requires	a	response	file	that
contains	the	responses	you	would	normally	have	given	to	the	interview	questions	asked
when	using	the	GUI	to	install	an	agent.

A	complete	walkthrough	of	the	installation	types	would	take	up	far	too	much	space,	so
if	you	want	to	see	more	details	on	these,	refer	to	the	Basic	Installation	Guide	(for	the	fresh
agent	installation)	or	the	Advanced	Installation	and	Configuration	Guide	(for	the
remaining	installation	types),	listed	previously.

Discovering	Targets
Once	you	have	installed	agents	on	a	host,	you	then	need	to	discover,	promote,	and	add	the
remaining	targets	that	are	located	on	that	host.	As	far	as	databases	are	concerned,	this	can

be	done	during	the	creation	of	the	database	itself	using	Oracle’s	Database	Configuration
Assistant	(DBCA),	or	it	can	be	done	afterward	through	the	Enterprise	Manager	tool	itself.

Using	DBCA	to	Promote	a	Database
The	DBCA	is	Oracle’s	graphical	user	interface	(GUI)	tool	to	walk	you	through	the	process
of	creating	an	Oracle	database.	It	has	many	options	available	to	use	through	the	interview
process,	but	the	only	one	that	is	really	relevant	to	the	discussion	in	this	chapter	is	its
ability	to	promote	the	database	that	is	being	created	to	be	managed	by	EM12c.	This	ability
is	only	found	in	the	advanced	mode	of	DBCA	(by	selecting	Advanced	Mode	on	Step	2	of
DBCA).	When	you	select	advanced	mode,	a	more	detailed	interview	process	is	begun.

Note	that	two	options	are	available	to	you	when	the	advanced	mode	interview	starts:

			Configure	Enterprise	Manager	(EM)	Database	Express			This	option	tells
you	that	the	DBCA	is	running	against	an	Oracle	Database	12c	home.	In	earlier
releases	of	the	Oracle	database	software,	this	option	would	have	referred	to
Database	Control,	but	that	tool	has	been	desupported	in	the	Database	12c	release	in
favor	of	EM	Express.	As	EM	Express	contains	no	backup/recovery	functionality,	we
won’t	cover	it	further	here.

			Register	with	Enterprise	Manager	(EM)	Cloud	Control			The	four	fields
underneath	this	option	provide	DBCA	with	enough	information	to	register	the
database	with	EM12c	once	it	is	created.	You	need	to	specify	the	fully	qualified
hostname	for	the	OMS,	the	port	number	for	the	OMS,	and	the	name	of	an	EM
administrator	and	its	password.

Using	EM12c	to	Promote	a	Database
Although	you	can	easily	use	DBCA	to	promote	a	database	to	be	a	managed	target	in
Enterprise	Manager,	there	are	many	times	when	you	would	want	to	use	EM	itself	to
perform	this	operation.	Such	times	can	be	caused	by	simply	forgetting	to	create	the
database	in	advanced	mode	so	you	don’t	even	see	the	management	options	screen,
deciding	that	you	want	to	use	EM12c	instead	of	EM	Express	to	manage	the	database,	or
more	likely	because	you	want	to	promote	multiple	databases	at	once.	It	is	this	final	option
that	we	want	to	look	at	in	more	detail	here.

Provided	you	already	have	an	EM	agent	installed	on	a	particular	host,	you	can	promote
all	the	databases	on	that	host	to	be	managed	by	EM12c	in	a	single	operation	(you	can,	of
course,	also	promote	them	one	by	one,	which	is	simply	a	subset	of	the	process	we’ll	be
showing	you	now).	To	add	multiple	databases	in	a	single	operation,	you	need	to	start	by
selecting	Setup	|	Add	Target	|	Add	Targets	Manually.	You	start	the	wizard	by	selecting	the
Add	Targets	Using	Guided	Process	radio	button,	then	selecting	Oracle	Database,	Listener
and	Automatic	Storage	Management	from	the	drop-down	list,	and	finally	clicking	the	Add
Using	Guided	Process	button.

This	same	wizard	can	be	used	to	add	listeners	and	Automatic	Storage	Management
(ASM)	targets	at	the	same	time.	In	this	example,	we’ll	add	two	databases	and	a	single
listener.	On	the	next	step	of	the	wizard,	you	need	to	enter	the	hostname	for	the	host	that
contains	the	database.	To	select	the	host	on	which	you	want	to	search	for	databases,	click

the	magnifying	glass	to	the	right	of	the	host	or	cluster	field,	and	you	will	be	provided	a
screen	where	you	can	search	for	the	host	you	are	interested	in.	The	host	must	already	have
an	agent	installed	on	it	to	be	shown	in	the	list.	Once	you	have	selected	the	host,	you	will
be	returned	to	the	Search	Criteria	screen,	where	you	simply	need	to	click	the	Next	button.

It	is	when	you	click	the	Next	button	that	the	target	discovery	is	actually	performed.	The
OMS	will	communicate	to	the	agent	on	the	hosts	you	have	chosen	and	tell	it	to	look	for
any	Oracle	databases,	listeners,	or	ASM	targets.	These	will	be	returned	to	you	on	the	next
screen	of	the	wizard.

			Notice	across	the	top	of	the	screen	there	are	two	tabs:	Set	Global	Target
Properties	and	Specify	Group	for	Targets.	The	Set	Global	Target	Properties	tab
allows	you	to	define	a	contact	name,	cost	center,	department,	lifecycle	status,	line	of
business,	and	location	for	both	the	test1	and	test2	databases	at	the	same	time	(you
cannot	select	different	values	for	each	database	here;	these	must	be	common	values).
These	properties	allow	the	targets	to	be	placed	into	dynamic	groups	based	on	the
values	entered	into	these	fields	(a	discussion	of	the	value	of	dynamic	groups	is
beyond	the	scope	of	this	book,	but	suffice	it	to	say	these	can	be	very	valuable	for
EM	administrators).	Likewise,	the	Specify	Group	for	Targets	tab	can	be	used	to
specify	an	administrative	group	for	purposes	such	as	allowing	jobs	to	be	scheduled
against	all	group	members	at	once.	Again,	only	a	single	group	can	be	chosen	for	all
the	targets	on	this	tab.

			Across	from	each	target	name	is	a	Target	Group	field.	This	is	similar	to	the
Specify	Group	for	Targets	tab,	but	here	you	can	specify	an	individual	group	per
target.

			You	can	also	specify	for	each	target	the	password	for	the	DBSNMP	account,	as
well	as	the	role	(NORMAL	or	SYSDBA)	for	that	user.	You	can	do	this	once	for	all
targets	that	have	just	been	discovered	by	clicking	the	Specify	Common	Monitoring
Credentials	button,	or	you	can	do	this	on	a	target-by-target	basis	by	entering	values
in	the	Monitor	Password	and	Role	fields.	Once	you	have	entered	values	for	these,	it
is	a	good	idea	to	click	the	Test	Connection	button	to	ensure	you	haven’t	made	any
typographic	errors.	This	will	also	test	whether	the	DBSNMP	account	is	locked	or
not.

			If	you	had	selected	both	target	names,	the	Configure	icon	would	have	been
greyed	out.	If	you	had	selected	only	one	database	target,	you	could	click	the
Configure	icon	to	not	only	enter	the	monitor	password	and	role,	but	to	also	override
the	values	for	the	ORACLE_HOME	path,	listener	machine	name,	listener	port
number,	database	SID,	and	preferred	connect	string	for	the	database.	All	of	these
except	the	preferred	connect	string	are	already	discovered	as	part	of	the	database
discovery,	so	the	only	one	you	might	want	to	change	is	the	preferred	connect	string
(for	example,	if	you	have	a	more	complex	connect	string	that	includes	failover
functionality	or	something	similar).	If	the	connect	string	is	left	blank,	the	OMS
automatically	creates	a	connect	string	from	the	host	name,	port	number,	and
database	SID	it	has	already	discovered.

Once	you	have	completed	configuring	the	different	options	you	want	to	use,	you	will

be	presented	with	the	Review	step	of	the	wizard,	where	you	just	need	to	click	the	Save
button	to	save	your	changes.

Configuring	Backup	and	Recovery	Settings	with
EM12c
Now	we	have	a	relatively	simple	Enterprise	Manager	installation	built.	We	have	the	OMS
and	repository	created,	we’ve	added	a	single	host	as	a	target	to	be	monitored	with	EM12c,
and	we’ve	discovered	two	databases	and	the	listener	on	that	host.	So	what’s	next?

Well,	depending	on	the	options	you	selected	when	you	created	the	databases,	you	may
or	may	not	have	the	Fast	Recovery	Area	(FRA)	configured.	Therefore,	let’s	look	first	at
how	you	would	do	that	to	help	automate	your	backups.	To	configure	the	FRA,	you	need	to
start	from	the	Databases	home	page,	which	is	accessed	by	following	the	path	Targets	|
Databases.	This	brings	you	to	the	Databases	home	page,	as	shown	in	Figure	14-2.
Although	it’s	not	immediately	obvious	in	this	screenshot	due	to	the	low	load	in	our	test
environment,	we	can	see	there	are	two	databases—test1	and	test2—and	we	can	identify
the	load	on	each	database	separately	(green	in	Enterprise	Manager	tends	to	indicate	a
healthy	status	and	red	indicates	issues).

FIGURE	14-2.			The	Databases	home	page

By	clicking	the	database	name	in	the	green	squares	(granted,	it’s	hard	to	see	the	green
in	a	black-and-white	book!),	we	can	drill	into	the	details	of	that	particular	database.	If	we
click	test1	(the	database	in	the	left	of	the	two	colored	squares	in	Figure	14-2),	we	are
prompted	for	a	database	username	and	password	and	are	then	taken	to	the	home	page	for
the	test1	database,	as	shown	in	Figure	14-3.

FIGURE	14-3.			The	test1	database	home	page

From	this	home	page,	we	can	follow	the	path	Availability	|	Backup	and	Recovery	|
Recovery	Settings	to	see	the	settings	for	the	FRA	and	configure	them	as	needed.

Once	the	FRA	is	set	up,	the	next	step	is	to	configure	ARCHIVELOG	mode	for	the
databases	we	want	to	take	online	backups	of	or	to	perform	point-in-time	recovery	on.
Given	the	database	names	in	our	example,	you	might	think	neither	of	those	is	necessary,
but	just	for	the	sake	of	the	discussion	let’s	see	how	we	would	turn	ARCHIVELOG	mode
on	if	we	wanted.

Turning	on	ARCHIVELOG	mode	is	done	from	the	same	Recovery	Settings	page	as	the
FRA	is	set.	In	fact,	the	relevant	section	of	the	page	appears	immediately	above	that	of	the
FRA	setting.	All	we	need	to	do	is	click	the	ARCHIVELOG	Mode	check	box	and	then
click	the	Apply	button.

Once	we	click	Apply,	we	see	a	confirmation	message	that	the	changes	have	been
applied.	We	will	be	asked	whether	we	want	to	restart	the	database	now,	so	we	need	to
click	Yes	for	the	changes	to	actually	take	place.

Before	we	can	perform	a	point-in-time	recovery	of	the	database	we	just	put	into
ARCHIVELOG	mode,	we	need	to	make	a	whole	database	backup.	To	do	that,	there	are	a
few	more	backup	settings	that	we	can	customize.	To	access	these,	from	the	database	home
page	follow	the	path	Availability	|	Backup	and	Recovery	|	Backup	Settings.	That	brings	us
to	the	page	shown	in	Figure	14-4.

FIGURE	14-4.			The	Backup	Settings	page

On	this	page	is	a	host	of	options	we	can	set,	most	of	which	already	have	defaults:

			Disk	Settings			Once	these	settings	are	configured,	we	can	click	the	Test	Disk
Backup	button	to	write	some	files	to	the	disk	backup	location	just	to	test	our	settings
are	okay.

			Parallelism			The	number	of	concurrent	RMAN	streams	to	write	to	the
disk	backup	location.

			Disk	Backup	Location			Defaults	to	the	FRA,	but	we	can	override	it	here
by	specifying	another	directory	or	ASM	diskgroup.

			Disk	Backup	Type			We	choose	either	a	backup	set,	compressed	backup
set,	or	image	copy.

			Tape	Settings			Not	too	many	people	are	still	backing	up	directly	to	tape,	but	if
you	want	to	use	tape	drives	to	back	up	to,	you	can	set	that	up	here.	Again,	you	can
use	the	Test	Tape	Backup	button	to	confirm	your	settings	are	okay.

			Parallelism			The	number	of	concurrent	RMAN	streams	to	write	to	the
tape	drives.

			Tape	Backup	Type			Choose	either	a	backup	set	or	a	compressed	backup
set	(note	that	you	cannot	select	an	image	copy	if	you	are	using	tapes).

			Oracle	Secure	Backup	(OSB)	Domain			If	you	are	using	OSB,	you	can
configure	the	OSB	domain	here.

			Media	Management	Settings			This	is	used	if	you	are	using	a	media
manager	library.	Any	parameters	you	would	set	for	that	library	can	be	set	here
(these	vary	depending	on	the	media	manager	library).

			Host	credentials			Though	you	can’t	see	it	in	the	screenshot	shown	in	Figure
14-4,	the	host	credentials	we	need	to	access	the	target	database	are	set	below	the
Tape	Settings	region.

Once	we	have	set	the	parameters	the	way	we	want	on	this	page,	we	can	click	the
Backup	Set	tab	to	configure	more	settings,	as	required.	Here	are	the	settings	we	can
specify:

			Maximum	Backup	Piece	(File)	Size			The	maximum	size	(in	kilobytes,
megabytes,	or	gigabytes)	of	each	backup	piece.

			Compression	Algorithm			This	will	be	used	for	both	disk	and	tape
compressed	backup	sets.

			Algorithm	Name			Depending	on	the	current	database	settings	and	version,
we	can	select	different	algorithm	names.	For	example,	in	the	setup	in	our
example,	we	can	see	BASIC,	LOW,	MEDIUM,	and	HIGH	as	the	algorithm
names.

			Release			This	will	either	show	the	DEFAULT	or	the	current	database
version	of	the	database	we	are	backing	up.

			Tape	Settings			Here,	we	can	configure	the	number	of	copies	of	datafile
backups	and	archivelog	backups	separately.

			Host	Credentials			The	same	as	the	Host	Credentials	region	on	the	Device	tab.

Finally,	we	can	change	still	more	backup	settings	on	the	Policy	tab,	which	is	probably
the	most	important	tab.	This	tab	contains	a	number	of	settings,	including	the	following:

			Backup	Policy

			Automatically	back	up	the	control	policy	and	server	parameter	file
(SPFILE)	with	every	backup	and	database	structural	change			We	can’t
understand	why	this	parameter	isn’t	enabled	by	default	to	be	honest.	You	should
always	set	this	by	clicking	the	checkbox.

			Optimize	the	whole	database	backup	by	skipping	unchanged	files	such
as	read-only	and	offline	datafiles	that	have	been	backed	up			You	can	select
this	option	if	you	want	to	save	space	in	the	backup.	We	would	normally
recommend	not	using	this	unless	you	have	space	issues.	The	reason	for	that	is	if
you	set	this	option,	when	the	time	comes	to	perform	a	recovery,	either	you	or	the
recovery	process	will	need	to	hunt	back	through	the	backups	you	have	taken	to
find	the	relevant	files	to	restore	here.	Normally,	recoveries	are	done	in	already
stressful	situations,	such	as	when	a	database	has	crashed	or	otherwise	needs
recovery,	and	adding	more	stress	to	find	these	read-only	and	offline	datafiles	is
just	unnecessary.

			Enable	block	change	tracking	for	faster	incremental	backups			Select
this	checkbox	if	you	want	to	use	block	change	tracking.	In	earlier	releases,	this
put	additional	load	on	the	database	server,	but	now	this	is	not	so	much	of	an
issue.

			Tablespaces	Excluded	From	Whole	Database	Backup			If	you	want	to
exclude	any	tablespaces	from	a	whole	database	backup,	you	can	select	them	here.

			Retention	Policy			You	can	choose	from	the	following:

			Retain	all	backups.	Do	not	delete	any	backups	automatically.

			Retain	backups	to	meet	a	recovery	window	criterion	in	days.

			Retain	at	least	a	specified	number	of	full	backups.

			Archived	Redo	Log	Retention	Policy			Choose	either	None	(the	default)	or	to
delete	archived	redo	log	files	after	they	have	been	backed	up	a	specified	number	of
times.

			Host	Credentials			The	same	as	the	Host	Credentials	region	on	the	Device	tab.

Once	we	have	made	any	changes	we	want	on	these	different	tabs,	we	just	click	the
Apply	button	and	are	(finally!)	ready	to	perform	our	backup!

Backing	Up	a	Database	with	EM12c
To	schedule	a	full	backup	in	EM12c	from	a	database	home	page,	follow	the	path
Availability	|	Backup	and	Recovery	|	Schedule	Backup….	You	have	two	options	here:
Schedule	Oracle-Suggested	Backup	and	Schedule	Customized	Backup.	Let’s	look	at	each

of	these	in	more	detail.

Schedule	Oracle-Suggested	Backup
This	option	uses	the	backup	settings	you	have	already	set	(or	the	defaults	for	ones	you
haven’t	set)	to	create	an	RMAN	script	to	perform	backups.	It	will	back	up	the	entire
database,	using	a	full	backup	first	and	then	setting	up	incremental	backups	after	that.

Let’s	walk	through	the	interview	process	that	occurs	when	you	click	this	button.	The
first	page,	shown	in	Figure	14-5,	asks	you	whether	you	are	backing	up	to	disk,	tape,	or
both.	In	the	current	scenario,	we	don’t	have	a	tape	drive	to	back	up	to,	so	we	will	choose
to	back	up	to	disk.

FIGURE	14-5.			Step	1	of	Schedule	Oracle-Suggested	Backup

On	the	next	page,	we	see	that	a	full	database	copy	will	be	performed	as	the	first
backup,	followed	by	daily	incremental	backups.	The	backups	will	be	placed	in	the	FRA
because	we	have	already	set	that	up.	We	can	also	specify	encryption	here	if	we	want	to,
but	we’re	going	to	leave	that	unchecked.

The	third	page	of	the	interview	asks	us	to	specify	a	time	and	date	for	the	backup.	We’ll
leave	those	at	the	defaults	as	well.

The	final	step	of	the	interview,	shown	in	Figure	14-6,	provides	a	summary	of	the
backup	that	will	be	scheduled,	and	also	shows	us	the	RMAN	script	that	will	be	used	to
perform	the	backup.

FIGURE	14-6.			Step	4	of	Schedule	Oracle-Suggested	Backup

Once	you	click	the	Submit	Job	button,	a	job	is	submitted	to	run	the	backup.

If	you	were	to	click	the	View	Job	button,	depending	on	your	timing,	you	might	see	a
status	that	the	job	is	either	waiting	or	has	succeeded.	In	the	output,	the	wizard	displays	the
different	steps	the	job	went	through,	along	with	timings	for	each	step.	You	can	also	click
the	View	Definition	button	to	show	the	details	of	how	the	job	runs.

Schedule	Customized	Backup
Now	you’ve	seen	how	to	take	a	backup	using	the	Oracle-suggested	backup	path,	let’s	look
at	the	Customized	Backup	path.	This	gives	you	a	lot	more	flexibility	about	just	what
exactly	you	want	to	back	up.	You	can	still	take	a	whole	database	backup	using	this	option,
but	you	can	also	back	up	individual	tablespaces,	datafiles,	archived	logs,	or	all	the	files	in
the	FRA	that	have	not	been	previously	backed	up.	When	you	come	back	to	the	Schedule
Backup	screen,	it	will	also	tell	you	that	you	already	have	one	or	more	backup	jobs	that	are
currently	running	or	scheduled	for	this	particular	target—assuming	you	do	this	for	the
same	database	as	the	example	used	thus	far,	that	is!	To	show	you	the	additional	flexibility
you	can	get	by	choosing	the	Schedule	Customized	Backup	option,	let’s	walk	through
scheduling	a	whole	database	backup	again,	just	like	we	did	in	the	previous	section.	To	do
this,	we	start	again	from	the	database	home	page,	follow	the	path	Availability	|	Backup

and	Recovery	|	Schedule	Backup…,	and	then	click	the	Schedule	Customized	Backup
button,	as	shown	in	Figure	14-7	(note	that	Whole	Database	has	been	chosen	as	the	default
for	you).

FIGURE	14-7.			Starting	the	Schedule	Customized	Backup

Again,	a	simple	interview	process	walks	you	through	the	different	options	you	need	to
set.	On	the	first	page	of	the	interview,	you	can	set	the	following	options:

			Backup	Type

			Full	Backup			This	is	the	default	selection.	We	have	also	selected	“Use	as

the	base	of	an	incremental	backup	strategy”	to	emulate	the	backup	we	took	in	the
previous	section.

			Incremental	Backup			This	is	the	first	option	we	have	that	is	more
customized	than	the	Oracle-suggested	backup.	Obviously	this	would	only	be
chosen	if	you	have	already	taken	a	full	backup	and	now	just	want	to	back	up	the
changes	since	that	backup.	Notice	the	two	options	available	to	you	here.	The	first
refreshes	the	last	backup	copies	on	disk	to	the	current	time	using	the	incremental
backup.	That	saves	you	time	when	recovering	because	you	don’t	need	to	first
recover	the	full	backup	and	then	the	incrementals.	The	second	option	allows	you
to	take	a	cumulative	backup,	rather	than	just	an	incremental	one	(a	cumulative
backup	includes	all	the	changes	since	the	last	full	or	cumulative	backup,	whereas
a	simple	incremental	backup	only	backs	up	changes	since	the	last	incremental
backup).	Again,	this	will	save	you	time	when	performing	recoveries.

			Backup	Mode

			Online	Backup			This	backup	backs	up	the	database	while	it	is	open	and
can	only	be	done	if	the	database	is	in	ARCHIVELOG	mode.

			Offline	Backup			This	backup	requires	the	database	to	be	shut	down	before
the	backup	can	take	place.

			Advanced

			Also	back	up	all	archived	logs	on	disk			This	is	always	a	good	option	to
select	because	it	ensures	all	files	required	for	recovery	are	backed	up	at	the	same
time.

			Delete	all	archived	log	files	from	disk	after	they	are	successfully
backed	up			Call	us	paranoid,	but	we	just	don’t	like	this	option.	We	would	prefer
to	wait	for	two	or	three	backups	before	deleting	files	from	disk,	so	we	leave	this
unchecked.

			Delete	obsolete	backups			This	option	deletes	backups	that	are	no	longer
needed	to	satisfy	the	retention	policy	you	have	set.

			Use	proxy	copy	supported	by	media	management	software	to	perform
a	backup			You	would	only	need	to	select	this	option	if	you	are	using	some
third-party	media	management	software	to	back	up	the	database.

			Encryption			The	options	here	are	the	same	as	the	encryption	options	in	the
Oracle-suggested	backup.

On	the	next	page	of	the	interview	process,	you	are	asked	to	select	whether	the	backup
will	be	sent	to	disk	or	tape.	The	default	is	disk,	and	the	disk	backup	location	is	set	to	the
FRA	location.

On	the	next	page	of	the	interview	process,	you	are	asked	to	specify	a	job	name	(a
default	is	chosen	for	you)	and	a	schedule.	The	default	is	to	schedule	the	backup	job	to
occur	immediately	as	a	once-off	operation.	You	can	also	specify	One	Time	(Later)	for	a
deferred	backup	or	Repeating.	If	you	select	Repeating,	you	are	given	many	more	options:

			You	can	specify	a	frequency	type	(which	defaults	to	By	Minutes,	which	seems
like	a	ridiculous	default	to	us!).	You	can	also	choose	By	Hours,	By	Days,	By	Weeks,
Weekly,	Monthly,	and	Yearly.

			Depending	on	what	you	choose	as	a	frequency	type,	the	next	option	will	vary:

			Repeat	every	n	minutes,	hours,	days,	or	weeks.

			Days	of	Week	if	you	specify	Weekly.

			Days	of	Month	if	you	specify	Monthly.

			Alternatively,	you	can	specify	the	month	and	day	if	you	choose	Yearly.

			You	can	specify	a	time	zone	that	the	backup	will	be	taken	in.

			You	can	specify	a	start	date.

			You	can	specify	a	start	time.

			You	can	specify	how	long	to	repeat	the	backup	for	(or	select	to	repeat
indefinitely).

In	the	example	shown	in	Figure	14-8,	we’ve	chosen	to	do	a	weekly	backup	of	the
database	to	happen	on	Sunday	at	12	A.M.	U.S.	Mountain	Time	to	minimize	impact	on	users
of	the	database.

FIGURE	14-8.			Continuing	to	schedule	the	customized	backup

Finally,	you	are	shown	a	review	screen,	such	as	that	shown	in	Figure	14-9.	One
difference	from	the	Oracle-Suggested	Backup	Review	screen	is	that	here	you	also	have	an
Edit	RMAN	Script	button,	so	if	there	are	any	changes	you	want	to	make,	you	can	actually
edit	the	RMAN	script	directly	before	submitting	it.

FIGURE	14-9.			Reviewing	the	Scheduled	Customized	Backup

After	submitting	the	job,	you	will	again	be	shown	a	screen	saying	the	job	was
submitted	successfully,	and	you	can	click	the	View	Job	button	to	drill	in	to	see	the	job
status.

Incremental	Backups
Of	course,	what	we’ve	just	seen	is	a	more	flexible	way	of	performing	a	full	backup	than
using	the	Oracle-supplied	backup	path.	However,	what	we’ve	seen	has	also	only	done	the
full	backup	part.	The	Oracle-supplied	backup	path	provides	both	full	and	incremental
backups	in	one	step.	If	you	want	to	set	up	an	incremental	backup,	you	can	go	back	through
the	steps	we	just	performed,	but	this	time	select	an	incremental	backup	instead	of	a	full
backup.	Given,	we	created	a	weekly	backup.	It’s	most	likely	that	you	would	also	want	a
daily	incremental	backup.	The	most	important	page	in	the	wizard	for	doing	that	is	the
Schedule	page	(all	the	other	pages	are	very	similar	to	what	we’ve	already	done,	so	we
won’t	repeat	them	here).	Figure	14-10	shows	how	this	is	done.	You	need	to	specify	a
frequency	type	of	weekly	and	then	choose	each	day	of	the	week	except	the	day	the	full
backup	is	being	done	(remember,	in	our	case	that	was	done	on	Sunday).

FIGURE	14-10.			Scheduling	an	incremental	backup

Backing	Up	Multiple	Databases	at	Once
While	backing	up	individual	databases	is	obviously	useful	to	you	as	a	DBA,	using	groups
to	back	up	multiple	databases	at	once	can	be	even	more	useful.	Let’s	look	at	how	that’s
done.	First	of	all,	you	need	to	create	a	group.	For	example,	you	might	create	an
administrative	group	of	your	test	databases	based	on	their	lifecycle	status—that	they	are
test	databases.

Now	if	we	right-click	the	Test-Grp	link,	we	can	select	Backup	Configurations.	A
backup	configuration	contains	the	settings	for	database	and	file	backups,	and	is	a
prerequisite	before	we	can	back	up	a	group	of	databases.	On	the	Backup	Configuration
page,	we	can	click	the	Create	button	to	start	the	configuration	of	a	backup.	When
configuring	a	backup,	we	need	to	provide	a	name	for	the	backup	configuration	(for
example,	Test	Database	Group	Backup).	Also,	this	page	has	a	Storage	tab,	where	we
specify	disk	settings	and	tape	settings.

Also	included	is	a	Policy	tab,	where	we	can	specify	the	maximum	piece	size,	as	well	as
the	backup	policy,	retention,	compression	algorithm,	and	encryption.	Finally,	the	Recovery
Catalog	tab	is	where	we	can	specify	whether	to	use	the	control	file	or	recovery	catalog.

We	can	save	this	backup	configuration	by	clicking	the	Save	button.	We	will	see	a
confirmation	window	telling	us	that	the	backup	configuration	has	been	created.	We	are
then	returned	to	the	Test-Grp	definition	page.	From	the	main	Group	menu,	we	can	select
Schedule	Backup,	as	shown	in	Figure	14-11,	to	start	the	Backup	Wizard.

FIGURE	14-11.			Scheduling	a	backup	for	a	group

This	time	there	are	a	few	more	steps	to	walk	through.	On	the	first	page	of	the	interview
process,	we	are	asked	for	the	backup	scope	(we	can	select	from	Whole	Database,	All
Recovery	Files	on	Disk,	or	Archived	Logs),	and	we	are	also	asked	if	we	want	to	back	up
all	the	databases	in	the	group	or	just	selected	databases.

Clicking	the	Next	button	takes	us	to	the	Credentials	page,	where	we	are	asked	for	both
database	credentials	and	host	credentials.	In	this	case,	let’s	choose	the	option	to	create	a
new	database	credential	using	the	SYS	username	and	password	that	are	common	between
the	two	databases.	We	can	also	specify	a	host	credential	that	already	exists	as	a	named
credential.	The	other	option	we’ll	select	for	both	is	to	use	preferred	credentials.

Clicking	Next	skips	the	Files	page,	which	is	only	relevant	if	we	are	using	a	media
management	system.	Clicking	Next	will	then	take	us	to	the	Settings	page.	Here,	we	can
choose	to	back	up	either	to	disk	(the	default)	or	tape,	and	we	can	select	the	backup
configuration	to	use.	Remember,	the	backup	configuration	contains	the	location	for	both
disk	and	tape	backups,	so	specifying	the	backup	configuration	also	selects	the	location	for

the	destination	media	we	have	chosen	here.

Clicking	Next	takes	us	to	the	Options	page.	These	are	the	same	options	as	you	saw
when	backing	up	a	single	database,	so	we	won’t	go	into	any	details	here.	Let’s	leave	the
selections	at	the	default	values	of	Full,	Online,	and	“Also	back	up	all	archived	logs	on	disk
that	have	not	already	been	backed	up.”	Clicking	Next	brings	us	to	the	Schedule	page.
Here,	we	can	specify	a	name	for	the	backup,	along	with	a	schedule.	In	this	case,	let’s	give
the	backup	a	name	of	BACKUP_TEST-GRP_Online	and	ask	for	it	to	be	backed	up	at
midnight	on	Saturdays.	Clicking	Next	takes	us	to	the	Review	page.	Review	the
information	on	the	page	and	then	click	Submit	to	submit	the	job.

After	clicking	the	Submit	button,	we	are	returned	to	the	Test-Grp	page.	Here,	we	can
either	click	the	BACKUP_TEST-GRP_Online	link	to	view	the	backup	procedure	or	just
click	the	checkbox	on	the	top	right	of	the	Information	region	to	remove	the	message.

Managing	Backups
Now	you’ve	seen	how	to	schedule	backups	using	EM12c,	let’s	take	a	look	at	what	you	can
do	as	far	as	managing	the	backups	you’ve	created	is	concerned.	Let’s	start	again	from	the
test1	database	home	page.	From	here,	you	can	follow	the	path	Availability	|	Backup	&
Recovery	|	Manage	Current	Backups.	This	brings	us	to	the	Manage	Current	Backups	page,
shown	in	Figure	14-12.

FIGURE	14-12.			The	Manage	Current	Backups	page

Backup	Reports

You	can	also	view	a	list	of	all	the	backup	jobs	known	to	the	database	by	going	to	the
database	home	page	and	then	following	the	path	Availability	|	Backup	&	Recovery	|
Backup	Reports.	It	will	show	you	a	list	of	backups,	with	the	ability	to	narrow	the	search	to
jobs	of	a	specific	status,	timeframe,	or	type,	as	well	as	to	drill	into	the	details	of	the
backup	by	clicking	either	the	backup	name	or	status,	as	shown	in	Figure	14-13.

FIGURE	14-13.			The	View	Backup	Report	page

When	you	drill	into	a	particular	job,	you	are	shown	some	general	information,	such	as
the	status,	start	time,	time	taken,	input	size,	and	output	size,	as	well	as	the	output	log.
There	is	a	lot	of	output	to	look	at,	which	is	a	good	thing	for	backups	just	in	case	you	need
to	troubleshoot	a	problem.

Using	EM12c	for	Recovery
Wow,	that’s	a	lot	of	material	on	backups.	You’ll	be	pleased	to	know	that	recovery	doesn’t
take	anywhere	near	as	much	time	to	cover.	That’s	largely	because	recovery	is	usually
fairly	straightforward—other	than	being	a	highly	stressful	situation	to	find	yourself	in—
provided	you	have	done	all	the	work	up	front	in	setting	up	your	backups.

So,	what	do	you	need	to	know	about	using	EM12c	for	recovery?	The	first	thing	to
understand	is	how	to	create	restore	points.	Let’s	look	at	that	in	more	detail.

Restore	Points
A	restore	point	is	a	name	you	give	to	a	specific	point	in	time.	It	can	then	be	used	during	a
recovery	as	the	point	to	which	you	want	to	recover.	To	create	a	restore	point	for	a
database,	from	the	database	home	page	follow	the	path	Availability	|	Backup	&	Recovery	|
Restore	Points.	That	will	bring	you	to	the	page	shown	in	Figure	14-14.

FIGURE	14-14.			The	Manage	Restore	Points	page

For	this	particular	database,	there	are	no	restore	points	yet,	so	let’s	click	the	Create
button	to	create	one.	That	brings	up	the	Create	Restore	Point	page.

When	creating	a	restore	point,	make	sure	you	give	it	a	meaningful	name.	Having	a
meaningful	name	makes	it	easier	to	find	the	restore	point	you	want	when	there	are	lots	of
them.

You	can	also	choose	to	create	a	guaranteed	restore	point.	Guaranteed	restore	points
ensure	that	a	FLASHBACK	DATABASE	command	can	be	used	to	restore	the	database	to
the	restore	point	time.	This	whole	process	does	have	some	prerequisites—namely,	the
database	must	have	an	FRA,	it	must	be	running	in	ARCHIVELOG	mode,	and	it	must	have
a	value	for	the	COMPATIBLE	parameter	of	10.2	or	greater.	Also,	consider	that	if	you	are
using	Normal	Restore	Points	as	opposed	to	Guaranteed	Restore	Points	that	the	Normal
Restore	Points	can	age	out	of	the	controlfile.

Clicking	the	OK	button	will	bring	up	a	screen	asking	you	to	confirm	you	want	to	create
the	restore	point.	If	you	click	the	Yes	button,	in	a	few	seconds	you	will	be	returned	to	the
Manage	Restore	Points	page;	you	can	see	an	informational	message	that	the	restore	point
has	been	created,	and	the	restore	point	is	listed	in	the	table.	As	you	can	see	in	Figure	14-
15,	you	now	also	have	a	button	called	Recover	Whole	Database	To	that	allows	you	to
recover	the	database	to	a	restore	point	selected	from	the	table,	and	you	have	a	Delete
button	allowing	you	to	delete	a	restore	point	that	is	no	longer	needed.

FIGURE	14-15.			The	Manage	Restore	Points	page	showing	a	restore	point

Performing	Recovery
As	mentioned	before,	performing	a	recovery	is	really	a	straightforward	process	in	EM12c
—if	you’ve	done	the	work	up	front	in	setting	up	the	backups	correctly.	To	start	a	recovery,
follow	the	path	Availability	|	Backup	&	Recovery	|	Perform	Recovery….	That	will	bring
you	to	the	Perform	Recovery	page	shown	in	Figure	14-16.	Notice	the	very	top	part	of	the
screen,	Oracle	Advised	Recovery,	which	identifies	failures	for	you	and	allows	you	to
perform	recoveries	based	on	that.	In	this	case	there	is	no	failure	detected	automatically,	so
you	need	to	look	at	the	next	section,	User	Directed	Recovery.	From	here,	you	can	specify
the	following:

FIGURE	14-16.			The	Perform	Recovery	page

			The	recovery	scope			The	Recovery	Scope	drop-down	list	allows	you	to
recover	the	whole	database,	specific	datafiles	or	tablespaces,	archived	logs,	tables,
or	transactions.	For	the	example	shown	here,	we’ll	perform	a	simple	recovery	of	the
whole	database	(which	is	the	default).

			Operation	type			You	can	choose	to	recover	to	the	current	time	or	a	previous
point	in	time,	restore	all	datafiles	from	a	previous	backup	(and	perform	no	recovery
after	that),	or	recover	from	previously	restored	datafiles.	Again,	we’ve	chosen	the
default	in	Figure	14-16,	which	is	to	recover	to	the	current	time	or	a	previous	point	in
time.

Notice	that	the	host	credentials	have	been	picked	up	by	default,	as	we	already	created	a
named	credential	to	access	this	host	at	the	operating	system	level.	To	start	the	recovery
process,	we	just	need	to	click	the	Recover	button.	This	brings	us	to	the	first	page	of	the
recovery	interview	process.	Several	options	will	be	available.	For	example,	we	can	choose
to	recover	to	a	prior	point	in	time,	to	a	particular	date	and	time,	restore	point,	SCN,	or	log
sequence	number.

If	we	click	the	magnifying	glass	to	the	right	of	that	field,	we	can	choose	the	restore
point	we	want	to	use.	Because	there	is	only	the	one	restore	point	we	created	earlier,	we
won’t	bother	showing	you	that	screen,	so	once	the	restore	point	is	selected,	we	just	need	to
click	Next.	On	the	next	page	of	the	interview,	we	are	asked	whether	we	want	to	use
FLASHBACK	DATABASE	or	a	normal	point-in-time	recovery.	FLASHBACK
DATABASE	is	the	default.

Clicking	Next	skips	the	Rename	page,	which	is	only	needed	for	normal	point-in-time
recovery	rather	than	using	FLASHBACK	DATABASE,	so	we	move	to	the	completely
inappropriately	named	Schedule	page	(because	there	is	no	schedule	we	can	specify	here).
All	we	can	provide	is	a	name	and	description	for	the	job,	not	a	schedule.

Clicking	Next	moves	us	to	the	Review	page,	shown	in	Figure	14-17,	where	we	can
review	all	the	inputs	we	have	provided.	There’s	even	an	Edit	RMAN	Script	button	for
making	last-minute	customizations	if	we	want	(note	that	if	we	select	this	option	and	make
changes,	we	can’t	go	back	through	the	wizard	interview	process	to	make	more	changes).

FIGURE	14-17.			The	point-in-time	recovery	process

Clicking	Submit	Job	submits	a	job	for	the	recovery	and	presents	a	page	indicating	that
the	job	has	been	successfully	submitted.	This	page	includes	a	button	called	View	Job	that
we	can	click	to	watch	the	progress	of	the	recovery.	Eventually	(depending	on	the	size	of
the	database),	we	should	see	a	successful	summary	of	the	job,	as	shown	in	Figure	14-18.

FIGURE	14-18.			Summary	of	a	successful	point-in-time	recovery

And	that’s	all	there	is	to	a	successful	recovery!

Summary
An	Oracle	database	can	contain	a	wealth	of	business-critical	information,	so	it’s	important
to	be	able	to	back	up	and	recover	that	database	easily,	reliably,	and	in	the	least	stressful
way	possible.	While	RMAN	provides	all	the	commands	to	perform	these	backups	and
recoveries,	it	can	be	incredibly	helpful—both	with	less	knowledgeable	DBAs	and	to
minimize	stress	for	more	experienced	DBAs—to	have	a	product	such	as	EM12c	to	make
backup	and	recovery	as	easy	as	possible.

PART
IV

RMAN	in	a	Highly	Available	Architecture

CHAPTER
15

RMAN	Best	Practices

W
e	are	often	asked	questions	related	to	best	practices	when	using	RMAN.	These	are	good
questions	because	there	is	more	to	backing	up	a	database	than	just	backing
up	a	database.	We	have	spent	many	chapters	talking	about	setting	up
RMAN	and	using	it	for	backup,	recovery,	and	other	purposes.	Now	that	we
have	covered	the	mechanics	of	RMAN,	let’s	discuss	best	practices.

Best	practices	are	the	procedures	and	processes	you	follow	that	help	ensure	you	are
using	RMAN	in	the	most	efficient	and	effective	way.	Best	practices	are	guidelines	and	are
not	set	in	stone.	Rather,	these	are	general	guidelines	that	are	flexible,	because	each
individual	enterprise	is	different	and	has	different	requirements.	Smaller	environments
have	different	requirements	than	larger	ones.	Therefore,	the	best	practices	you	will	use
may	vary	from	those	that	others	will	use.

With	that	in	mind,	we	provide	you	with	some	guidelines	in	this	chapter	that	might	give
you	some	ideas	of	some	best	practices	you	will	want	to	consider.	Here	are	the	areas	we
cover:

			Data	protection

			Service-level	agreements

			Standards	and	processes

			Beyond	backup	and	recovery

			Best	practices

However,	before	we	dive	into	these	subjects,	let’s	take	a	detour	and	look	at	the	whole
backup	and	recovery	picture	from	a	little	different	perspective.	We’ll	look	at	backup	and
recovery	from	the	point	of	view	of	data	protection.

Data	Protection
We	do	a	little	bit	of	a	disservice	by	trying	to	create	a	definition	for	something	called
backup	and	recovery,	which	is	really	a	child	process	of	something	much	bigger	that	we
will	call	“data	protection.”	Data	protection	recognizes	that	what	is	important	for	a
database	is	the	data	within	it.	Without	that	data,	there	is	no	database	to	manage	really.

In	this	section	we’ll	discuss	the	following	topics:

			Enterprise	architecture

			Backup	and	recovery

			High	availability

			Disaster	recovery

			Data	governance

			Monitoring	and	scheduling

Each	of	these	disciplines	(and	probably	more	we	didn’t	list)	have	many	subdisciplines
within	them.

Enterprise	Architecture
Why	do	we	list	“enterprise	architecture”	as	the	first	discipline	when	it	comes	to	data
protection?	Because	it’s	the	foundation	of	any	successful	data	protection	architecture.
When	you	build	your	architecture	thinking	not	only	of	the	databases	in	your	charge,	but
also	about	the	other	databases	in	the	organization,	you	will	craft	solutions	that	are	more
scalable,	easier	to	repeat,	and	easier	to	monitor.

Enterprise	solutions,	if	done	right,	will	reduce	risk	and	improve	the	overall	success	of
whatever	it	is	you	are	trying	to	do.	They	offer	repeatable	solutions	to	common	problems,
and	there	is	a	lot	about	backup	and	recovery	of	a	database,	for	example,	that	begs	for	a
single,	repeatable,	and	simple	process.

Enterprise	solutions	require	more	discipline	when	you	are	designing	them.	They	require
you	to	coordinate	with	more	people	and	collect	more	information.	Enterprise	solutions
almost	always	take	more	work	up	front,	and	generally	cost	more	up	front.	However,	if
they	are	built	correctly,	maintained	correctly,	and	if	the	appropriate	monitoring	is	put	in
place	in	the	beginning,	the	cost	of	a	system	engineered	with	the	enterprise	in	mind	can	be
significantly	less.

Finally,	enterprise	solutions	also	generally	take	a	bit	more	software	and	can	offer	a	bit
more	complexity	with	respect	to	the	initial	setup	and	configuration.	Sometimes,	efforts
even	need	to	be	made	to	stabilize	these	infrastructures.	These	are	normal	kinds	of	growing
pains	when	you	are	trying	to	create	a	truly	enterprise	architecture.	All	of	these	up-front
challenges,	when	faced	and	met,	will	be	completely	offset	by	the	long-term	benefits	of	a
stable	enterprise	management	and	monitoring	platform,	especially	when	it	comes	to	the
question	of	data	protection.

We	have	largely	addressed	the	central	hub	of	Oracle’s	enterprise	management
infrastructure	in	this	book	when	we	discussed	Oracle	Cloud	Control.	When	configuring	a
complete	data	protection	solution,	you	should	seriously	consider	using	Oracle	Cloud
Control	as	your	enterprise	management	hub.

Backup	and	Recovery
Of	course,	it’s	critically	important	to	back	up	and	then	recover	your	Oracle	databases.
When	you	are	crafting	your	data	protection	architecture	and	strategies,	certainly	backup
and	recovery	of	your	databases	is	important.

We	almost	always	use	the	phrase	“backup	and	recovery,”	putting	the	term	backup	first.
But	are	these	terms	in	the	right	order?	Certainly,	chronologically	they	are	in	the	right
order:	you	have	to	back	up	a	database	generally	before	you	can	recover	it.	Also,	when	you
are	just	learning	how	to	be	a	DBA,	the	backup	part	is	the	logical	beginning	for	that
education	you	require.	You	can’t,	after	all,	restore	a	database	unless	you	have	a	backup
from	which	you	can	source	that	restore	exercise.

However,	this	name	betrays	what	should	be	the	true	order	of	operations	that	you	should
be	following	when	it	comes	to	backup	and	recovery	impacting	our	thinking	process	when
we	think	about	database	backups.

For	example,	how	many	times	have	you	first	asked	yourself	about	how	you	were	going

to	back	up	a	database?	Did	it	occur	to	you	that	maybe	you	needed	to	understand	how	you
were	going	to	restore	that	database	first?	Although	it	might	seem	like	the	answer	to	the
first	question	depends	on	the	answer	to	the	second	question,	we	would	disagree.	We	would
say	that	the	answer	to	the	second	question	is	a	dependency	to	even	beginning	to	figure	out
the	answer	to	the	first	question.

We	are	often	asked	to	determine	a	DBA’s	skill	set.	One	of	the	metrics	used	to	determine
the	experience	level	of	a	DBA	is	to	explore	their	thinking	about	recovery	and	backup.	For
example,	the	junior	DBA	will	be	struggling	to	understand	backup	and	recovery.	You	can
see	these	struggles	as	you	question	them	about	the	mechanical	rudiments	of	how	to	back
up	a	database.	Often	they	will	struggle	more	on	how	to	recover	those	backups.	The	bottom
line	is	that	the	junior	DBA	will	need	help	in	most	recovery	situations.	They	will	need	the
assistance	of	a	senior	DBA	or	Oracle	Support.	You	would	never	depend	on	someone	at
this	position	to	architect	any	kind	of	recovery	solution.	They	simply	are	not	ready.

As	the	DBA	progresses	in	experience,	they	start	to	think	about	and	experience	various
recovery	situations	and	they	learn	more	complex	recovery	techniques.	At	some	point	they
have	progressed	past	the	junior	level	into	some	middle-of-the-road	position.	You	can	see
this	in	interviews	as	they	respond	to	questions	about	database	failures	with	confidence,
displaying	a	set	of	skills	that	say,	“I	know	how	to	deal	with	this	issue!”

The	principal	difference	between	the	middle-of-the-road	DBA	and	the	truly	senior
DBA,	at	this	point,	is	in	how	they	respond	to	the	recovery	questions.	The	middle-of-the-
road	DBA	usually	tells	me	what	they	would	do	given	a	particular	situation.	They	still	lack
experience,	but	they	have	the	learning.	The	truly	senior	DBA	will	tell	me	about	what	they
did	in	that	(or	a	similar)	situation.	They	not	only	have	developed	the	skill	set,	but	they
have	deployed	it	in	real	life	with	success.

We	think	it’s	important	to	answer	the	question	“How	do	we	back	up	databases?”	You
first	need	to	understand	the	question	“How	do	these	databases	need	to	be	restored?”	It’s
important	to	understand	that	the	restore	question	isn’t	just	about	the	mechanics	of	the
restore;	it’s	also	about	understandings	the	stakeholders	with	respect	to	their	expectations
and	needs.	It’s	about	providing	scalable	services	for	the	enterprise	and	maintaining	control
while	also	providing	flexibility.	In	the	end,	it’s	about	maturity.

So,	that	is	the	reason	we’ve	suggested	that	we	should	be	saying	“recovery	and	backup.”
One	truly	informs	the	other.	Without	exploring	the	first,	we	cannot	properly	implement	the
latter.	Therefore,	in	the	rest	of	this	chapter,	we	will	address	these	questions—which	lead	to
an	answer	that	we	call	“the	enterprise	recovery	and	backup	solution.”

Keep	in	mind	that	an	overall	solution	is	not	going	to	just	address	backup	and	recovery
with	RMAN.	In	many	cases,	based	on	what	you	will	learn,	your	solution	may	involve
requirements	for	high	availability	(HA)	and	disaster	recovery	(DR).	You	need	to	keep	the
entire	landscape	of	the	recovery	solution	in	your	mind	when	you	proceed	to	architect	a
solution	and	not	get	focused	on	just	the	backup	and	recovery	aspect	of	it.	Yes,	this	is	a
book	on	RMAN,	but	the	overall	architecture	is	more	than	just	RMAN,	of	course!

Something	else	to	consider	as	we	start	discussing	architecture	and	infrastructure:	As	we
describe	some	of	the	things	we	recommend	you	do,	you	might	feel	like	this	is	an	awful	lot
of	work.	You	might	wonder	why	it	is	that	some	of	the	details	suggested,	such	as	using

SLAs,	are	so	important.	You	might	think	that	things	are	under	control;	there	have	been	no
outages,	so	why	should	you	care?

There	are	a	number	of	reasons	you	should	care,	of	course.	We’ve	already	mentioned
several	of	them,	and	we’ll	mention	several	others	as	this	chapter	continues.	However,
there	is	one	reason	that	we	want	to	point	out	to	you	in	particular.	It	is	something	that	can
impact	even	the	best	and	seemingly	most	stable	of	infrastructures:	the	problem	of	scale.	It
may	be	that	you	crafted	the	most	magnificent	and	well-documented	backup	and	recovery
infrastructure	that	has	ever	existed.	You	have	SLAs,	you’re	meeting	requirements,	you
constantly	test,	and	the	results	are	flawless.	However,	you	might	have	also	noticed	that
lately	your	backups	are	taking	just	a	little	longer.	Maybe	during	your	recovery	testing	the
database	that	took	an	hour	to	restore	now	takes	two	hours.	These	are	subtle	indications
that	your	infrastructure	is	starting	to	suffer	from	scaling	problems.	We’ve	seen	this	happen
a	number	of	times.	We’ve	seen	the	subtle	signs	that	no	one	else	really	noticed	because
things	were	running	so	well	that	they	really	didn’t	look	at	areas	such	as	backup	times	at
all.	They	didn’t	notice	the	quiet	trends	that	were	there	and	growing.

So,	the	bottom	line	is	that	every	infrastructure	needs	to	be	reviewed	from	time	to	time
to	see	not	only	the	obvious	problems	you	know	about,	but	also	the	nasty	problems	that	are
just	waiting	to	show	up	some	day.

What	are	the	things	to	consider	when	looking	at	the	issue	of	backup	and	recovery	when
you	are	planning	your	architecture?	You	need	to	consider	the	following:

			Current	and	renegotiated	backup	and	recovery	SLAs	(formal	or	informal)

			Current	sizes	of	existing	databases

			Current	backup	times	of	these	databases

			Anticipated	growth	of	existing	databases

			Anticipated	growth	of	backup	times	for	existing	databases

			New	databases	that	will	be	created

			Initial	sizes	and	anticipated	growth	of	new	databases

			Creation,	removal,	and	refreshing	of	databases	during	various	cycles	such	as
development,	testing,	and	QA

			Retention	criteria	of	both	the	databases	and	the	database	backups

These	are	a	few	of	the	numerous	considerations	you	need	to	make	when	looking	at
your	solutions	for	backup	and	recovery.

High	Availability
Along	with	the	question	of	backup	and	recovery,	there	are	still	many	other	questions	that
need	to	be	asked.	The	next	logical	area	that	needs	to	be	addressed	is	high	availability
(HA).	The	primary	purpose	of	HA	is	to	abstract	the	user	from	the	system	as	a	whole	and
prevent	them	from	suffering	from	any	single	point	of	failure	within	that	system.

In	the	Oracle	world,	HA	comes	in	many	forms:

			Oracle	Clusterware

			Oracle	Real	Application	Clusters	(RAC)

			Various	network	and	hardware	redundancies

HA	adds	additional	complexities	into	the	overall	database	infrastructure,	and
sometimes	these	complexities	can	be	overlooked	and	lead	to	unexpected	failures.	This	can
be	demonstrated	by	an	experience	that	we	had	with	a	customer	once.	They	thought	that
they	had	architected	a	very	robust	HA	configuration	(We’re	changing	some	details	to
protect	the	identity	of	the	customer,	but	the	general	information	is	correct).	The	customer
was	running	a	RAC	cluster	with	several	instances.	They	had	designed	what	they	thought
was	a	very	robust	HA	architecture	with	two	separate	networks	supporting	user	connections
and	two	additional	networks	supporting	the	cluster	interconnect.	The	disks	were	running
ASM	with	triple	mirroring,	offering	a	great	deal	of	redundancy.

However,	one	day,	everything	just	stopped.	Both	nodes	fenced	and	then	shut	down,	and
when	they	restarted,	the	instances	would	not	come	up.	After	a	great	deal	of	investigation,
the	truth	emerged.	When	the	disk	array	was	installed,	everyone	believed	that	it	was
configured	with	two	different	disk	controller	cards.	They	believed	that	the	array	provided
them	with	multipathing	as	well	as	redundancy	should	one	of	those	cards	fail.

Upon	trying	to	recover	the	disk	array,	it	was	found	that	there	was	only	one	card	active
on	the	disk	array.	The	second	card	was	sitting	in	the	array,	ready	to	go,	but	it	had	never
been	connected	or	activated.	As	we	looked	at	the	Fibre	Channel	switch,	we	found	that
there	was	even	a	cable	that	had	been	run	to	the	array,	but	it	had	apparently	just	never	been
connected.	The	moral	of	the	story	is	that	HA	is	complex,	and	it’s	so	easy	to	just	miss	one
little	thing.	We	only	tell	this	story	as	a	cautionary	tale.	Architecting	a	robust	HA	solution	is
an	incredible	part	of	providing	for	data	protection.	It	just	requires	a	great	deal	of	careful
planning	and	designing,	and	a	good	peer	review	isn’t	a	bad	idea	either.

There	is	another	side	of	HA	to	be	aware	of,	one	that	might	not	seem	immediately
apparent.	Sometimes	you	can	have	a	system	that	is	so	highly	redundant	that	when
something	does	fail,	nobody	notices.	The	thing	just	keeps	on	humming,	running	along—
and	nobody	notices	that	a	disk	failed	or	that	a	network	cable	has	become	disconnected.	If
you	are	not	monitoring	your	system	and	its	components	for	failure,	then	you	might	just
miss	those	failures.

This	can	result	in	a	system	that	appears	to	be	stable	but	in	fact	is	becoming	more	and
more	unstable	over	time.	This	highlights	the	importance	of	monitoring	as	a	part	of	an
overall	enterprise	data	protection	strategy.	HA	strategies	add	a	number	of	additional
working	pieces.	In	a	way,	it	reminds	me	of	when	I	was	growing	up	in	Oklahoma,	where
we	used	to	say	that	the	difference	between	a	two-wheel	drive	and	a	four-wheel	drive	was
that	the	four-wheel	drive	could	get	you	stuck	much	further	away	from	civilization.	As
such,	a	four-wheel	drive	can	give	you	a	bit	of	a	sense	of	invulnerability.	An	HA
architecture	can	have	somewhat	of	the	same	impact.

Finally,	adding	any	kind	of	HA	infrastructure	will	increase	the	overall	capital	and
operational	costs	of	your	infrastructure.	This	is	something	to	keep	in	mind.	You	should	be
able	to	identify	these	costs	to	the	stakeholders,	ensuring	that	they	understand	the	overall
costs	of	their	requirements.	We	often	find	that	stakeholders	will	ask	for	uptimes	of	five	9’s

(99.999),	but	when	presented	with	the	costs	of	meeting	such	an	objective,	they	quickly
reduce	those	requirements	to	something	that	their	budget	can	afford.

Disaster	Recovery
Sometimes	people	confuse	HA	with	disaster	recovery	(DR).	HA	is	designed	to	hide
various	failures	from	the	user	in	such	a	way	that	the	user	never	sees	the	failure.	However,
there	are	situations	that	HA	cannot	really	address	very	well,	such	as	the	fallout	from	a
tornado,	tsunami,	or	earthquake.	It	is	for	these	kinds	of	disasters	that	we	architect	DR
plans	as	a	part	of	our	overall	data	protection	plan.

If	there	are	additional	costs	required	for	HA	solutions,	there	are	even	greater	costs
associated	with	providing	DR	services.	Often	this	cost	is	taken	for	granted	by	stakeholders
who	ask	for	things,	not	appreciating	the	investment	required.	It	is	important	in	the	overall
planning	process	for	a	data	protection	scheme	that	we	equate	the	requirements	given	to	us
by	stakeholders	into	dollars	so	that	they	can	better	understand	the	costs	of	what	they	are
requiring.

Data	Governance	and	Security
You	may	think	you	have	bought	the	wrong	book	when	we	mention	data	governance	and
security	(in	fact,	one	could	argue	that	these	should	be	treated	as	separate	topics—but	for
the	purposes	of	this	chapter	we	can	safely	combine	them).	What	do	these	topics	have	to	do
with	backup	and	recovery	or	even	HA	or	DR?	It	turns	out	that	the	answer	is,	quite	a	lot.
Data	governance	and	security	cover	a	lot	of	ground,	but	essentially	together	they	have	to
do	with	the	integrity,	ownership,	and	security	of	data	within	your	database.	How	is	it	that
this	kind	of	responsibility	intersects	with	backup	and	recovery	architecture?

First,	imagine	the	potential	impacts	of	the	loss	of	a	backup	to	some	competitor	with
little	integrity.	Or,	perhaps,	consider	the	relationships	in	the	data	in	disparate	databases
that	are	all	used	by	a	single	application.	Although	an	Oracle	database	can	maintain	internal
relational	integrity	within	that	database,	often	there	are	other	databases	with	related	data
that	an	application	will	access	at	the	same	time.	There	is	no	built-in	constraint	mechanism
to	ensure	the	integrity	of	those	external	relationships.

Imagine	that	there	is	an	application	that	depends	on	databases	ABC,	DEF,	and	XYZ.
Imagine	that	the	ABC	database	fails,	while	DEF	and	XYZ	remain	active.	In	this	case,	your
backup	and	recovery,	HA,	and	DR	strategies	need	to	consider	these	relationships,
especially	when	it	comes	to	recovery	of	the	ABC	database.	For	example,	if	you	cannot
perform	a	recovery	to	the	point	of	failure	(perhaps	the	online	redo	logs	were	lost),	then
what	is	the	relational	impact	on	the	surviving	databases?	It	is	best	to	plan	for	such
problems	before	they	happen—and	not	after.	Believe	us,	we’ve	been	there.

So,	data	protection	and	data	governance	are	really	synonymous.	One	of	the	tasks	within
data	governance	is	to	assign	ownership	to	the	data	within	the	database.	These	owners
(sometimes	called	governors)	are	responsible	for	all	aspects	of	the	data	assigned	to	them,
including	access	control.	Protection	of	the	data	exceeds	protection	of	the	data	within	the
active	database.	The	protection	of	the	data	in	the	backup	images,	the	disaster	recovery
databases,	and	any	other	places	that	the	data	might	be	stored	needs	to	be	considered	when

you	are	developing	your	enterprise	data	backup	and	recovery	architecture	and	its
accompanying	standards	and	requirements.

From	the	security	point	of	view,	at	the	end	of	the	day	almost	anything	related	to	data
security	really	is	a	dependency	of	proper	data	governance.	In	this	respect,	the	owner	of	the
data	is	responsible	for	all	aspects	of	that	data,	including	who	has	access	to	it	and	what	kind
of	access.	They	also	control	how	the	data	is	used	and	how	it	is	shared,	and	they	are
responsible	for	the	classification	of	the	sensitivity	of	the	data.	All	of	these	elements	have
direct	impacts	on	the	overall	data	recovery	solution	you	will	need	to	deploy	for	your
databases.

Notice	that	we	have	significantly	increased	the	scope	of	the	things	you	need	to	consider
when	developing	enterprise	backup	strategies.	Clearly,	we	are	talking	about	more	than	just
encrypting	data	as	it’s	moved	to	backup	media.	It’s	about	controlling	who	has	access	to
and	can	restore	backups.	It’s	about	controlling	where	backups	can	be	restored	to,	as	well
as	what	requirements	revolve	around	restoring	backups	to	various	destinations
(requirements	such	as	redaction	or	specific	needs	for	data	subsetting,	for	example).

All	too	frequently	these	architectural	issues	are	almost	handled	in	a	void—each	defined
on	the	fly	as	the	needs	arise,	with	the	wheel	being	reinvented	numerous	times.	This	does
not	happen,	hopefully,	when	we	think	about	backup	and	recovery	in	terms	of	an	overall
enterprise	data	protection	environment.	This	approach	is	a	huge	mistake	and	creates	huge
risks	that	need	to	be	avoided.

Monitoring	and	Scheduling
Perhaps	the	most	overlooked	aspect	of	the	development	of	an	overall	enterprise	backup
and	recovery	architecture	is	monitoring	and	scheduling.	Often	the	solutions	chosen	are	not
truly	enterprise	solutions,	and	these	solutions	do	not	scale	well.

For	example,	many	places	will	use	shell	scripts	to	execute	backups.	These	shell	scripts
are	sometimes	stored	locally	on	each	individual	server,	or	perhaps	they	are	stored	on	a
common	NFS	mount.	Each	of	these	solutions	provides	significant	change	management
issues.	The	problem	becomes	even	more	complex	when	you	try	to	manage	different
versions	of	the	backup	script,	for	whatever	reason.	In	large	enterprise	environments,	the
management	of	large	numbers	of	backup	scripts	across	your	infrastructure	can	be	complex
and	risky.

Then	there	is	scheduling	of	these	shell	scripts.	Often	we	find	that	customers	will	use	a
local	scheduling	utility,	such	as	CRON,	to	schedule	these	backups.	One	of	the
shortcomings	of	this	solution	becomes	apparent	if	a	server	itself	goes	down	and	CRON	is
not	able	to	start	the	backups.	We’ve	seen	cases	where	databases	had	been	created	and	the
required	CRON	jobs	to	back	up	those	databases	did	not	get	created.	This	can	certainly
cause	all	sorts	of	issues	if	these	missing	backups	are	allowed	to	continue	unchecked.

This	leads	us	to	the	topic	of	monitoring	and	reporting	on	backups.	It	is	important	to
have	ways	of	crosschecking	the	databases	in	your	environment	and	their	current	backup
status.	It’s	important	to	know	when	backups	occurred	and	whether	they	were	successful	or
failed.	It’s	also	important	to	have	crosschecks	of	all	the	databases	in	your	environment	and
whether	they	have	ever	been	backed	up.

All	of	these	issues	need	to	be	considered	when	creating	your	overall	data	protection
solution.	You	can	have	all	the	tools	in	place,	but	if	they	don’t	work	and	you	don’t	know
they	are	not	working,	then	all	of	your	work	was	just	wasted.	With	this	in	mind,	let’s	move
on	to	a	discussion	of	just	how	we	create	a	professional	data	protection	solution.

Best	Practices
Now	we	return	to	the	subject	at	hand:	best	practices.	In	this	section	we	discuss	the
following	topics,	suggesting	some	best	practices	you	will	want	to	consider	employing:

			Service-level	agreements

			Standards	and	processes

Service-Level	Agreements
Service-level	agreements	(SLAs)	are	negotiated	between	people	providing	services	(in	this
case,	you	the	DBA)	and	those	who	are	utilizing	the	services.	An	SLA	does	not	define	how
you	are	providing	the	service,	but	it	does	define	the	level	of	service	you	are	providing.	For
example,	an	SLA	might	define	that	you	are	providing	support	services	between	8	A.M.	and
5	P.M.,	Monday	through	Friday.

Some	places	use	SLAs,	some	don’t.	We	prefer	SLAs	because	they	tend	to	clarify
expectations.	They	eliminate	confusion	and,	trust	us,	when	the	chips	(or	the	database)	are
down,	there	is	already	enough	confusion	to	deal	with.	SLAs	do	not	need	to	be	complex,
and	it’s	much	easier	to	deal	with	them	when	you	have	standardized	your	services.

Two	primary	parameters	should	be	defined	in	an	SLA.	These	are	the	recovery	point
objective	and	the	recovery	time	objective	for	the	databases	covered	by	the	SLA.	The
recovery	point	objective	defines	the	amount	of	data	loss	that	is	allowable	in	the	event	that
the	database	fails.

The	recovery	time	objective	indicates	how	long	a	database	outage	can	exist.	This
defines	the	tolerance	for	downtime	that	the	database	can	have.	Together,	these	two
parameters	define	the	decisions	made	with	respect	to	the	services	that	will	be	required.

In	order	to	standardize	services,	we	create	what	is	commonly	called	a	“services	menu.”
This	menu	defines	the	services	you	commonly	offer	to	your	user	community.	It	can	also
define	the	costs	of	those	services.	The	defined	recovery	time	and	recovery	point	objectives
of	an	SLA	will	feed	into	the	services	that	are	selected	from	the	services	menu.

Additionally,	we	like	to	negotiate	what	is	called	a	“technology	menu,”	which	defines
the	technologies	the	entire	community	agrees	are	going	to	be	used	on	a	regular	basis.
Together,	these	two	tools	make	the	clear	definition	of	an	SLA	much	easier	to	complete.
Let’s	look	at	the	services	menu	and	the	technology	menu	in	a	bit	more	detail.

A	Services	Menu
Oftentimes	we	ask	customers	open-ended	questions	such	as,	“How	do	you	want	to	back
up	your	database?”	or	“Do	you	need	disaster	recovery	services?”	These	are	dangerous	and

expensive	questions.	In	even	a	moderately	sized	enterprise,	open-ended	questions	like
these	can	create	a	snarl	of	different	backup	and	recovery	requirements.	Perhaps	the
question	is	one	of	availability.

Ask	a	user	what	kind	of	availability	they	require	and	they	will	usually	answer,	“We
need	it	up	all	the	time,”	or	they	will	try	to	be	accommodating	and	say	they	only	need	it
from	9	to	5,	when	in	fact	they	really	have	developers	on	the	system	at	all	hours	of	the
night.	We’ve	had	many	times	when	the	latter	happened,	only	to	find	out	when	we	took	the
database	down	at	6	P.M.	for	maintenance	that	we	knocked	100	developers	off	the	system.

A	services	menu	is	often	a	much	better	solution.	A	services	menu	provides	a	list	of
limited	service	offerings	for	stakeholders	to	choose	from.	It	is	essentially	telling	the
stakeholders,	“These	are	the	services	we	can	offer	you,	and	(optionally)	this	is	what	it	will
cost	you.”	A	services	menu	may	contain	two	or	three	options,	or	it	might	contain	several
options.	It	may	be	a	fixed	set	of	options	or	it	might	be	à	la	carte.	Here	is	an	example	of	a
menu	for	data	protection	services:

Notice	that	this	menu	provides	both	standardization	and	flexibility	for	the	customer	and
the	enterprise.	The	flexibility	comes	at	a	price	that	reflects	the	additional	costs	and	effort
required	to	customize	those	services.	Note	that	just	because	we	provide	some	customized
services	does	not	mean	that	significantly	impacts	the	enterprise	infrastructure	we	want	to
create.	Indeed,	whatever	we	do	in	the	menu,	we	need	to	ensure	it	is	easy	to	implement	and
standardize	within	the	new	infrastructure,	processes,	and	tools	we	will	be	using.	If	you	are
going	to	include	a	service	that	is	not	easy	to	standardize,	think	twice	about	it	and	then
make	sure	you	charge	sufficiently	for	it,	reflecting	the	complexity	it’s	adding	to	the
organization.

You	might	look	at	the	menu	and	wonder	about	the	costing	model	that’s	demonstrated.
In	many	cases	we	have	added	both	fixed	costs	(well,	annually	recurring)	and	monthly
recurring	costs.	It’s	often	important	to	consider	that	when	you	sell	services,	you	are	not
just	selling	the	current	hardware	you	have	on	hand.	You	also	need	to	be	costing	your
services	out	in	such	a	way	that	you	can	continue	to	buy	new	hardware	to	support	future
needs,	and	don’t	forget	the	hardware	refreshes,	too.	Someone	needs	to	pay	for	those.

Finally,	don’t	forget	that	there	is	a	cost	in	the	initial	configuration	that	needs	to	be
absorbed.

A	Technology	Menu
You	might	have	noticed	that	in	the	services	menu	we	didn’t	mention	anything	about	how
or	where	we	were	going	to	provide	the	services.	We	have	abstracted	the	mechanisms	from
the	stakeholders.	This	simplifies	the	decision-making	processes.	They	simply	decide	what
services	they	want	and	how	much	they	can	pay.	Sometimes	it’s	going	to	be	a	balancing	act
between	what	they	think	they	need	and	what	they	can	pay	for;	however,	as	far	as
hardware,	infrastructure,	and	such	go,	they	really	don’t	need	to	play	in	that	space.

You	and	others	in	the	IT	organization	do	need	to	play	in	that	space,	however.	Given	that
many	enterprises	often	employ	many	people,	and	those	many	people	have	many	different
ideas	of	how	to	perform	a	task,	there	can	be	lots	of	confusion	and	even	arguments	over	the
technologies	that	get	used.	You	would	be	amazed	at	how	much	time	can	be	wasted	just
trying	to	decide	if	we	are	going	to	use	shell	scripts,	OEM,	Java,	Python,	or	whatever	for
some	basic	project	with	simple	deliverables.	Enter	the	technology	menu.

The	technology	menu	clearly	identifies	the	following	for	the	enterprise:

			Emerging	technologies

			Supported	technologies

			Desupported	technologies

The	technology	menu	provides	a	quick	list	of	how	we	do	things.	Let’s	look	at	each	of
the	different	sections	of	this	list	and	what	they	mean	and	how	technologies	are	allocated	to
these	sections.

Emerging	Technologies			The	emerging	technologies	section	lists	new	technologies	that
we	are	currently	investigating	but	are	not	approved	for	common	use.	Usually	these	are
bleeding-edge	technologies	that	offer	significant	advantages	over	currently	supported
technologies.	Not	all	technologies	on	the	list	are	bleeding	edge,	though.	New	versions	of
the	Oracle	Database	software,	including	even	the	security-related	updates,	might	well
appear	on	this	part	of	the	list	for	a	while.	Once	they	are	tested	and	approved,	they	would
be	moved	on	to	the	supported	technologies	section.

The	following	rules	typically	exist	for	an	emerging	technology	on	the	list:

			It	goes	through	a	process	to	be	added	to	the	list.

			A	process	exists	for	projects	to	be	approved	to	use	the	technology.

			Once	approved,	a	project	may	use	the	technology.

			A	process	exists	to	move	the	technology	to	the	supported	technology	list.

Supported	Technologies			Supported	technologies	are	those	technologies	in	the	enterprise
that	have	been	tested	and	approved	for	use.	They	have	standards	written	for	them,	and
they	have	processes	and	procedures	written	around	how	they	are	used.	They	are	stable	and
commonly	in	use.	Each	item	is	listed	with	specific	supported	versions	so	that	the
enterprise	has	a	consistent	set	of	software	running.

With	respect	to	data	protection	technologies	such	as	the	Oracle	Database	itself,	Cloud
Control,	RMAN,	and	Data	Guard,	all	should	be	listed	as	supported	technologies.
Supported	technologies	feed	into	establishing	standards	for	the	enterprise.	Standards	are
important,	especially	when	it	comes	to	data	protection.	We	will	cover	standards	later	in
this	chapter.

Desupported	Technologies			As	technologies	age,	they	become	obsolete.	Versions
change,	vendors	no	longer	support	products,	and	so	on.	However,	it	is	often	not	possible	to
just	pull	the	plug	on	these	kinds	of	products.	Many	times	there	are	vendor	dependencies
on	products.	For	example,	a	particular	application	vendor	might	not	yet	have	certified	on	a
supported	version	of	the	Oracle	Database.	We	can’t	just	upgrade	these	databases	on	a
whim,	yet	we	don’t	want	new	projects	to	start	using	these	desupported	versions	of	the
database	software	either.

In	most	cases,	these	technologies	will	have	been	on	the	supported	list.	When	the
technology	menu	is	created,	processes	are	created	that	regularly	review	the	supported
technologies	list	and	move	any	technologies	that	are	no	longer	going	to	be	supported	for
new	projects,	but	still	exist	in	the	enterprise,	to	the	desupported	technologies	part	of	the
list.	Once	the	software	is	permanently	removed	from	the	environment,	it	should	be
removed	from	the	list	completely.

Standards	and	Processes
Standards	and	processes	are	ways	of	defining	what	best	practices	you	are	following	and
how	you	will	follow	them.	The	technology	menu	and	the	services	menu	are	both
standards.	How	these	standards	are	implemented	(such	as	how	you	actually	perform	the
backup	of	the	database)	is	a	process.

With	respect	to	backup	and	recovery,	there	are	a	number	of	standards	and	processes
you	will	want	to	define.	These	might	include	the	following:

			The	backup	standards	and	process	you	will	use.	For	example,	you	might
decide	that	your	standard	is	to	use	incremental	backups	with	one	full	and	seven
incremental	backups.	You	might	also	determine	to	perform	monthly	archival
backups.

			Your	database	retention	standard	and	the	process	to	manage	that	standard	you
will	use.	For	example,	you	might	decide	that	your	retention	policy	will	provide	the
ability	to	do	point-in-time	restores	for	30	days.

			Backup	media	management/tiering	standards	and	processes	you	will	use.	For
example,	you	might	have	a	90-day	backup	retention	policy.	You	may	want	to	keep
the	first	30	days	on	local	disk	storage,	and	you	might	choose	to	keep	the	remaining
60	days	on	cheaper	tape	storage.	Your	policy	would	define	how	you	will	move	these
backups	between	these	two	backup	tiers.

			The	database	restore	standards	and	processes	you	will	use.

			How	you	will	schedule	backups.	For	example,	you	might	choose	to	use	Oracle
Cloud	Control	to	schedule	your	database	backups	(which	we	strongly	suggest).

Now	that	we’ve	talked	about	standards	and	processes,	let’s	talk	about	best	practices.

RMAN	Best	Practices
So,	we	have	talked	SLAs,	standards,	and	processes;	now	let’s	talk	about	best	practices
with	respect	to	RMAN.	First,	it’s	difficult	to	define	best	practices	that	apply	in	all	cases.
Therefore,	the	best	practices	we	discuss	here	are	more	guidelines	to	help	get	you	started	in
defining	the	best	practices	that	will	apply	in	your	situation.

That	being	said,	here	is	a	list	of	recommend	RMAN	best	practices:

			Determine	the	available	I/O	throughput	for	the	devices	to	which	you	will	be
backing	up.	Oracle’s	Orion	I/O	testing	tool	can	be	used	for	this	purpose.	The	results
of	this	testing	will	provide	you	with	metrics	required	to	determine	exactly	how	fast
your	database	can	be	backed	up	and	how	fast	it	can	be	restored.	This	testing	can	also
determine	if	there	are	bottlenecks	in	your	I/O	subsystem	that	need	to	be	addressed.
Know	the	speeds	and	feeds	of	your	entire	architecture.	This	really	is	rule	number
one.

			Remember	that	the	requirements	of	the	business	for	recovery	(with	respect	to
both	time	to	recover	and	data	loss)	drive	the	backup	and	recovery	solution.

			Automate	your	database	creation	processes	to	ensure	that	backups	are	always
scheduled	when	a	database	is	created.

			Maintain	consistency	as	much	as	possible	in	your	database	backup,	recovery,
and	RMAN-related	configurations.

			When	possible,	run	your	database	in	ARCHIVELOG	mode	and	use	online
backups.	Although	it	might	be	tempting	to	run	development	and	other	databases	in
NOARCHIVELOG	mode,	if	at	all	possible,	you	should	run	all	your	databases	in	the
same	logging	mode.

			For	best	performance,	define	an	Oracle	Fast	Recovery	Area	on	the	local	disk
and	back	up	to	that	set	of	disks	first.	If	you	wish	to	use	less	expensive	or	slower
storage,	use	that	as	Tier-2	storage.

			Use	RMAN’s	stored	configuration	capabilities.	Standardize	these
configurations	and	audit	them	on	a	regular	basis.

			Define	your	RMAN	retention	policies.

			Be	careful	not	to	define	backup	retention	policies	in	more	than	one	place.	For
example,	if	you	back	up	your	database	to	an	SBT	tape	device,	RMAN	should
maintain	the	retention	alone—do	not	allow	the	tape	software	to	also	control
retention	of	the	backup	media.

			To	ensure	optimal	performance	of	the	database	and	database	backups,	never
back	up	to	disks	that	contain	database	data.

			Carefully	parallelize	backups,	without	over	consuming	CPU	or	I/O	resources.

			Never	allow	RMAN	to	lose	track	of	the	location	of	your	backup	sets.	Ensure
that	RMAN	is	always	used	to	move	backups	between	various	backup	media	tiers.
Also	ensure	that	if	you	back	up	to	tape	that	you	use	the	RMAN	MML	layer,	rather

than	tape	vendor	backup	software	that	does	not	update	the	database	control	file	or
the	RMAN	recovery	catalog.

			Define	and	use	a	standardized	set	of	RMAN	configuration	settings.

			Use	the	RMAN	recovery	catalog.	Use	the	virtual	private	catalog	to	separate
the	different	backup	and	recovery	environments	(production,	test,	and	development).
This	will	make	duplication	of	databases	easier	in	your	environment.

			Keep	track	of	all	the	databases	you	have	in	your	environment	and	crosscheck
that	list	against	the	RMAN	recovery	catalog	to	ensure	that	all	the	databases	in	your
environment	are	actually	being	backed	up.	Oracle	Cloud	Control–related	views	can
provide	the	source	of	your	database	configuration	information.

			If	backup	space	availability	is	of	greater	concern	than	restore	times,	or	if	your
backup	strategy	includes	backups	to	tape,	then	use	incremental	backups.	Ensure	you
enable	block	change	tracking.

			If	restore	times	are	superior	to	space	availability,	use	incrementally	updated
backups.

			Practice	database	restores	from	your	production	backups	often.

			If	you	are	using	Active	Data	Guard,	you	should	offload	your	backups	to	the
Active	Data	Guard	database.

			We	strongly	recommend	that	you	back	up	to	disks	that	are	managed	by	ASM.
Provision	the	inner	sectors	of	the	disk	for	backups.	The	outer	sectors	of	the	disk	are
faster	and	should	be	reserved	for	data.	The	inner	sectors	are	slower	and	should	be
reserved	for	backups.

			When	backing	up	a	database	with	many	files	of	different	sizes,	use	the	section
size	parameter	to	further	parallelize	backups.

			Encrypt	your	backups.

			If	you	are	backing	up	tablespaces	where	data	needs	to	be	encrypted,	use	TDE
tablespace	encryption	rather	than	TDE	column–level	compression	to	eliminate
double	encryption	in	the	resulting	backups.

			Remember,	sometimes	simpler	is	better.	Complex	architectures	can	complicate
performance	tuning.

Of	course,	no	list	is	really	complete.	However,	we	feel	this	list	gives	you	a	good	start
and	provides	you	with	some	things	to	think	about.

Summary
In	this	chapter	we	tried	to	provide	you	with	some	nontechnical	guidelines	and	best
practices	to	follow	with	respect	to	RMAN.	As	you	can	see	from	the	contents	of	this
chapter,	and	from	many	of	the	other	chapters	in	this	book,	there	is	a	great	deal	more	to
database	backup	and	recovery	than	just	backing	the	database	up	or	recovering	it!

CHAPTER
16

Surviving	User	Errors:	Flashback
Technologies

S
ometimes,	don’t	you	wish	you	could	just	take	some	mistake	you	made,	roll	back	time,	and
get	a	do-over?	Back	in	the	day,	DBAs,	developers,	and	many	users	found
themselves	wishing	for	a	time	machine	when	they	made	terrible	mistakes.	Oracle
answered	the	need	for	a	time	machine	(of	sorts)	with	the	advent	of	the	database
flashback	technologies.	With	Flashback	Database	features,	a	whole	host	of

mistakes	can	be	corrected.

Up	until	this	point,	this	book	has	been	focused	on	media	recovery.	Media	recovery	with
RMAN	provides	critical	safeguards	against	all	kinds	of	unforeseeable	problems—block
corruption,	hardware	failure,	even	complete	database	loss.	In	this	chapter,	though,	we
want	to	address	the	Oracle	Flashback	Database	features	available	in	RMAN	and	how	they
can	be	used	to	correct	user	errors.

User	errors	can	be	roughly	defined	as	errors	caused	by	a	human	mistake	(rather	than	a
software	or	hardware	malfunction),	such	as	a	table	updated	with	wrong	values,	a	table
dropped,	or	a	table	truncated.	Such	errors	are	far	more	common	than	hardware	failures
(although,	let’s	face	it,	human	errors	get	called	hardware	errors	all	the	time).	In	general,
user	errors	are	classified	as	logical	errors—the	error	is	logical,	within	the	data	itself,	and	a
correction	that	is	done	using	media	recovery	options	will	typically	be	very	expensive.

In	Oracle	Database	12c,	RMAN	can	assist	you	in	the	implementation	of	some
Flashback	Database	operations.	Other	operations	need	to	be	done	from	the	command	line
(which	is,	of	course,	supported	by	RMAN)	or	Oracle	Enterprise	Manager.	In	this	chapter,
we	discuss	Flashback	Database	in	the	Oracle	Database.	We	look	at	the	features	supported
by	RMAN	and	address	other	Flashback	Database	features	not	supported	by	RMAN.

Prepared	for	the	Inevitable:	Flashback	Technology
When	it	comes	to	logical	errors,	media	recovery	should	not	be	our	first	line	of	attack.	It
frequently	is	the	first	line	of	attack,	but	this	leads	to	massive	outages.	Typically,	user	error
is	not	something	we	can	recover	from,	because	the	action	is	not	interpreted	as	an	error	by
the	database.	The	command	delete	*	from	scott.emp	is	not	an	error;	it’s	a	perfectly
legitimate	DML	statement	that	is	duly	recorded	in	the	redo	stream.	Therefore,	if	you
restore	the	datafile	and	then	perform	recovery,	all	you	will	do	is,	well,	delete	*	from
scott.emp	again.

Point-in-time	recovery	can	be	a	solution,	but	such	a	restore	can	be	complex,	time
consuming,	and	potentially	have	impacts	on	many	users.	Additionally,	you	have	to	restore
the	entire	database,	which	means	that	a	lot	of	other	work	will	be	lost,	requiring	those
transactions	to	be	reprocessed	in	some	way.

Tablespace	point-in-time	recovery	(TSPITR)	offers	a	toned-down	version	of	media
recovery	for	user	errors,	but	it	still	requires	a	full	outage	on	the	tablespace,	has	huge	space
demands	for	a	temporary	clone	instance,	and	has	object-level	limitations	(think	advanced
queuing	tables).	This	can	also	be	a	time-consuming	solution.

Before	Flashback	features	were	introduced	in	Oracle,	a	partial	database	restore	could
be	quite	time	consuming	and	complex.	First,	you	had	to	do	a	partial	database	restore	to	a

secondary,	and	temporary,	database.	Then	you	used	Oracle	Data	Pump	to	extract	only	the
specific	objects	you	wanted	to	restore.	This	had	many	of	the	same	problems	as	the
previous	solutions	in	terms	of	complexity,	time,	resources,	and	potential	outage	time—not
to	mention	the	possible	impacts	of	foreign	key	relationships	and	such.

Oracle	Flashback	Database	tries	to	address	these	problems.	The	concept	of	Flashback
Technology	refers	to	a	suite	of	features	that	gives	you	a	multitude	of	different	ways	to
survive	user	errors.	These	features	have	as	a	unifying	concept	only	the	simple	idea	that
user	errors	occur,	and	recovering	from	them	should	be	simple	and	fast.	The
implementation	of	these	features	within	the	database	is	often	very	different.	Therefore,
don’t	let	yourself	be	confused	with	the	term	Flashback—it’s	more	a	concept	than	a	single
architecture.

Here’s	a	list	of	the	Flashback	features:

			Flashback	Query

			Flashback	Table

			Flashback	Transaction

			Flashback	Drop

			Flashback	Database

			Flashback	Data	Archive

We	discuss	each	of	these	features	in	this	chapter.	We	also	discuss	how	Flashback	Database
features	are	impacted	when	you	are	using	an	Oracle	Multitenant	database.	First,	though,
we	want	to	tell	you	a	story.

Flashback	and	the	Undo	Segment:	A	Love	Story
The	first	two	types	of	Flashback	we	listed—Flashback	Query	and	Flashback	Table—have
their	functionality	based	entirely	on	technology	that	has	existed	in	the	Oracle	Database	for
years:	the	undo	segments.	When	you	execute	a	DML	statement	such	as	an	insert,	update,
or	delete,	Oracle	needs	a	way	to	be	able	to	undo	the	results	of	that	statement	should	a
situation	occur	in	which	the	statement	needs	to	be	rolled	back.	This	might	be	because	the
user	or	application	issues	an	explicit	rollback	command.	Implicit	rollbacks	occur	when	a
user	session,	or	the	database,	crashes	before	the	transaction	is	committed.

The	undo	generated	is	also	used	to	help	generate	read-consistent	images	of	a	given
block	for	other	SQL	statements.	For	example,	if	a	long-running	update	is	executing	in	one
session,	we	don’t	want	others	to	see	the	results	of	that	update	until	it’s	committed.	To
make	sure	that	other	sessions	only	see	the	version	of	the	data	they	are	supposed	to	see,
Oracle	will	take	the	current	block	(which	may	have	been	altered	by	the	long-running
update	session)	and	“roll”	it	back	using	the	undo	to	the	point	in	time	that	the	other
transactions	require.	The	resulting	block	is	called	a	read-consistent	image.

Back	in	the	“old”	days,	once	a	transaction	was	committed,	the	undo	information	related
to	that	transaction	was	immediately	freed	up	to	be	overwritten—so	there	was	no	way	that
the	before	images	could	not	be	reliably	found	later	on.

Since	Oracle	9i,	the	way	that	the	committed	undo	in	rollback	segments	is	managed	has
changed.	When	you	start	a	new	transaction,	it	first	attempts	to	allocate	undo	space	that	has
not	been	used.	Once	unused	space	is	exhausted,	Oracle	starts	overwriting	previously	used
segments	in	a	FIFO	manner.	This	change	in	the	way	undo	space	is	managed	now	makes	it
more	likely	to	be	able	to	find	the	undo	required	to	reconstruct	a	block	as	it	existed	at	a
desired	point	in	time.

The	result	of	this	changed	architecture	is	that	Oracle	could	introduce	new	functionality
into	the	database.	This	new	architecture	started	in	Oracle	9i	with	the	introduction	of	what
would	become	Flashback	Query.	Over	time,	Oracle	has	significantly	improved	on	and
added	to	its	suite	of	Flashback	features.

The	ability	to	query	or	change	objects	back	to	a	certain	time	in	the	past	is	predicated	on
how	long	our	undo	extents	can	remain	in	the	undo	tablespace	before	they	are	overwritten.
Therefore,	a	transaction	can	be	flashed	back	as	long	as	the	undo	is	available	to	facilitate
that	flashback.	Since	Oracle	will	not	overwrite	undo	extents,	the	database	tries	to	preserve
the	undo	history	as	long	as	it	can	so	that	it	can	be	reused.

Two	things	control	the	threshold	for	how	far	back	you	can	use	a	Flashback
Query/Table.	The	first	is	the	size	of	the	undo	tablespace.	Obviously,	the	more	space
available	to	undo	segments,	the	more	history	can	be	stored.	Also,	DML-heavy	databases
fill	up	undo	segments	faster	than	databases	that	are	heavy	on	read-only	activity,	so	the
activity	in	a	database	makes	a	difference	in	terms	of	undo	history.	The	period	between	the
committing	of	a	transaction	until	the	undo	extend	is	overwritten	is	called	the	flashback
window.

As	mentioned,	plenty	of	factors	go	into	determining	the	flashback	window,	but	the
most	important	is	your	transaction	load.	You	can	view	statistics	for	undo	usage	with	the
view	V$UNDOSTAT.	Each	row	in	this	view	represents	the	number	of	undo	blocks	utilized
for	a	ten-minute	period.	Running	a	few	analyses	of	this	view	through	peak	usage	should
provide	a	decent	template	to	guide	your	settings	for	undo.

In	normal	cases,	you	can’t	be	assured	that	the	undo	you	need	will	actually	be	available
when	you	need	it.	In	some	cases,	you	will	want	to	ensure	that	flashback	features
dependent	on	redo	are	able	to	do	so	for	a	fixed	period	of	time.	In	this	case,	a	normal	undo
tablespace	won’t	do,	because	the	undo	can	be	overwritten.	In	this	case,	you	will	want	to
use	Flashback	Data	Archive.	We	discuss	this	feature	in	more	detail	later	in	this	chapter.

So,	what	do	you	need	to	do	to	enable	automated	undo	tablespace	management?	Your
database	is	probably	already	using	it.	First,	you	need	to	set	UNDO_MANAGEMENT	=
AUTO	in	the	PFILE	or	SPFILE.	Second,	set	your	UNDO_TABLESPACE	parameter	to
point	to	which	tablespace	will	handle	undo	duties.	Finally,	set	UNDO_RETENTION	=
value	in	seconds.	This	sets	the	desired	length	of	time	to	keep	undo	segments	around.
Remember,	though,	that	the	value	of	UNDO_RETENTION	is	not	a	guarantee,	it’s	just	a
target.	Its	value	feeds	into	some	of	the	values	displayed	in	the	V$UNDOSTAT	view,
helping	you	size	the	undo	tablespace	such	that	you	can	achieve	your	retention	target.

So,	now	that	we	have	discussed	the	mechanism	used	by	Flashback	Query	and
Flashback	Table.	Let’s	talk	about	them,	as	well	as	the	rest	of	the	Flashback	Database
features.

Flashback	Query
Flashback	Query	has	been	around	for	a	long	time.	It	was	among	the	first	of	the	flashback-
related	features	Oracle	introduced.	At	first,	Flashback	Query	was	a	bit	complex	because
you	had	to	use	a	PL/SQL	package	to	set	the	appropriate	point	in	time	for	the	flashback
operation.

Performing	a	Flashback	Query	of	a	table	is	simple,	now	that	it	has	been	integrated	into
SQL.	All	you	need	to	know	is	the	point	in	time	in	the	past	for	which	you	would	like	to
view	the	contents	of	a	table,	and	then	you	plug	it	into	your	query:

You	can	also	use	a	System	Change	Number	(SCN)	qualifier,	if	you	know	the	SCN	of
the	change	you	are	looking	for:

Although	there	is	no	strict	RMAN	interface	into	Flashback	Query,	you	can	certainly
run	queries	using	this	feature	from	the	RMAN	command	line.	The	changes	in	Oracle
Database	12c	now	allow	you	to	issue	SQL	queries	directly	from	the	RMAN	prompt	and
see	the	results	of	those	SQL	queries.	Note	that	you	will	only	see	SQL	queries	returned
when	connected	as	SYSDBA.	If	you	are	connected	as	SYSBACKUP,	SQL	queries	will
not	return	any	data.

Flashback	Versions	Query
Flashback	Versions	Query	provides	a	way	to	look	back	at	a	table,	and	specific	changes	to
that	table,	over	a	period	of	time.	This	makes	it	easy	to	audit	changes	that	have	occurred	in
the	table,	and	also	it	can	be	used	should	you	need	to	roll	back	changes	in	a	table.

Flashback	Versions	Query	is	dependent	on	undo	being	available.	This	means	the	undo
needs	to	be	present	in	the	undo	segments,	so	undo	retention	and	possibly	using	guaranteed
retention	are	considerations.	Undo	retention	is	set	via	the	UNDO_RETENTION

parameter,	which	is	defined	in	seconds.	By	default,	if	the	undo	tablespace	becomes	full,
then	Oracle	will	start	reusing	undo	segments.	If	you	need	to	make	sure	undo	retention	is
enforced,	you	can	force	Oracle	to	meet	the	undo	retention	target	by	using	the	alter
tablespace	retention	guarantee	command.	Using	guaranteed	retention	has	its	risks	(such
as	stopping	all	database	activity),	so	be	careful	if	you	choose	to	use	it.	However,	the	same
risks	are	true	with	ARCHIVELOG	mode,	and	it’s	a	handy	thing	to	use.	Like	everything
else,	you	just	have	to	measure	things	like	space	usage,	availability,	and	requirements	to	get
the	right	balance	when	configuring	things.

Having	addressed	configuration,	let’s	look	at	using	this	feature.	First,	let’s	create	our
test	data:

Now,	let’s	put	Flashback	Versions	Query	to	work!	The	nice	thing	about	this	feature	is
that	it	comes	with	pseudo-columns	you	can	use	to	identify	attributes	related	to	the	rows	in
the	table	that	are	returned	by	your	SQL	query.	Let’s	run	a	couple	of	queries	to	test	this
thing.

In	this	example,	we	can	see	that,	within	the	SCN	window	indicated,	five	records	had
some	kind	of	manipulation	occur	to	them.	There	are	four	inserts
(VERSIONS_OPERATION	column	value	of	I)	and	one	update
(VERSIONS_OPERATION	column	value	U).	The	VERSIONS_STARTTIME	tells	us	the
time	at	which	that	version	of	the	column	started	its	existence.	The	column
VERSIONS_ENDSCN	indicates	when	that	column	row	had	a	new	version.	It	is	NULL	in
all	but	one	record	of	our	query.	This	is	because	only	one	record	changed	within	the	SCN
window	that	we	queried	(where	the	ID	column	was	changed	from	4	to	5).

Flashback	Table
Perhaps	the	most	compelling	function	of	the	Flashback	Technology	is	the	ability	to	simply
revert	a	table	to	a	previous	point	in	time	in	a	simple	and	straightforward	fashion.	The
ability	to	perform	point-in-time	recovery	on	a	table	or	group	of	tables	has	often	been	the
grounds	by	which	entire	clone	databases	are	built—just	so	that	a	single	table	could	be
extracted	and	then	imported	back	into	production.	With	Flashback	Table,	unnecessary
cloning	operations	can	be	put	to	pasture.

Flashback	Table	employs	the	same	mechanisms	as	Flashback	Query—with	information
stored	in	the	undo	segments,	Oracle	can	rewind	a	database	one	transaction	at	a	time	to	put
the	table	back	the	way	it	was	at	a	specified	time	in	the	past	because	the	Flashback	Table
operation	depends	on	undo.	Thus,	you	can	only	flash	back	a	table	as	far	back	as	the	undo
segments	allow	you.

In	addition	to	undo,	the	ability	to	flash	back	a	table	requires	you	to	enable	row
movement	for	the	table.	Row	movement	was	initially	put	in	place	as	a	function	of
partitioned	tables,	which	allowed	an	updated	row	to	move	to	the	appropriate	partition	if
the	update	changed	the	partition	key	value.	Flashback	Table	employs	row	movement	to
assist	in	the	rewind	operations.	To	enable	row	movement,	use	the	following	alter	table
command:

Flashback	Table	cannot	save	you	from	all	user	errors.	Certain	DDL	operations	that
occur	against	a	table	cannot	be	undone.	Most	importantly,	you	cannot	flash	back	a	table	to
before	a	truncate	table	operation	because	a	truncate	does	not	produce	any	undo—that	is

why	truncate	exists,	versus	a	delete	*	from	table.	Also,	Flashback	Table	cannot	be	used
for	a	dropped	table	(use	Flashback	Drop	for	that;	see	the	section	“Flashback	Drop”).

Further,	Flashback	Table	does	not	follow	foreign	key	relationships.	Therefore,	it	will
flash	back	a	table,	but	if	that	table	has	established	foreign	key	relationships	to	dependent
tables,	then	the	Flashback	Table	operation	will	fail	with	an	Oracle	error	because	the
Flashback	Table	operation	does	not	cascade	through	integrity	constraints.

Performing	the	Flashback	Table	Operation	from	SQL
With	row	movement	enabled,	you	can	move	forward	with	normal	operations	on	the	table.
Then,	when	a	user-induced	corruption	occurs	in	the	table,	you	can	use	SQL	at	the
command	line	to	perform	the	Flashback	Table	operation:

Alternatively,	you	can	use	the	SCN	if	you	have	been	able	to	determine	it	(through
investigation	via	Flashback	Query,	for	example):

Like	Flashback	Query,	the	performance	of	a	Flashback	Table	operation	depends	on	the
amount	of	data	that	has	to	be	rewound	and	how	far	back	you	are	rewinding.	The	more	data
that	has	to	be	undone,	the	longer	the	operation	will	take.	However,	this	will	always	be
faster	than	trying	to	perform	a	point-in-time	recovery	of	the	table	by	other	methods:	you
can	try	TSPITR,	or	you	can	try	to	restore	the	tablespaces	to	a	different	instance	and	then
export	the	table	from	the	clone	instance	and	import	back	into	production.	Nothing	can
come	close	to	Flashback	Table	in	terms	of	performance.

Flashback	Table	with	Oracle	Enterprise	Manager
The	added	strength	of	Grid	Control	for	Flashback	Table	is	the	ability	to	first	explore	the
table	via	Flashback	Versions	Query	to	determine	exactly	what	time	you	want	to	flash	back
to.	If	you	already	know	the	exact	time	for	flashback,	using	SQL	at	the	command	line
would	be	just	as	simple	as	using	the	Flashback	Table	Wizard	in	Grid	Control.	Grid	Control
does,	however,	provide	a	way	to	determine	what	dependencies	are	at	play.

Enabling	Row	Movement	and	Flashback	Table
It	is	critical	that	you	foresee	possible	Flashback	Table	candidates	and	enable	row
movement	as	soon	as	possible.	You	cannot	enable	row	movement	and	then	flash	back
the	table	to	a	point	prior	to	enabling	row	movement.	Such	an	operation	will	result	in
the	following	error:

In	other	words,	you	cannot	wait	until	you	need	to	flash	back	a	table	and	then
enable	row	movement	as	part	of	the	flashback	operation.

Flashback	Transaction
There’s	always	more	than	one	way	to	organize	a	hunt	for	bad	data	in	the	database.
Flashback	Transaction	allows	you	to	look	at	all	changes	made	by	a	specific	transaction,	or
all	transactions	in	a	certain	timeframe.	Then	you	can	go	in	and	undo	an	error	at	the
transaction	level	instead	of	rolling	back	the	entire	table.	This	focused	level	of	flashback
allows	you	to	keep	all	other	changes	that	have	occurred	since	the	error—that	is,	you	are
removing	the	smallest	possible	error	and	leaving	the	good	data.	You	can	also	flash	back	a
subset	of	the	transaction	instead	of	undoing	the	entire	transaction	as	an	atomic	unit.

Unlike	Flashback	Versions	Query,	Flashback	Transaction	does	not	use	the	undo
segment	to	understand	what	needs	to	be	done	to	back	out	of	an	error.	It	utilizes	the	redo
instead	and	takes	advantage	of	the	LogMiner	capabilities	to	dig	out	the	transaction	change
vectors	and	then	determine	the	best	way	to	roll	back	the	changes.

Again,	the	best	way	to	use	Flashback	Transaction	is	through	Grid	Control.	Before	you
can	utilize	Flashback	Transaction,	you	will	need	to	have	turned	on	supplemental	log	data
for	the	table	in	question.	As	with	enabling	row	movement	for	Flashback	Table,	if	you
don’t	turn	on	supplemental	log	data	before	you	need	Flashback	Transaction,	it’s	too	late.
The	undo	segment	won’t	have	the	necessary	information	required	to	perform	the
flashback.	From	within	Grid	Control,	if	you	try	to	utilize	Flashback	Transaction,	you	will
see	an	error	informing	you	of	the	actions	you	need	to	take.

Flashback	Transaction	Query	is	compelling	because	it	allows	you	to	review	a	bad
transaction	in	its	entirety,	even	though	the	window	into	the	error	may	be	only	a	single	row.
For	instance,	if	we	found	that	a	row	of	our	WOODSCREW	table	had	been	deleted,	we
could	look	up	that	row	in	Flashback	Versions	Query.	Then,	we	could	get	the	Transaction
ID	for	the	delete	operation	and	see	how	many	other	rows	were	deleted	at	the	same	time.
This	provides	a	look	at	the	full	scope	of	the	problem.

Flashback	Drop
Flashback	Drop	allows	you	to	“undrop”	database	objects.	No	longer	will	you	have	users
desperate	for	the	entire	database	to	be	restored	to	a	point	in	the	past	because	they	thought
they	were	on	the	DEV	instance	instead	of	PROD.

There’s	nothing	all	that	dramatic	about	how	Flashback	Drop	has	been	implemented.	In
Oracle	Database	10g,	when	you	drop	a	table,	it	merely	gets	renamed	to	a	system-
identifiable	string,	but	the	segment	remains	in	the	tablespace	it	was	dropped	from.	It	will
remain	there	until	you	undrop	the	object	or	purge	it	manually,	or	until	the	tablespace	runs
out	of	space	for	regular	objects.	If	space	pressure	exists	in	the	tablespace,	Oracle	will
begin	to	age	out	dropped	objects	from	oldest	to	newest.

When	you	drop	an	object,	Oracle	doesn’t	just	rename	that	object.	All	dependent	objects
move	to	the	Recycle	Bin	as	well:	indices,	triggers,	and	constraints.	Therefore,	when	you
undrop	the	table,	its	entire	dependent	chain	comes	back	with	it.

The	Recycle	Bin

The	Recycle	Bin	is	a	virtual	directory	of	all	dropped	objects	in	the	database—simply	a	list
of	objects	that	have	been	dropped	but	not	purged.	The	Recycle	Bin	is	a	logical	container
and	does	not	require	a	specific	storage	location;	actual	storage	for	all	dropped	objects	is	in
the	tablespace	the	object	was	in	prior	to	being	dropped.	Consider	an	example.	User	matt
drops	the	table	WS_APP.WOODSCREWS.	The	WOODSCREWS	table	is	in	the
tablespace	WS_APP_DATA,	but	its	two	indices	are	in	the	WS_APP_IDX	tablespace.
When	WOODSCREWS	is	dropped,	the	table	is	renamed	to	an	internal	name,	and	so	are
the	two	indices	that	existed	on	the	table.	Both	appear	in	the	DBA_RECYCLEBIN	view.
However,	the	actual	WOODSCREWS	table	segment	still	exists	in	the	WS_APP_DATA
tablespace,	and	the	indices	still	exist	in	the	WS_APP_IDX	tablespace.	They	are	logically
part	of	the	Recycle	Bin,	but	physically	exist	in	the	same	place	they	always	have.

The	Recycle	Bin	is	quickly	viewed	via	the	following	two	data	dictionary	views:

			USER_RECYCLEBIN

			DBA_RECYCLEBIN

Purging	the	Recycle	Bin
Manually	eliminating	dropped	objects	from	the	Recycle	Bin	is	not	necessary.	Objects	are
purged	from	the	Recycle	Bin	as	the	space	is	required	by	other	segments	in	the	tablespace.
In	other	words,	dropped	objects	continue	to	take	up	space	in	a	tablespace	until	other
objects	in	that	tablespace	run	out	of	free	space	elsewhere.	Then,	the	first	dropped	object	is
the	first	object	to	be	purged.	Oracle	automatically	looks	to	purge	indices	before	tables	so
that	actual	data	is	the	last	thing	to	be	lost.	Recycle	Bin	objects	will	also	be	dropped	before
a	tablespace	autoextends,	if	autoextend	is	on.

The	new	purge	command	exists	to	purge	the	Recycle	Bin.	You	can	purge	by	user,	by
object,	or	by	tablespace,	or	you	can	purge	the	entire	Recycle	Bin:

Undropping	Objects	in	the	Recycle	Bin
Getting	objects	back	from	the	Recycle	Bin	is	pretty	simple—a	simple	SQL	command
renames	the	object	back	to	its	original	name,	along	with	any	dependent	objects:

How	Long	Do	Objects	Live	in	the	Recycle	Bin?
A	valid	question,	but,	of	course,	the	answer	is,	it	depends.	No,	really.	It	depends.	The
real	question	you	probably	want	to	ask	is,	“Can	I	control	how	long	an	object	lives	in
the	Recycle	Bin?”	The	answer	to	this	question	is	no.

You	cannot	force	an	object	to	remain	in	the	Recycle	Bin	if	space	pressure	exists	in
the	tablespace	of	the	dropped	object.	Even	with	autoextend	on,	the	dropped	object	is

purged	before	the	tablespace	extends.	Therefore,	if	you	want	to	determine	a	certain
lifespan	on	objects	in	the	Recycle	Bin,	you	are	left	with	two	choices:	either	make	the
tablespace	overly	large	to	accommodate	drops,	or	manually	manage	the	Recycle	Bin
and	purge	those	objects	you	don’t	want	to	keep	to	leave	space	for	those	you	do	want
to	keep.

You	can	therefore	shorten	the	stay	of	an	object	in	the	Recycle	Bin.	However,	you
cannot	force	something	to	remain,	given	a	shortage	of	tablespace	room.

Of	course,	sometimes	it’s	not	that	simple.	For	instance,	if	you	have	multiple	dropped
objects	with	the	same	name,	you	would	have	to	refer	to	the	object	by	its	new	and
improved	Recycle	Bin	name:

Note	the	quotes	around	the	Recycle	Bin	object	name.	These	are	required	due	to	special
symbols	in	the	name.

If	you	have	dropped	an	object	and	then	created	a	new	object	with	the	same	name,	you
can	still	flash	back	the	first	object.	There	is	syntax	in	the	flashback	SQL	to	rename	the
object	when	you	pull	it	from	the	Recycle	Bin:

Flashback	Database
The	most	revolutionary	Flashback	Technology	may	also	be	the	one	that	gets	used	the	least
often.	Flashback	Database	provides	the	ability	to	quickly	rewind	the	entire	database	to	a
previous	point	in	time.	This	operation	has	the	same	end	result	as	you	would	get	from
doing	point-in-time	recovery	using	RMAN	or	user-managed	recovery.	However,
Flashback	Database	does	not	require	the	restore	of	all	of	the	database’s	datafiles	from	the
most	recent	backup,	followed	by	a	roll-forward	using	all	the	archive	logs	that	have
accumulated	since	that	backup.	By	avoiding	these	costly	operations,	Flashback	Database
can	perform	a	point-in-time	recovery	in	a	fraction	of	the	time	typically	required	for	such
an	operation.

Flashback	Database	works	by	incrementally	recording	all	blocks	that	have	changed	at	a
timed	interval.	These	flashback	“checkpoints”	then	provide	the	points	to	which	the

database	can	be	“rewound.”	After	rolling	back	to	the	flashback	checkpoint,	you	can	use
archive	logs	to	then	roll	forward	to	the	exact	time	or	SCN	specified	by	the	flashback
database	command.	Thus,	the	operation	uses	new	technology	as	well	as	that	old	standby,
the	archive	logs,	to	provide	a	fast	way	to	perform	point-in-time	recovery.

Typically,	there	are	fewer	archive	logs	to	be	applied	after	a	flashback	checkpoint	than
must	be	applied	to	the	last	backup	(typically	taken	every	night,	versus	every	few	minutes
for	flashback	logs),	so	the	recovery	stage	of	flashback	is	very	quick.

Flashback	Logs
Flashback	Database	implements	a	new	type	of	log,	called	the	flashback	log.	Flashback
logs	are	generated	by	the	database	at	regular	intervals	and	accumulate	in	the	FRA.	You
must	have	an	FRA	for	Flashback	Database;	the	logs	cannot	be	created	anywhere	else.	The
flashback	log	contains	a	copied	image	of	every	block	that	has	been	changed	since	the	last
flashback	log	was	generated.	These	blocks	can	then	be	reinstated	into	the	database	when	a
flashback	database	command	is	issued	to	rewind	the	database	back	to	its	state	at	the	time
specified	in	the	flashback	command.

Because	entire	blocks	are	being	dumped	to	the	flashback	logs,	they	can	accumulate
very	quickly	in	extremely	active	databases.	Setting	an	appropriately	sized	FRA	is	crucial
to	the	success	of	meeting	your	Flashback	Database	needs.	In	addition,	you	can	manually
turn	off	flashback	logging,	as	follows,	for	certain	tablespaces	that	could	be	manually	re-
created	after	a	Flashback	Database	operation,	and	thereby	decrease	the	amount	of	logging
that	occurs:

You	can	turn	flashback	logging	back	on	at	any	time,	as	follows,	but	it	is	worth	noting
that	you	cannot	rewind	backward	through	a	flashback	logging	gap	for	the	tablespace	you
turned	off:

Any	tablespace	that	has	flashback	logging	turned	off	for	any	period	within	the
flashback	database	command	would	need	to	be	offlined	prior	to	performing	the
Flashback	Database	operation.

Flashback	Retention	Target
The	lifespan	of	flashback	logs	correlates	directly	to	how	far	back	in	time	you	would	like	to
have	the	Flashback	Database	option.	By	default,	the	flashback	logs	are	kept	long	enough
so	that	you	can	always	flash	back	24	hours	from	the	current	time.	If	this	is	too	long	or	too
short	a	time,	you	can	change	it	with	an	initialization	parameter:

The	value	is	specified	in	minutes	(720	would	be	12	hours).

RMAN	Workshop:	Configure	for	Flashback	Database

Workshop	Notes
This	Workshop	walks	you	through	the	primary	steps	required	to	configure	the
database	initially	to	use	flashback	logging	for	Flashback	Database	operations.

Step	1.			Shut	down	the	database	and	startup	mount.	The	database	must	be	mounted
but	not	open.

In	addition,	check	to	make	sure	the	database	is	in	ARCHIVELOG	mode,	which	is
required	for	Flashback	Database:

Step	2.			Set	the	flashback	retention	target	to	your	desired	value.	We	will	use	12
hours	as	the	window.

Step	3.			Set	the	values	for	DB_RECOVERY_FILE_DEST	and
DB_RECOVERY_FILE_DEST_SIZE	(FRA	parameters).	Note	that	if	you	have
already	set	these	for	your	RMAN	backup	strategy,	you	should	review	the	parameters
now.	Flashback	logs	increase	FRA	usage	significantly.	It	would	behoove	you	to	at
least	double	the	given	size	of	the	FRA.

Step	4.			Turn	flashback	logging	on.	This	is	done	in	the	same	fashion	as	turning
ARCHIVELOG	mode	on—with	an	alter	database	command	when	the	database	is
mounted	but	not	open:

Step	5.			Turn	flashback	logging	off	for	any	tablespaces	that	you	deem	do	not
require	it:

Step	6.			Open	the	database:

Flashback	Database:	Tuning	and	Tweaking

So,	you’ve	determined	that	Flashback	Database	provides	you	with	a	fallback	position	you
desire	for	your	database,	and	you	have	determined	how	far	back	you	want	your	fallback
position	to	be.	You’ve	set	your	DB_FLASHBACK_RETENTION_TARGET.	Now,	the
questions	come	up:	“How	do	I	know	if	I	have	enough	space	in	my	FRA	to	handle	the
volume	of	flashback	logs	being	generated?	And,	for	that	matter,	how	much	flashback
logging	is	occurring?”	The	following	sections	answer	those	questions.

Using	V$FLASHBACK_DATABASE_LOG
One	thing	at	a	time.	First,	Oracle	provides	built-in	analysis	for	you	to	use	in	determining	if
you	need	to	increase	the	size	of	your	FRA.	After	you	enable	flashback	logging,	Oracle
begins	to	keep	track	of	the	amount	of	flashback	logging	that	is	occurring	and	stores	it	in
the	view	V$FLASHBACK_DATABASE_LOG.	This	view	actually	provides	an	estimate
for	the	total	flashback	size:

Note	that	this	view	gives	the	size	for	flashback	logs,	not	for	all	users	in	the	FRA,	so
you	need	to	add	this	value	to	whatever	size	you	need	for	archive	logs	and	RMAN	backups.
This	estimated	value	only	gets	better	with	age,	meaning	that	as	the	database	runs	through
its	day-to-day	(and	then	month-to-month)	operations,	Oracle	can	provide	a	better	estimate
of	the	size.	Therefore,	it	is	a	good	idea	to	check	back	in	with	this	estimator	to	find	out	if
you	still	have	the	right	specifications	in	place.

V$FLASHBACK_DATABASE_LOG	also	provides	you	with	the	actual	oldest	time
that	you	can	flash	back	the	database	to,	given	the	current	size	of	the	FRA	and	the	currently
available	flashback	logs.	You	can	use	this	as	another	indicator	of	space	issues	in	the	FRA.
The	following	select	statement	will	provide	you	with	a	basic	understanding	of	the	state	of
the	flashback	logs:

Using	V$FLASHBACK_DATABASE_STAT
Oracle	has	built	a	monitoring	view	so	that	you	can	keep	your	eye	on	flashback	logging
activity.	V$FLASHBACK_DATABASE_STAT	provides	you	with	information	on
flashback	data	generated	over	the	course	of	a	period	of	time	(typically,	a	one-hour	window
extending	back	from	sysdate).	In	addition	to	showing	how	much	flashback	logging
occurred,	this	view	posts	the	redo	generated	and	the	actual	database	data	generated	over
the	same	period.	The	following	select	shows	a	sample	output	of	this	view:

Flashback	Data	Archive	(Total	Recall)
Oracle	Total	Recall	is	a	set	of	functions	that	allows	you	to	permanently	archive	all	changes
to	a	table	so	that	you	can	go	back	to	any	point	in	time	and	look	at	the	data	as	it	was	in	the
past.	Unlike	Flashback	Query,	which	is	dependent	on	the	transitory	nature	of	undo,
Flashback	Data	Archive	requires	a	specific	type	of	tablespace	to	be	built	so	that	it	can
house	the	version	information	required	to	look	back	in	time	at	a	particular	table.

Flashback	Data	Archive	is	useful	for	auditing	and	archival	purposes	on	tables	that	have
legal	or	regulatory	sensitivities.	You	can	configure	the	data	archive	to	be	of	a	set	retention
period	that	matches	either	the	business	or	regulatory	need,	and	then	you	assign	the	table	to
that	archive.	Once	this	is	complete,	you	can	utilize	a	straightforward	flashback	query	in
SQL	to	look	back	in	time	at	the	table	as	of	months	or	even	years	ago.

You	should	be	mindful	of	two	architectural	restrictions	based	on	how	the	archive	data
is	generated	and	accessed.	If	you	put	a	table	in	a	data	archive	mode,	you	cannot	do	the
following:

			Perform	an	alter	table	command	with	an	UPGRADE	clause

			Perform	a	drop	table

Either	of	these	actions	will	result	in	an	error:

Summary
In	this	chapter,	we	introduced	the	new	means	of	recovering	from	user-induced	errors,
known	collectively	in	the	Oracle	Database	as	Flashback	Technology.	The	new	Flashback
Technology	allows	you	to	recover	from	logical	errors	in	a	faster,	less	intrusive	way	than
running	a	full-bore	media	recovery.	We	discussed	using	Flashback	Versions	Query	to
determine	the	full	scope	of	the	logical	corruption.	We	illustrated	using	the	Flashback	Table
command	to	recover	from	a	bad	DML	statement,	as	well	as	from	a	table	drop.	We
discussed	the	new	Flashback	Transaction	option	that	utilizes	the	redo	logs	to	undo	an
erroneous	action	at	the	transaction	level	instead	of	at	the	table	level.	We	discussed	the
Flashback	Database	functionality,	which	allows	for	a	point-in-time	recovery	of	an	entire
database	without	requiring	a	full	restore	of	the	datafiles	from	backup.	We	ended	the
chapter	by	reviewing	Flashback	Data	Archive,	which	allows	a	historical	point	of	view	on	a
table	as	far	back	as	you	have	space	to	hold	the	records.

CHAPTER
17

RMAN	and	Data	Guard

O
racle	Standby	Database	has	been	a	database	high-availability	option	with	the	Oracle
Database	since	Oracle	7	Release	7.3.	The	objective	of	a	standby	database	is	to
support	the	capability	of	maintaining	a	duplicate	(or	standby)	database	of	a
primary	(or	production)	database	for	recovering	from	disasters	at	the
production	site.	When	the	primary	database	fails	(for	example,	because	of	a

natural	disaster),	the	standby	database	can	be	opened,	or	activated,	and	all	end	users	can
be	switched	to	the	standby	database	machine	and	continue	to	access	the	database	while	the
previous	primary	database	is	being	recovered.	The	goal	is	to	be	able	to	switch	over	from
the	primary	database	to	the	standby	database	in	the	case	of	a	disaster	in	the	least	amount	of
time.	The	standby	database	started	as	a	simple	concept,	and	although	the	overall
architecture	is	now	referred	to	as	Data	Guard,	the	foundation	is	still	simple:	take	the
archive	logs	from	your	production	database,	move	them	to	another	computer	that	has	a
copy	of	that	database,	and	apply	the	archive	logs	to	the	copy.	In	this	way,	Data	Guard	is
able	to	provide	an	efficient	disaster-recovery	solution	by	maintaining	transactionally
consistent	copies	of	the	production	database	at	a	remote	site.	These	copies,	or	standbys,
can	be	one	of	two	types:	physical	or	logical.	Which	one	you	choose	to	include	in	your
Data	Guard	configuration	depends	on	what	business	needs	you	are	trying	to	satisfy.

Types	of	Standby	Databases
What	is	a	standby	database?	Well,	there	are	really	two	distinct	types	of	standby	databases.
The	first	is	what	we	call	a	physical	standby	database,	and	the	second	is	called	a	logical
standby	database.	Let’s	look	at	each	of	these	two	kinds	of	standby	databases	in	a	bit	more
detail.

Physical	Standby	Database
A	standby	database	is	called	a	“physical	standby”	if	the	structure	of	the	standby	database
exactly	matches	the	primary	database.	A	physical	standby	database	is	kept	in	sync	with	the
primary	database	by	using	media	recovery	to	apply	redo	that	was	generated	on	the	primary
database.	Because	media	recovery	is	used,	we	can	be	assured	that	a	physical	standby	is	a
block-for-block	identical	copy	of	the	primary	database.	Because	of	its	nature,	a	physical
standby	database	is	an	excellent	choice	for	disaster	recovery.	In	the	event	of	a	failure,	we
can	rest	assured	that	our	data	will	be	intact	and	consistent	with	data	that	existed	on	the
primary	database.	We	can	create	a	physical	standby	database	using	RMAN.

Logical	Standby	Database
A	standby	database	is	called	a	“logical	standby”	if	the	physical	structure	of	the	standby
does	not	match	the	primary	database.	A	logical	standby	database	is	kept	in	sync	with	the
primary	database	by	transforming	redo	data	received	from	the	primary	database	into
logical	SQL	statements	and	then	executing	those	SQL	statements	against	the	standby
database.	Because	we	are	applying	SQL	statements	instead	of	performing	media	recovery,
it	is	possible	for	the	logical	standby	database	to	contain	the	same	logical	information	as
the	primary	database,	but	at	the	same	time	to	have	a	different	physical	structure.	Because	a
logical	standby	database	is	open	for	user	access	while	changes	are	being	applied,	it	is	an

ideal	solution	for	a	reporting	database	while	maintaining	its	disaster	recovery	attributes.

You	can	use	RMAN	to	create	a	physical	standby	database	and	then	afterward,	as	long
as	the	database	meets	all	the	requirements	for	a	logical	standby	database,	you	can	convert
the	physical	standby	database	to	a	logical	standby	database.	The	requirements	for	logical
standby	databases	are	many,	and	you	should	carefully	consider	them	and	their	implications
before	you	decide	to	move	toward	the	use	of	a	logical	standby	database.

Using	RMAN	to	Create	Standby	Databases
RMAN	and	Data	Guard	are	complementary	technologies	that	together	make	a	complete
Oracle	solution	for	disaster	recovery	and	high	availability.	RMAN	backups	can	be	used	to
create	the	underlying	standby	database,	as	well	as	provide	the	initial	recovery	phase.	After
you	have	created	the	standby	database	and	configured	the	Data	Guard	broker,	RMAN	can
connect	to	the	standby	database	and	take	backups	that	can	be	restored	to	the	primary
database.	In	this	way,	the	resources	used	to	perform	a	backup	can	be	completely	removed
from	your	production	environment.

Data	Guard	offers	several	advantages.	In	addition	to	providing	comprehensive	disaster
recovery	and	high-availability	solutions,	Data	Guard	offers	complete	data	protection	and
efficient	use	of	system	resources.	Because	the	redo	data	received	from	the	primary
database	is	validated	at	a	standby	database,	physical	corruptions	on	the	primary	database
do	not	propagate	to	the	standby	database.	Because	the	standby	database	is	ideally	a
physical	copy	of	the	production	environment,	the	database	backups	can	be	offloaded	to	the
standby	site.	You	can	use	the	Data	Guard	database	for	read-only	reporting	and	ad-hoc
queries	by	implementing	the	Active	Data	Guard	(a	licensed	option	introduced	in	Oracle
11g),	thereby	maximizing	Data	Guard	server	resource	utilization	and	increasing	the	return
on	investment	(ROI)	for	standby	servers.	The	key	benefits	of	a	physical	standby	database
include	faster	and	more	efficient	failover	to	a	block-to-block	copy	of	the	primary	database,
offloading	backups	from	the	primary,	use	as	a	reporting	database	with	Active	Data	Guard
configuration,	and	use	as	a	temporary	test	database	with	snapshot	standby	database
configuration.

Obviously,	this	book	is	about	RMAN	and	not	Data	Guard.	If	you	have	more	questions
about	standby	databases	or	Data	Guard,	check	out	the	Oracle	Press	titles	on	Data	Guard,
as	well	as	the	Oracle	documentation.	Throughout	the	rest	of	this	chapter,	we	assume	that
you	are	familiar	with	the	basics	of	Data	Guard	standby	databases	and	are	ready	to	create
one	using	RMAN.

RMAN	provides	different	options	you	can	use	to	create	the	standby	database,	including
the	following:

			Database	backups	of	the	primary	database.

			Active	database	duplication	from	the	primary	database,	which	does	not	require
any	backups.

Active	database	duplication	can	have	a	bit	more	operational	impact	on	the	primary
database,	so	you	will	want	to	be	cautious	about	using	it.	On	the	other	hand,	using	active

database	duplication	makes	creating	a	standby	database	so	much	easier	because	you	don’t
need	direct	access	to	your	database	backup	set	pieces.

Preparing	to	Create	a	Standby	Database
When	you	want	to	create	a	standby	database,	you	need	to	complete	some	initial	tasks	first.
These	tasks	include	the	following:

			Establishing	a	naming	convention

			Putting	the	database	in	ARCHIVELOG	mode	and	forced	logging	mode

			Setting	database	parameters

			Creating	the	standby	database	password	file

			Configuring	the	Oracle	Network

			Preparing	the	auxiliary	instance

			Starting	RMAN	for	the	duplication

Let’s	look	at	these	topics	next.

Establishing	a	Naming	Convention
When	you	are	dealing	with	standby	databases,	an	explosion	of	database	names	seems	to
happen.	Because	there	are	so	many	names,	those	names	and	how	they	are	defined	can
become	very	confusing.	However,	if	you	get	all	of	this	naming	stuff	straight	in	your	head
from	the	beginning,	you’ll	find	it’s	much	easier	to	get	your	standby	database	created	with
a	minimum	of	errors.

So,	what	names	do	you	need	to	be	aware	of?	Well,	here’s	a	list:

			The	primary	database	name.

			The	primary	database	service	name.

			The	standby	database	name.

			The	standby	database	service	name.

			The	database	unique	name.

			Your	wife,	husband,	or	significant	other’s	name.	(Okay,	we	threw	that	one	in	to
see	if	you	were	still	paying	attention!)

Table	17-1	provides	a	list	of	the	different	database	names,	a	description	of	those	names,
and	then	which	names	we	will	use	in	our	examples	throughout	this	chapter.

TABLE	17-1			Oracle	Database	Names	to	Define	when	Creating	a	Standby	Database

Putting	the	Database	in	ARCHIVELOG	Mode	and	Forced
Logging	Mode
One	of	the	things	a	standby	database	depends	on	is	redo	generated	by	the	primary
database.	If	the	primary	database	performs	an	operation	that	does	not	generate	redo,	bad
things	can	happen	on	the	standby	database.	Therefore,	to	support	standby	database
operations,	the	database	should	be	in	ARCHIVELOG	mode	and	you	should	also	put	the
database	in	forced	logging	mode.	We	have	discussed	putting	the	database	in
ARCHIVELOG	mode	several	times	in	this	book	already,	so	by	now	you	should	be
comfortable	with	how	to	do	that.

NOTE

In	this	chapter,	we	assume	that	you	are	using	a	Fast	Recovery	Area	(FRA),
which	we	have	discussed	in	a	number	of	chapters	throughout	this	book	already.

The	other	thing	you	need	to	do	is	enable	forced	logging	in	the	database.	When	enabled,
forced	logging	will	ensure	that	all	operations	that	occur	on	the	database	generate	redo.	To
enable	forced	logging,	you	first	put	the	primary	database	in	MOUNT	mode.	Then	you	use
the	alter	database	forced	logging	command	to	put	the	database	in	forced	logging	mode.
Here	is	an	example	of	the	commands	you	would	issue	to	enable	forced	logging:

Setting	Database	Parameters
Perhaps	the	one	thing	that	Oracle	standby	databases	are	the	most	persnickety	about	are	the
parameters	you	set.	First,	a	number	of	them	need	to	be	set	just	right.	Second,	if	you	don’t
set	them	correctly	at	the	outset,	things	won’t	work	and	you	will	be	pulling	your	hair	out
(then,	you	will	look	like	at	least	one	of	the	authors	who	is	short	a	bit	up	top	on	the
noggin).	We	don’t	want	to	be	responsible	for	your	premature	baldness,	so	let’s	cover
setting	parameters	very	carefully	in	this	section.	In	this	section	we	will	talk	about	the
following	topics:

			Configuring	the	parameters	for	the	auxiliary	instance

			Setting	parameters	on	the	primary	database

			Setting	parameters	on	standby	database

Configuring	the	Parameters	for	the	Auxiliary	Instance
Configuring	the	auxiliary	instance	for	initial	use	is	quite	easy	to	do.	First,	you	need	to
create	a	text	parameter	file	with	the	appropriate	parameters	set.	For	the	most	part,	the
following	are	the	parameters	you	will	find	yourself	setting:

			DB_NAME			This	is	the	name	of	the	standby	database.	Note	that	it	should
always	be	the	same	name	as	the	primary	database.

			DB_CREATE_FILE_DEST			If	your	primary	database	is	using	OMF-
managed	datafiles,	you	need	to	set	the	DB_CREATE_FILE_DEST	parameter.	You
also	need	to	make	sure	the	directory	structure	pointed	to	by	the	parameter	is	created
and	that	it	has	been	granted	the	appropriate	security	privileges	so	that	the	Oracle
Database	OS	account	user	can	read	and	write	to	it.

			ENABLE_PLUGGABLE_DATABASE			If	the	primary	database	is	a

container	database	(CDB),	you	need	to	set	this	parameter	to	a	value	of	TRUE.

In	our	case,	the	auxiliary	database	parameter	file	looks	like	this:

You	might	be	asking	yourself,	what	about	the	other	parameters	that	an	Oracle	database
requires?	Surely	the	standby	must	require	that	parameters	related	to	memory	and	so	on	be
set.	In	this	case,	you	are	correct.

To	start	the	auxiliary	instance,	all	we	need	is	a	few	parameters.	The	auxiliary	instance
will	mount	with	only	the	parameters	we	have	listed.	The	remaining	parameters	will
temporarily	take	on	default	values,	which	is	just	fine	almost	all	of	the	time.

When	the	auxiliary	instance	is	created,	the	SPFILE	of	the	primary	database,	which
defines	the	settings	of	all	of	the	database	parameters	of	the	primary	database,	will	be
transferred	to	the	standby	database.	If	there	are	cases	where	we	want	to	modify	those
parameter	settings,	we	will	do	that	when	we	create	the	standby	database	with	RMAN.	We
discuss	what	parameters	are	most	commonly	set	on	the	standby	database	later	in	this
chapter.

One	thing	you	want	to	make	sure	you	do	is	create	any	file	systems	you	will	be	using	on
the	standby	database	before	you	start	the	creation	of	the	standby	database.	This	way,	when
the	standby	database	is	started,	you	won’t	get	any	failures	because	some	file	system	or
directory	is	missing.	That	is	one	thing	that	RMAN	generally	does	not	do	during	the
standby	database	creation	process—create	directories.

Setting	Parameters	on	the	Primary	Database
A	few	parameters	we	need	to	modify	on	the	primary	database	are	related	to	the	standby
database	we	will	be	creating.	First,	we	need	to	configure	some	archive	log	destination
directories	using	the	parameter	LOG_ARCHIVE_DEST_n.	Typically,	you	set	up
LOG_ARCHIVE_DEST_1	to	point	to	the	FRA.	Then	you	set	up	the	second	parameter,
LOG_ARCHIVE_DEST_2,	to	point	to	the	standby	database	service	you	will	be	creating.

You	also	need	to	set	the	STANDBY_FILE_MANAGMENT	parameter.	Typically	this	is
set	to	a	value	of	AUTO.	When	set	to	AUTO,	Oracle	will	manage	files	on	the	standby
database,	such	as	redo	log	files	and	tablespace	datafiles,	automatically.	For	example,	when
a	drop	tablespace	including	contents	command	is	executed	on	the	primary	database,	if
the	STANDBY_FILE_MANAGMENT	parameter	is	set	to	manual,	just	the	tablespace
would	be	dropped	on	the	standby	database	and	the	physical	files	would	need	to	be	cleaned
up	manually.	When	STANDBY_FILE_MANAGEMENT	is	set	to	AUTO,	Oracle	would
also	delete	the	physical	datafiles	on	the	standby	database	server.

NOTE

Be	careful	if	you	are	creating	a	standby	database	on	the	same	physical	server

as	the	primary	database.	If	you	do	not	configure	the	standby	database	correctly,
critical	database	files	can	be	lost	if	the	STANDBY_FILE_MANAGEMENT
parameter	is	set	to	AUTO.
Here	is	an	example	of	the	various	parameter	configurations	for	a	primary	database	(and

the	ones	we	use	in	the	upcoming	workshop):

Setting	Parameters	on	the	Standby	Database
We	already	discussed	setting	parameters	on	the	auxiliary	database	when	you	start	it.	The
nice	thing	about	creating	the	standby	database	with	RMAN	is	that	it	will	copy	the	SPFILE
from	the	primary	database	and	use	it	as	the	SPFILE	for	the	standby	database.	Even	better,
if	you	want	to	modify	some	of	the	parameters	in	the	SPFILE	(for	example,	the
DB_UNIQUE_NAME),	you	can	do	that	on	the	command	line	when	you	create	the
standby	database.	We	will	show	you	examples	of	how	to	do	that	later	in	this	chapter.

Creating	the	Auxiliary	Database	Password	File
In	order	for	Oracle	Database	to	ship	archived	redo	logs	to	the	standby	site,	the	standby	site
must	have	a	database	password	file.	This	password	file	must	be	an	exact	duplicate	of	the
password	file	of	the	primary	database.	When	you	are	duplicating	a	database,	RMAN
requires	that	you	copy	the	password	file	of	the	target	database	over	to	the	auxiliary
instance.	This	is	not	required	when	you	are	creating	a	standby	database	in	Oracle	Database
12c.	When	you	are	creating	a	standby	database	in	Oracle	Database	12c,	RMAN	will	copy
the	password	file	to	the	standby	database	for	you.

Note	that	if	you	are	doing	active	database	duplication	to	create	your	standby	database,
you	will	want	to	use	the	password	file	command	to	indicate	to	RMAN	that	it	is	okay	to
overwrite	any	existing	password	file.	This	option	isn’t	available	if	you	are	creating	a
standby	database	using	backup-based	duplication.

Configuring	the	Oracle	Network
Ah,	Oracle	Net	configuration.	Let’s	all	say	it	together:	yuck!	Now	that	we	are	past	that,
let’s	talk	about	what	we	need	to	do	to	configure	networking	for	a	standby	database
configuration.	First,	let’s	talk	about	configuring	the	network	on	the	standby	database
server.	Then,	we’ll	talk	about	configuring	the	network	on	the	primary	database	side.

Configuring	the	Oracle	Standby	Database	Server
Before	we	can	start	to	create	the	standby	database,	we	need	to	configure	some	things	on

the	server	where	the	auxiliary	instance	(and	later	the	standby	database)	will	be	living.
First,	as	is	the	case	with	database	duplication,	in	order	to	connect	to	the	auxiliary	instance
with	RMAN,	you	need	to	create	an	entry	in	listener.ora	for	the	auxiliary	instance.	Once
that	is	done,	you	need	to	reload	or	restart	the	Oracle	database	listener.	Here	is	an	example
of	our	tnsnames.ora	file.	The	section	we	added	is	bolded:

In	this	example,	note	that	we	added	a	specific	listener	for	the	testdb	instance.	Notice	the
GLOBAL_DBNAME	parameter	we	configured.	This	creates	a	global	service	for	this
database	called	testdb_dr.	Typically,	the	GLOBAL_DBNAME	is	a	combination	of	the
DB_NAME	and	DB_DOMAIN	parameters.	In	this	case,	though,	we	have	defined	the
DB_UNIQUE_NAME	parameter,	and	thus	GLOBAL_DBNAME	is	a	combination	of	the
DB_UNIQUE_NAME	and	DB_DOMAIN	parameters.	Of	course,	DB_DOMAIN	is	blank
in	our	case.	The	GLOBAL_DBNAME	will	become	the	service	name	of	our	standby
database.	You	can	see	this	reflected	when	you	check	the	status	of	the	listener	after	it	has
been	started	with	the	modified	listener.ora	file,	as	shown	here:

Second,	you	need	to	add	some	entries	into	the	tnsnames.ora	file	(or	to	whatever	name-
resolution	method	you	are	using).	In	this	case,	we	need	to	configure	an	entry	for	the
standby	database	as	well	as	one	for	the	standby	database	service.	Here	is	an	example	of
the	tnsnames.ora	entry	we	used:

Note	in	the	tnsnames.ora	file	that	we	have	an	entry	for	the	primary	database	(which	is	the
TESTDB	service)	and	an	entry	for	the	TESTDB_DR	service	(which	is	going	to	be	our
standby	database).	Note	that	we	use	the	service	name	of	the	database	to	reference	both
databases.

Configuring	the	Oracle	Primary	Database	Server
To	configure	the	primary	database	server,	the	first	thing	we	need	to	do	is	set	the
DB_UNIQUE_NAME	parameter	on	that	server	to	uniquely	identify	it	globally.	In	this
case,	we	set	the	unique	name	to	test_pr	(for	test	primary),	as	shown	in	this	example:

Note	that	if	you	forget	this	step,	you	probably	won’t	notice	it	until	you	try	to	do	a
managed	failover	between	the	standby	database	and	primary	database.	Next,	we	need	to
modify	tnsnames.ora	to	point	to	the	new	standby	database	(using	its	service	name).	The
entry	is	the	same	as	it	was	on	the	standby	database,	and	it’s	shown	here:

NOTE

You	might	notice	that	we	used	IP	addresses	instead	of	host	names	in	the
network	configuration	files.	That	was	done	just	for	the	sake	of	convenience.	Host
names	will	work	just	as	well	and	in	most	cases	are	preferable.

Preparing	and	Starting	the	Auxiliary	Instance
We	have	already	talked	about	many	of	the	preliminary	steps	required	to	prepare	the
auxiliary	instance,	but	we	have	a	few	loose	ends	to	tie	up	before	we	can	start	it.	We	have
already	talked	about	the	following	requirements	on	the	auxiliary	instance:

			Figuring	out	the	database	naming	schema

			Configuring	the	auxiliary	parameter	file

			Creating	any	needed	file	systems

			Configuring	the	networking	configuration

			All	of	the	other	requirements	related	to	duplicating	a	database	as	covered	in
previous	chapters.

Really,	at	this	point,	all	that	is	left	for	us	to	do	is	to	start	the	auxiliary	instance.	To	do	this,
we	connect	to	the	instance	and	issue	the	startup	nomount	command.	Once	the	database
instance	is	started,	the	auxiliary	instance	is	ready	to	be	turned	into	a	standby	database	by
RMAN.

Starting	RMAN
Now	that	we	are	ready	to	create	a	standby	database,	we	need	to	start	RMAN.	Because
RMAN	is	a	client	program,	you	can	really	do	this	from	anywhere	that	Oracle	Database
Server	software	is	installed.	However,	typically,	you	will	create	the	standby	database	from
the	target	database	server	where	the	primary	database	lives.

When	you	start	RMAN	from	the	command	line,	you	need	to	connect	to	the	following:

			The	primary	database.

			The	auxiliary	database.

			The	recovery	catalog.	(Note	that	this	is	optional	but	strongly	advised,	and	we
will	be	using	one	in	all	our	examples.)

Here	is	an	example	of	connecting	to	RMAN	from	the	command	line	in	preparation	for
the	creation	of	a	standby	database:

If	you	want,	you	can	connect	to	all	the	databases	using	Oracle	networking.	In	this	case,
we	connected	directly	to	the	target,	as	well	as	to	the	auxiliary	instance	and	the	catalog
database,	via	the	Oracle	network.	Here	is	an	example	where	we	connected	to	all	the
databases	and	instances	involved	via	Oracle	networking:

Creating	the	Standby	Database
We	generally	recommend	that	you	use	active	database	duplication	whenever	possible.	In
our	minds,	it’s	the	easiest	way	to	create	standby	databases.	Also,	in	Oracle	Database	12c,
you	can	use	the	RMAN	section	size	parameter	of	the	duplicate	database	command.	This
can	significantly	speed	up	the	creation	of	your	standby	database	by	making	the	most
efficient	use	of	all	the	parallel	threads	you	have	available	for	your	duplication	process.

Here	is	an	example	of	the	RMAN	duplicate	database	command	we	used	to	create	a
standby	database:

A	few	things	of	note:	First,	to	create	the	standby	database,	we	use	the	duplicate
database	command,	adding	the	keyword	for	standby.	The	keywords	from	active
database	indicate	we	are	using	active	database	duplication.	If	we	left	the	keywords	from
active	database	out	of	the	command,	the	standby	database	would	be	created	using
backups	of	the	database.	If	those	RMAN	backups	were	not	available,	the	creation	of	the
standby	database	would	fail.

Next,	you	will	notice	we	used	the	dorecover	option	(which	is	what	we	suggest);	thus,
RMAN	will	recover	the	standby	database	up	to	either	the	last	online	redo	log	or	to	some
point	in	time,	SCN,	or	log	sequence	number	that	we	indicate.	Once	the	recovery	is
completed,	the	standby	database	will	be	left	in	mount	mode.	It	will	not	be	in	managed
recovery	mode	at	that	point,	so	we	would	need	to	put	it	in	that	mode	once	RMAN	has
finished	the	creation	of	the	standby	database.	Using	the	dorecover	option	also	avoids
problems	that	can	occur	with	the	standby	database	control	file	in	certain	cases.

The	set	keywords	are	followed	by	parameter	settings.	These	are	parameters	we	want	to
set	differently	in	the	standby	database.	These	parameters	might	not	be	set	in	the	primary
database	at	all,	or	they	may	be	set	in	some	other	way.	In	this	case,	we	have	set	the	two	log
archive	destination	directories	to	be	able	to	properly	handle	standby	database	operations.
We	have	indicated	which	database	is	the	FAL	server	(discussed	earlier	in	this	chapter),	and
we	have	set	the	parameter	standby_file_management	to	a	value	of	AUTO.	Note	that	this
only	changes	the	parameter	settings	on	the	new	standby	database.	If	we	want	to	change
any	parameters	on	the	primary	database,	we	need	to	do	that	separately	using	the	alter
system	command	(which	we	will	demonstrate	later	in	this	chapter).

Finally,	the	nofilenamecheck	option	is	required	(as	it	would	be	if	we	were	duplicating
a	database	to	another	host)	to	indicate	to	RMAN	that	we	are	using	the	same	file	paths	but
on	different	hosts.	Otherwise,	RMAN	would	generate	an	error	in	an	effort	to	try	to	keep	us
from	overwriting	important	files.

After	the	Standby	Is	Created

During	the	creation	of	the	standby	database,	Oracle	will	create	standby	redo	logs.	These
structures	are	used	to	store	redo	that	is	shipped	to	the	standby	database	by	the	primary
database.	For	performance	reasons	you	may	want	to	add	more	logs,	or	you	might	want	to
make	those	logs	larger.

Note	that	when	you	create	a	standby	database,	certain	files	are	not	re-created	by	the
duplication	process.	Among	these	files	are	flashback	logs,	the	block	change	tracking	file,
and	any	backups	on	the	FRA	of	the	primary	database.

Also,	once	the	standby	database	is	created,	RMAN	will	register	that	standby	database
in	the	recovery	catalog.	You	don’t	need	(nor	should	you	try)	to	register	the	standby
database	in	the	recovery	catalog.

RMAN	Workshop:	Create	a	Standby	Database	Using
RMAN
Ryan	has	been	tasked	with	investigating	how	to	create	standby	databases	with
RMAN	in	his	test	database	environment	so	that	he	can	determine	whether	they	will
be	useful	as	a	part	of	his	enterprise	computing	strategy.	In	this	workshop	we	will
shadow	Ryan	as	he	proceeds	to	create	the	standby	database.

Workshop	Notes
To	perform	his	tests,	Ryan	has	configured	two	Oracle	64-bit	Linux	virtual	servers
running	Oracle	Database	12c.	He	has	created	the	primary	database	already.	It’s
sitting	on	a	server	named	StandbyDBOne,	and	the	database	is	called	TESTDB.	He
has	a	second	database	on	a	server	called	StandbyDBTwo	that	he	will	also	call
TESTDB,	because	both	the	primary	and	standby	database	servers	have	to	have	the
same	database	name.

Ryan	has	decided	to	make	the	database	unique	names	TESTDB_PR	for	the
primary	and	TESTDB_SB	for	the	standby	database	site.	Further,	Ryan	has	decided
to	use	OMF	naming	on	both	database	servers	and	to	also	use	the	same	directory
structures	for	the	database	files	on	both	servers.	As	a	result	of	these	decisions,	Ryan
created	the	two	database	servers,	and	he	has	also	made	sure	the	file	systems	on	both
of	the	database	servers	are	duplicated.	In	addition,	he	has	made	sure	the	database
software	was	properly	installed	on	the	standby	database	server.

Ryan	has	created	the	required	network	connections	between	the	primary	database
server	and	the	standby	database	server.	The	primary	database	server	has	an	IP
address	of	192.168.1.201,	and	the	standby	database	server	has	an	IP	address	of
192.168.1.202.

Finally,	Ryan	created	a	recovery	catalog	called	RCAT	on	the	primary	database
server.

Step	1.			The	first	thing	Ryan	needs	to	do	is	to	configure	the	standby	database	site.
This	will	involve	the	following	tasks:

			Creating	the	needed	directories

			Creating	the	auxiliary	instance	parameter	file

			Configuring	Oracle	networking	on	the	standby	database	server

			Starting	the	auxiliary	instance

Step	2.			Ryan	needs	to	create	the	directories	he	needs.	First,	he	will	create	the	audit
destination	directory.	Because	Ryan	will	be	using	the	same	directory	structure	as	the
primary	database,	he	checks	the	AUDIT_FILE_DEST	parameter	on	the	primary
database	and	then	creates	that	directory	on	the	standby	database.	Here	is	an	example
of	what	Ryan	did:

Because	Ryan	is	also	using	OMF,	he	needs	to	create	the	base	directory	structure
that	is	pointed	to	by	the	parameter	DB_FILE_CREATE_DEST.	He	looks	in	the
primary	database	to	figure	out	what	the	setting	is	for	the	DB_FILE_CREATE_DEST
parameter,	as	shown	here:

Now,	he	needs	to	create	these	directories	on	the	standby	database	server,	as
shown	here:

Step	3.			Before	Ryan	can	start	to	create	the	standby	database,	he	needs	to	be	able	to
start	the	auxiliary	instance.	To	do	this,	he	needs	to	create	a	text-based	parameter	file
called	inittestdb.ora	in	the	$ORACLE_HOME/dbs	directory.	Ryan	can	check	the
location	of	the	$ORACLE_HOME	directory	this	way:

Next,	he	needs	to	create	the	inittestdb.ora	file,	which	looks	like	this:

Step	4.			Standby	databases	are	in	constant	contact	with	the	primary	database	so	that
they	can	keep	up	to	date	with	all	the	changes	that	happen.	Because	of	this,	Ryan	will
need	to	make	sure	his	networking	configuration	is	correct.	This	involves	configuring
the	listener.ora	file	and	the	tnsnames.ora	file.

NOTE

In	this	workshop	we	assume	that	network	configuration	files	for
things	such	as	host	name	resolution	have	already	been	configured.

Step	5.			Ryan	needs	to	configure	the	listener.ora	file	on	the	standby	database	server
so	that	the	listener	will	know	how	to	connect	to	the	auxiliary	instance.	Normally,
Oracle	databases	register	with	the	Oracle	listener,	but	this	is	not	the	case	for	an
axillary	instance.	Therefore,	Ryan	will	modify	the	listener.ora	file	so	that	it	looks
like	this:

Ryan	then	starts	the	listener	after	he	has	modified	the	listener.ora	file.

Step	6.			The	tnsname.ora	file	needs	to	be	updated	on	the	standby	server,	too.
Therefore,	Ryan	makes	the	following	additions	to	the	tnsnames.ora	file:

Ryan	then	checks	the	connection	between	the	standby	database	server	and	the
primary	database	to	make	sure	that	part	of	the	tnsnames.ora	file	and	the	Oracle
networking	are	properly	set	up.

Step	7.			Now	that	Ryan	has	created	the	parameter	file	for	the	auxiliary	instance,	he
can	start	the	auxiliary	instance.	He	does	this	by	setting	the	database	environment	to
point	to	the	auxiliary	instance	(called	testdb)	and	then	issuing	the	startup	nomount
command,	as	shown	here:

Having	started	the	Oracle	instance,	Ryan	moves	on	to	making	changes	on	the
primary	database	server.

Step	8.			On	the	primary	database	server,	Ryan	will	need	to	modify	the	tnsnames.ora
file.	Here	are	the	lines	that	he	adds:

Step	9.			Now	that	Ryan	has	prepared	both	the	primary	and	standby	database
servers,	he	is	ready	to	create	the	standby	database	with	RMAN.	Ryan	will	start
RMAN,	connecting	to	the	auxiliary	database,	and	then	connect	to	the	target
database.	Here	is	the	command	he	uses:

If	Ryan	had	a	recovery	catalog,	he	would	have	used	the	following	parameters	to
start	RMAN:

Now	that	Ryan	has	started	RMAN,	he	can	begin	the	process	of	creating	the
standby	database	using	the	duplicate	database	command:

Step	10.			Now	that	Ryan	has	created	the	standby	database	with	RMAN,	he	needs	to
modify	some	parameters	on	the	primary	database	so	that	it	will	start	processing	the
redo	logs	properly.	Also,	he	needs	to	set	some	parameters	to	allow	for	a	failover,
where	the	standby	database	would	become	the	primary	database	and	the	primary
database	would	become	the	standby	database.

Here	are	the	parameter	changes	Ryan	needs	to	make	on	the	primary	database:

Step	11.			To	finish	the	duplication	process,	Ryan	switches	over	to	the	standby
database.	There,	he	makes	sure	he	has	exited	SQL*Plus	from	any	earlier	connection
to	the	standby	database.	Then,	from	the	standby	database,	he	does	the	following:

			Puts	the	database	in	managed	recovery	mode	so	the	standby	database	can
be	open	read-only

			Tests	the	standby	database

First,	Ryan	will	put	the	standby	database	in	managed	recovery	mode:

Now,	to	test	the	standby	database,	Ryan	will	determine	the	current	log	file
sequence	number	using	the	archive	log	list	command,	as	shown	here:

Ryan	then	issues	a	log	switch	on	the	primary	database	so	that	the	log	will	be
processed	by	the	standby	database:

Then,	Ryan	checks	the	standby	database	to	ensure	that	the	log	files	have	been
processed:

Once	the	recovery	is	complete,	Ryan	can	cancel	it	so	that	he	can	put	the	database
in	readonly	mode.	Here	is	how	Ryan	cancels	managed	recovery	mode:

In	this	case,	Ryan	finds	that	log	sequence	number	51	has	been	processed	by	the
standby	database.	Ryan	can	now	take	the	database	out	of	recovery	mode,	put	the
database	in	read-only	mode,	and	then	restart	recovery,	as	shown	here:

With	that,	Ryan	has	a	brand-new	standby	database	running.

Taking	Backups	from	the	Standby	Database
After	creating	your	standby	database,	you	can	use	it	for	a	number	of	purposes.	Its	primary
reason	for	existence,	of	course,	is	to	provide	a	disaster	recovery	solution	for	your
production	database.	However,	you	can	also	suspend	media	recovery	against	the	standby

database,	open	it	as	read-only,	and	perform	any	number	of	data-mining	operations	that
would	suck	too	many	resources	away	from	your	production	system.

From	the	RMAN	perspective,	there	is	another	excellent	way	to	put	the	standby
database	to	work.	As	you	know	from	Chapter	13,	there	is	a	price	to	pay	for	running
RMAN	against	your	production	database	in	terms	of	resources	used.	You	utilize	precious
memory,	CPU,	and	disk	I/O	resources	when	the	backup	is	running.	Therefore,	we
recommend	running	your	backups	during	the	off-peak	hours	of	your	database.	Sometimes,
though,	there	are	no	off-peak	hours.	You	could	be	a	24-hour	operation,	with	constant
database	updates,	or	your	database	could	be	so	large	that	backups	are	pretty	much	running
around	the	clock.

If	you	have	a	physical	standby	database,	you	can	take	your	production	backups	from
the	standby	database;	these	backups	can	then	be	restored	to	the	primary	database	if	the
primary	database	has	a	failure.	Because	the	standby	database	has	the	same	DBID	as	the
primary	database	and	is	always	from	the	same	incarnation,	the	RMAN	datafile	backups
are	interchangeable	between	the	standby	database	and	the	primary	database.	The	standby
database	is	a	true	clone	of	the	primary	database.

The	thing	to	understand	about	using	a	standby	database	to	take	production	backups	is
that	RMAN	will	connect	to	the	standby	database	as	the	target	database.	Remember,	up	to
this	point,	we’ve	encouraged	you	to	think	of	the	standby	database	as	the	auxiliary
database.	But	that	only	holds	true	for	duplication	operations.	Once	the	standby	database	is
established,	you	can	connect	to	it	as	the	target	database	and	perform	backup	commands.
These	backups	can	then	be	used	for	restore	operations	at	the	primary	database.

To	use	the	standby	database	in	this	fashion,	you	must	have	a	recovery	catalog	set	up.
Without	a	recovery	catalog,	there	is	no	way	to	propagate	the	records	of	the	backups	from
the	standby	control	file	to	the	primary	control	file.	With	a	recovery	catalog,	you	resync
with	the	standby	control	file	after	a	backup,	so	the	records	of	the	backup	are	put	in	the
catalog.	Then,	you	connect	to	the	primary	database	as	the	target	and	make	your	catalog
connection.	To	RMAN,	the	primary	and	standby	databases	are	indistinguishable,	so	it
accesses	the	same	record	set	in	the	catalog	when	connected	to	either.	Therefore,	you	can
perform	a	resync	operation	while	connected	to	the	primary	database,	and	it	will	refresh	the
primary	control	file	with	the	records	of	backups	taken	while	connected	to	the	standby
database.

Other	RMAN	and	Data	Guard	Topics
Data	Guard	and	RMAN	can	come	in	handy	in	a	number	of	cases.	For	example,	if	there	is	a
loss	of	one	or	more	datafiles	at	the	primary	database,	and	backups	are	not	accessible,	then
RMAN	and	Data	Guard	can	be	used	to	recover	the	lost	datafiles.	Further,	if	the	standby
database	should	become	seriously	out	of	sync	with	the	primary	database,	it	might	be	easier
to	use	RMAN	to	bring	the	standby	database	in	sync	than	to	spend	a	great	deal	of	time
applying	the	online	redo	logs.	Let’s	quickly	look	at	each	of	these	cases	in	more	detail.

Restoring	a	Lost	Datafile,	Tablespace,	or	Database	from	a

Standby	Database	with	RMAN
If	the	primary	database	should	lose	one	or	more	datafiles,	you	can	use	the	standby
database	to	recover	them.	Assume,	for	example,	that	you	have	lost	a	datafile	that	is
assigned	to	the	USERS	tablespace.	To	perform	this	restore,	you	sign	into	RMAN	and
connect	to	the	standby	database.	You	would	take	the	datafile	you	are	going	to	restore	(in
our	case,	datafile	6)	offline:

With	the	datafile	offline,	you	use	the	RMAN	restore	database	command,	along	with
the	from	service	clause,	to	restore	the	datafile	from	the	standby	database.	You	will	use	the
service	name	of	the	standby	database	in	the	from	service	clause,	as	shown	in	this
example,	where	we	are	restoring	datafile	6	from	the	standby	database:

Then,	you	recover	the	datafile	with	the	RMAN	recover	datafile	command,	as	shown
here:

Finally,	you	bring	the	datafile	online	to	complete	the	recovery:

Resynchronizing	the	Standby	Database
Resynchronizing	the	standby	database	when	it	gets	seriously	out	of	step	with	the	primary
database	is	now	much	easier.	The	new	from	service	clause	provides	the	ability	to	directly
connect	to	the	primary	database	via	its	service	name	and	resynchronize	the	standby
database	from	the	primary	database.

First,	you	connect	to	the	standby	database	on	the	standby	database	server	with	RMAN,
as	shown	here:

Then,	you	use	the	recover	database	command	on	the	standby	database,	including	the
primary	database	service	name	in	the	from	service	clause,	as	shown	here:

Archive	Log	Backups	from	the	Standby	Database
Backing	up	the	archive	logs	from	the	standby	database	is	a	somewhat	trickier	affair
because	of	how	RMAN	determines	which	archive	logs	need	to	be	backed	up:	it	checks	the
view	V$ARCHIVED_LOG.	On	the	primary	database,	this	view	is	incremented	with	each
new	archive	log	after	it	has	been	successfully	created	in	the	LOG_ARCHIVE_DEST.
However,	on	the	standby	database,	this	view	is	updated	only	if	your	standby	database	is	in
MANAGED	RECOVERY	mode	(where	the	archive	logs	are	automatically	applied	at	the
standby	database).	If	your	standby	database	is	not	in	MANAGED	RECOVERY	mode,	or

if	due	to	your	setup	you	get	archive	log	gaps	at	the	standby	database	on	a	regular	basis,	it
may	be	hard	to	get	all	the	required	archive	logs	backed	up	successfully	from	the	standby
database.	In	this	case,	we	recommend	using	your	primary	database	for	its	own	archive	log
backups	and	using	the	standby	database	just	for	datafile	backups.

Summary
In	this	chapter,	we	discussed	the	relationship	that	RMAN	can	have	with	the	standby
database	architecture.	RMAN	makes	it	quite	easy	to	create	a	standby	database,	and	it
provides	a	number	of	different	ways	to	create	the	standby	database	based	on	your	needs.
We	have	really	only	touched	the	surface	here,	and	there	are	many	other	neat	things	RMAN
can	do	in	specific	use	cases.	Now	go	out	and	create	standby	databases	all	over	the	world!

CHAPTER
18

RMAN	and	Real	Application	Clusters

A
lthough	it	is	well	beyond	the	scope	of	this	book	to	guide	you	through	the	intricacies	of
Oracle	Real	Application	Clusters	(RAC),	we	can	provide	some	guidance	on
preparing	your	RAC	configuration	for	backup	and	recovery.	As	with	Data
Guard	in	Chapter	17,	we	assume	that	you	have	a	working	knowledge	of	RAC
in	Oracle	Database	12c,	and	thus	our	brief	discussion	of	RAC	architecture	is

intended	more	as	a	reminder	than	as	an	education.

Throughout	this	chapter,	we	will	use	a	sample	cluster	database	that	has	only	two	nodes:
winrac1	and	winrac2.	These	nodes	share	a	disk	array,	which	is	configured	with	Oracle
ASM	as	its	volume	manager.	Each	node	has	an	instance:	prod1	on	winrac1,	and	prod2	on
winrac2.	Although	we	will	limit	our	explanations	to	the	simplest	of	RAC	environments—a
two-node	cluster—nothing	changes	when	you	scale	out	to	three,	four,	or	more	nodes.	In
our	examples,	you	simply	change	the	number	of	nodes	from	2	to	3,	and	the	number	of
channels	from	2	to	3,	and	so	on.	The	more	nodes	you	have,	the	more	complex	your
backup/recovery	strategies	and	scripts,	but	the	basic	rules	apply	no	matter	the	number	of
instances.

There	are	two	basic	ways	to	share	a	file	system	across	multiple	computers.	The	first,
which	was	also	available	with	Oracle	9i	Database,	is	to	use	a	clustered	file	system.	This	is
frequently	provided	by	a	third-party	vendor,	such	as	VERITAS.	On	Windows	and	Linux,
Oracle	provides	its	own	cluster	file	system	(OCFS).	A	cluster	file	system	is	defined	by	its
ability	to	properly	handle	and	queue	requests	for	files	coming	from	multiple	nodes
simultaneously—which	is	a	requirement	if	you	are	going	to	cluster	your	databases.

The	second	way	to	share	a	file	system	across	multiple	computers,	introduced	in	Oracle
Database	10g,	is	to	use	Automatic	Storage	Management	(ASM).	ASM	is	Oracle’s	first
volume	management	product	and	can	be	used	to	manage	raw	disks	that	have	no	other
formatting	on	them.	Because	of	its	architecture,	ASM	is	built	for	cluster	configurations
and	can	easily	handle	the	demands	of	RAC.	You	could	say	that	ASM	was	built	for	RAC,
because	if	you	decide	to	deploy	RAC	on	Oracle	Standard	Edition,	ASM	is	the	only	file
system	allowed	for	the	shared	Oracle	database	files.

And	that	is	all	you’re	going	to	get	from	us	on	the	subject,	except	to	say	this:	you	can	no
longer	use	raw	partitions	to	host	your	RAC	voting,	OCR,	data	files,	or	redo	log	files.	In
11gR2,	raw	partitions	were	only	supported	if	upgrading	from	an	older	release,	and	with
12c	raw	partitions	are	completely	desupported	for	both	upgraded	and	new	cluster	installs.

Real	Application	Clusters:	Unique	Backup
Challenges
Before	we	dig	any	deeper,	it’s	helpful	to	consider	the	architectural	nature	of	a	RAC.
Essentially,	you	have	at	least	two	different	servers,	each	with	its	own	memory	and	local
disks,	and	each	connected	to	a	shared	disk	array.	Oracle	uses	this	hardware	by	creating
two	instances,	one	on	each	node,	with	their	own	SGA/PGA	memory	areas.	Each	instance
has	its	own	redo	logs,	but	they	exist	on	the	shared	disk	and	are	accessible	by	the	other
nodes.	All	control	files	and	datafiles	are	shared	between	the	two	instances,	meaning	there
is	only	one	database,	with	two	threads	accessing	and	updating	the	data	simultaneously.

Figure	18-1	provides	an	oversimplified	look	at	RAC.

FIGURE	18-1.			RAC	at	its	most	basic

From	the	RMAN	perspective,	this	architecture	creates	interesting	challenges	for	taking
backups.	First	of	all,	multiple	instances	are	running,	but	RMAN	can	connect	to	only	a
single	node.	This	shouldn’t	pose	any	problems	for	backing	up	the	datafiles,	but	we	do
have	a	problem	when	it	comes	to	archive	logs.	Each	instance	is	archiving	its	own	redo
logs	to	a	local	drive	rather	than	to	the	shared	disks,	so	the	issue	is	how	we	get	to	those
other	archive	logs.	But	let’s	start	by	considering	the	datafile	backups.

Datafile	Backups
Datafile	backups	in	a	RAC	environment	are	pretty	much	the	same	as	datafile	backups	in	a
single-node	database:	RMAN	connects	to	a	node	and	issues	a	backup	database
command.	The	memory	that	RMAN	needs	to	perform	the	backup	operation	will	be
grabbed	from	that	one	node.	If	backing	up	to	disk,	the	backups	will	be	local	to	that	node;
if	backing	up	to	tape,	that	instance	will	have	to	be	configured	for	integration	with	your
MML.

The	RMAN	Snapshot	Control	File	and	RAC
You	need	to	move	the	snapshot	control	file	to	a	shared	location	if	you	plan	to	run
backups	from	more	than	one	node.	If	you	do	not	move	the	snapshot	control	file	to	a
shared	file	system	such	as	OCFS	or	an	ASM	disk	group,	then	you	must	make	sure
that	the	local	destination	is	identical	on	all	nodes.	To	see	the	snapshot	control	file

location,	use	the	show	command:

To	change	the	value,	use	the	configure	command:

The	only	problem	with	this	scenario	is	that	it	puts	quite	a	bit	of	load	on	a	single	node.
This	may	be	what	you	are	after;	if	not,	there	is	a	better	way.	RMAN	can	connect	to	only	a
single	node	initially,	but	it	can	allocate	channels	at	all	of	your	nodes	during	an	actual
backup	operation.	The	following	shows	an	example	of	how	this	would	be	done:

Then,	you	can	run	your	backup,	and	RMAN	will	spread	the	work	between	your	two
nodes.	RAC	datafiles	sometimes	have	something	known	as	node	affinity,	where	a
particular	datafile	is	accessed	faster	from	one	node	or	the	other.	If	this	is	the	case	for	your
cluster,	RMAN	knows	about	it	and	will	back	up	the	datafile	from	the	node	where	it	can	be
read	the	fastest.	If	there	is	no	node	affinity	on	your	system,	RMAN	just	distributes	the
work	across	the	two	channels	as	it	would	any	two	channels	used	to	parallelize	a	backup.
Obviously,	you	could	allocate	two	channels	at	each	node,	or	three,	four,	or	more.	How
many	channels	each	node	utilizes	should	be	based	on	the	same	performance	parameters
we	explored	in	Chapter	13.

Automatic	Distribution	of	Backup	Work	Across	Nodes
Since	Oracle	Database	10g	Release	2,	RMAN	can	utilize	information	gleaned	from
Oracle’s	Cluster	Ready	Services	(CRS)	to	provide	better	RAC	integration.	Of	most
importance,	you	no	longer	have	to	configure	a	channel	to	specifically	connect	at	a
particular	node.	If	you	have	two	nodes	and	you	set	parallelism	to	2,	RMAN	will	query
CRS	for	the	node	information	and	automatically	spread	the	two	channels	across	the	two
nodes.	In	addition,	CRS	keeps	track	of	node	utilization	and	will	spread	RMAN	backup
jobs	out	to	those	nodes	that	are	currently	being	least	utilized,	to	avoid	I/O	traffic	jams.
This	is	a	significant	automation	improvement,	and	the	lesson	to	take	away	is	simple:	don’t
try	to	out-think	CRS.	Let	it	do	the	footwork	of	determining	how	to	distribute	work	across
your	cluster.	Just	set	your	level	of	parallelism	equal	to	the	total	number	of	nodes	you	want
involved	in	your	backup,	and	let	CRS	do	the	work.

Archive	Log	Backups
Archive	log	backups	are	far	trickier	than	datafile	backups,	because	each	node	is

responsible	for	its	own	archiving,	which	means	that	each	node	has	potentially	unshared
files	that	only	it	can	access.	If	we	connect	to	only	one	node	and	issue	a	backup	archivelog
all	command,	RMAN	will	look	in	the	control	file	and	discover	the	listing	for	the	archive
logs	from	both	nodes,	but	when	it	looks	at	the	local	node,	it	will	find	only	the	archive	logs
from	that	node	and	it	will	error	out.

Of	course,	the	question	may	be	posed,	“Why	not	write	archive	logs	to	a	cluster	file
system	or	ASM	on	the	shared	disk	array?”	The	answer	is,	“Because	that	is	the	best	and
recommended	solution.”

RMAN,	RAC,	and	Net	Connections
RAC	comes	with	many	extremely	powerful	load-balancing	and	failover	features	as
part	of	the	Net	configuration,	but	this	means	changes	in	the	listener.ora	file	and	in	the
tnsnames.ora	files	for	both	the	cluster	nodes	and	the	clients.	RMAN	is	a	little	too
picky	for	these	features.	RMAN	can	only	connect	to	one	node	and	cannot	fail	over	or
be	load-balanced.	Therefore,	the	Net	aliases	you	use	for	the	target	connection	and	for
the	connect	clause	of	the	channel	allocation	string	must	be	configured	to	connect	to	a
single	node	with	a	dedicated	server.	This	means	that	you	cannot	use	the	same	NET
aliases	configured	for	failover	that	you	use	for	other	connection	purposes.

If	you	insist	on	leaving	archive	logs	local	to	each	node,	a	solution	is	available	that
allows	RMAN	to	cope	with	the	non	shared	disk	locations.	First,	make	sure	that	each	node
is	archiving	to	a	unique	file	location.	For	example,	prod1	archives	to	a	directory	called
/u04/prod1/arch,	and	prod2	archives	to	/u04/prod2/arch.	Then,	you	can	allocate	channels
at	each	node,	as	you	did	to	load-balance	the	datafile	backups	earlier,	and	back	up	the
archive	logs:

RMAN	has	a	feature	known	as	autolocate	that	identifies	which	archive	logs	belong	to
which	node	and	that	attempts	to	back	them	up	only	from	that	node.	In	this	way,	you	don’t
have	to	specify	in	RMAN	which	logs	you	need	backed	up	at	which	node—RMAN	can
figure	it	out	for	you.

Another	option	that	would	allow	you	to	perform	your	archive	log	backup	from	a	single
node	would	be	to	NFS-mount	the	archive	log	destination	of	the	other	node.	For	example,
at	the	node	winrac1,	you	have	local	archive	logs	located	at	/u04/prod1/arch.	Then,	on
winrac1,	you	NFS-mount	the	drive	/u04/prod2/arch	on	winrac2	as	/u04/prod2/arch.	That
way,	when	you	run	your	archive	log	backups,	RMAN	checks	the	control	file	for	the
archive	log	locations,	and	it	can	find	both	locations	while	connected	to	only	prod1.	Figure
18-2	illustrates	this	methodology.

FIGURE	18-2.			Mounting	the	archive	log	destination

The	only	problem	in	the	scenarios	we’ve	provided	so	far	is	that	you	are	giving	yourself
a	single	point	of	failure	for	archive	logs.	If	you	archive	your	logs	only	to	their	respective
nodes	and	you	lose	a	node,	you	lose	the	archive	logs	from	that	node.	That	means	you	may
have	to	perform	point-in-time	recovery	of	the	entire	database	to	the	point	right	before	the
node	was	lost.

A	better	strategy	is	to	set	up	each	node	with	a	LOG_ARCHIVE_DEST_2	parameter
that	writes	to	another	node.	One	way	to	approach	this	task	is	to	consider	the	NFS	mount
strategies	already	discussed	in	this	chapter.	Instead	of	just	NFS-mounting	in	READ	ONLY
mode	the	archive	destination	of	the	other	node,	consider	NFS-mounting	a	drive	on	the
other	node	with	write	access,	and	then	setting	that	NFS	mount	as	a	second	archive

destination.	Take	our	two-node	RAC	database,	for	example.	On	winrac1,	we	could	mount
the	shared	directory	/u04/prod2/arch	from	winrac2,	and	on	winrac2,	we	could	mount
winrac1’s	/u04/prod1/arch	directory.	Then,	we	could	set	up	the	init.ora	files	for	each	node,
as	shown	next:

When	set	up	like	this,	Oracle	writes	archive	logs	from	each	node	to	the	archive
destination	of	the	other	node.	This	gives	us	an	elegant	solution	for	backing	up	the	archive
logs	from	a	single	node	and	provides	us	with	fault	tolerance	in	case	a	node	is	lost.

Avoid	Archive	Log	Backup	Complexity	with	ASM	and	the	Fast	Recovery
Area
All	of	these	complications	can	be	avoided	by	creating	a	location	on	the	shared	disk	array
that	has	a	volume	cooked	with	a	cluster	file	system,	such	as	OCFS.	Even	better,	you	can
employ	ASM	as	your	volume	manager	for	all	your	RAC	files.	Then,	you	can	create	a
second	disk	group	and	deploy	your	Fast	Recovery	Area	(FRA)	to	the	disk	group.	With	an
FRA	on	an	ASM	disk	group,	managing	archive	logs	in	RAC	is	essentially	the	same	as
managing	them	in	a	single-thread	environment.	If	you	configure	the	database	to	archive	to
the	FRA,	both	nodes	will	deposit	the	logs	in	a	single	location	where	they	are	visible	to
both	nodes	at	all	times.	Managing	archive	logs	during	cleanup	operations	is	no	different
than	managing	them	on	a	single-thread	database.

RAC	Recovery	Challenges
Perhaps	more	confusing	than	getting	backups	done	is	getting	restore	and	recovery	tasks
taken	care	of	in	a	RAC	environment.	Again,	this	is	due	to	the	complex	nature	of	a
database	that	has	multiple	instances.	The	challenges	can	be	roughly	divided	into	three
areas:	restore	operations,	media	management	considerations,	and	recovery	challenges.

Restore	Operations
We	must	point	out	again	that	when	you	are	performing	a	restore	from	RMAN,	it	can
connect	to	only	one	node,	but	then	can	allocate	channels	at	each	node.	This	should	sound
pretty	familiar	by	now,	but	that’s	not	the	tricky	part.	The	part	that	hangs	people	up	is
keeping	track	of	where	files	were	backed	up	from.

File	accessibility	is	the	key	to	restore	success	on	a	RAC	node.	If	you	have	been	backing
up	to	disk	using	channels	allocated	at	each	node,	you	must	allocate	the	same	channels	at
each	node	during	a	restore	operation.	This	is	not	a	problem,	unless	you’ve	lost	a	node.	If

the	node	is	down,	your	disk	backups	on	that	node	are	inaccessible	and	restore	operations
will	fail.	The	lesson	is,	if	you’re	spending	all	this	time	and	money	on	RAC	so	that	you
don’t	have	a	single	point	of	failure,	make	sure	you	apply	this	philosophy	to	your	backup
and	recovery	strategy	as	well.	If	you	back	up	to	disk,	duplex	the	backup	to	more	than	one
node.	This	might	mean	overriding	the	default	autolocate	feature	so	that	you	can	specify
where	exactly	you	want	your	backups	to	be	backed	up	from.	You	do	this	by	specifying	the
channel	for	datafile	sets:

Here,	again,	ASM	will	save	you	time	and	energy.	More	to	the	point,	running	an	FRA	on
a	shared	ASM	disk	volume	makes	disk	backups	in	a	RAC	environment	simple	and
requires	little	configuration	beyond	what	you	normally	do	for	a	single-thread	database.
Using	an	FRA	on	ASM	allows	you	to	take	advantage	of	job	multiplexing	across	your
nodes,	yet	still	have	all	the	backups	end	up	in	a	location	that	is	always	accessible	by	other
nodes	during	the	restore.	Therefore,	you	no	longer	need	to	fear	that	a	disk	backup	might
be	left	inaccessible	on	a	downed	node.	Nor	do	you	need	to	fear	a	single	point	of	failure,
because	ASM	comes	with	automatic	redundancy,	so	you	can	mirror	your	FRA	and	have	a
duplexed	copy	of	your	backup	without	any	additional	work.

Media	Management	Considerations	During	a	Restore
Another	way	to	make	your	backups	available	to	all	nodes	during	a	restore	is	to	back	up	to
tape	and	to	use	a	centralized	media	management	server	to	house	your	tape	backups.	If	you
have	tape	devices	at	each	node	and	use	them	all	for	tape	backup,	you’re	increasing	the
degree	of	complexity	unnecessarily.	If	you	lose	a	node	in	your	cluster,	you	then	lose	the
media	management	catalog	for	all	backups	taken	from	that	node.	Chances	are	that	your
media	management	product	has	an	automatic	catalog	backup,	but	then	you	have	another
restore	to	do,	and	where	do	you	do	it,	and	when?	You	need	the	catalogs	at	both	of	your
other	nodes	for	their	backup	information.	So,	you	have	a	disaster	that	is	fixable,	but
valuable	minutes	are	racing	by	as	you	stick	your	nose	in	manuals,	trying	to	figure	it	all
out.

We	prefer	to	use	a	centralized	media	management	system	so	that	all	nodes	can	back	up
to	tape	devices	that	are	all	managed	by	the	same	media	manager	server.	This	way,	there	is
a	single	media	management	catalog.	Thus,	when	a	node	is	lost,	you	can	simply	specify	the
client	name	in	your	RMAN	channel	and	do	the	restores	to	a	different	node.	This	brings	us

to	the	most	important	note	to	remember	when	you	use	RMAN	to	restore	your	backup	from
tape:	you	must	consider	the	node	from	which	RMAN	made	the	backup	when	doing	the
restore.

As	an	example,	suppose	that	in	our	two-node	cluster,	we	have	lost	node	winrac2,	and
the	disaster	that	took	it	out	also	corrupted	some	of	our	datafiles.	We’ve	been	employing	a
backup	strategy	that	allocates	channels	at	both	nodes	to	perform	the	backup,	so	our	restore
is	going	to	have	to	allocate	channels	from	both	nodes.	Oops!	No	chance	of	that!	Instead,
we	can	allocate	two	kinds	of	channels	at	winrac1:	normal	tape	channels	and	channels	that
specify	the	client	as	winrac2.	It	would	look	something	like	this:

This	is	obviously	a	very	simple	example	of	what	can	be	a	complex	headache.	We
recommend	a	backup	approach	that	takes	datafile	backups	from	only	a	single	node	in	the
cluster.	If	the	size	of	your	database	prohibits	such	a	simplistic	approach,	try	to	at	least
restrict	RMAN	to	a	small	subset	of	your	nodes.	By	doing	so,	you	keep	the	complexity
down	when	it	comes	time	to	perform	restore	operations,	because	tracking	which	nodes
participated	in	backups	can	be	a	time-consuming	process.

Another	option	is	to	first	stage	your	backups	to	a	disk	location	using	an	FRA	on	an
ASM	disk	volume.	If	you	have	the	space	on	the	disk	array	to	stage	your	backups	to	disk
first,	your	ultimate	move	to	tape	can	happen	from	one	or	more	nodes	at	a	more	controlled
time.	Using	the	backup	recovery	area	command	would	allow	you	to	take	a	consolidated
set	of	backups	from	the	FRA	and	move	them	all	to	tape	in	a	separate	operation.	This	tape
operation	could	occur	from	any	node	or	any	combination	of	nodes.	If	you	did	the	tape
backup	from	a	single	node,	then	the	SBT	channel	parameters	would	be	simplified	during
the	restore,	even	if	a	different	node	were	responsible	for	the	restore.

Recovery	Considerations	After	a	Restore
After	you	get	your	files	restored,	it’s	time	to	perform	media	recovery	by	applying	archive
logs.	Media	recovery	in	a	RAC	environment	has	one	rule	that	you	must	never	forget:	only
one	node	can	perform	recovery.	Burn	it	into	your	brain.	This	means	that	one	node	must
have	access	to	all	the	archive	logs	on	disk.	Therefore,	if	you	have	been	using	an	archive
log	strategy	that	has	each	node	holding	its	own	archive	logs	in	a	local	disk,	you	must	make
that	local	disk	available	to	the	recovery	node.	You	can	do	this	via	NFS	if	you	followed	the
guidelines	specified	in	“Archive	Log	Backups”	earlier	in	this	chapter.	You	simply	mount
the	archive	log	destination	of	the	other	node	and	issue	your	recover	statement	from	within
RMAN.	If	you’re	using	CFS,	this	is	not	a	problem,	and	you	can	ignore	all	this.	If	you	are
using	an	FRA	on	ASM,	again,	access	to	all	archive	logs	is	not	an	issue.

If	you	have	archive	logs	that	you	need	to	restore	from	RMAN	backups,	the	same	rules

and	guidelines	apply	to	archive	logs	that	apply	to	datafile	restores.	If	you	allocated
channels	at	each	node	for	the	backup,	then	you	need	to	do	so	for	the	restore	as	well.	If	you
are	missing	a	node,	you	have	to	allocate	a	channel	that	includes	the	client	name	so	that	the
media	manager	can	find	the	proper	backups	(see	the	preceding	section,	“Media
Management	Considerations	During	a	Restore”).	In	addition,	you	may	have	to	restore	the
archive	logs	to	a	directory	that	exists	locally	if	the	LOG_ARCHIVE_DEST	parameter	that
existed	on	the	missing	node	does	not	exist	on	the	node	doing	the	restore	operation:

Although	only	one	node	can	perform	recovery	with	RMAN,	RMAN	does	media
recovery	in	parallel.	You	cannot	control	this	level	of	parallelism,	other	than	to	turn	it	off:

By	default,	though,	RMAN	automatically	selects	the	degree	of	recovery	parallelism
based	on	the	number	of	available	CPUs	on	the	node	performing	recovery.

Advanced	RMAN/RAC	Topics
Once	you	have	determined	what	your	backup	and	recovery	strategies	will	be	for	your
RAC	database,	you	can	consider	many	of	the	same	benefits	that	RMAN	offers	you	in	a
single-node	database	environment:	block	corruption	checking,	null	compression,	block
media	recovery—all	of	these	benefits	are	yours	in	a	RAC	environment.	Advanced
functionality	such	as	database	duplication	exists	as	well.	RMAN	backups	of	RAC
databases	work	for	duplication	and	standby	database	creation,	just	as	they	would	for	a
single-node	system.	We	have	some	caveats,	however,	which	we	discuss	next.

Duplication	to	a	Single-Node	System
If	you	administer	a	RAC	cluster	and	aren’t	convinced	yet	that	RMAN	is	the	right	tool	for
you,	here’s	a	little	something	to	seal	the	deal:	you	can	use	your	RMAN	backups	of	your
RAC	database	to	create	a	clone	of	your	RAC	database	on	a	single-node	database.	This
gives	you	a	copy	of	your	production	database	without	having	to	purchase	and	administer	a
second	RAC	cluster.	Instead,	you	have	a	single-node	database	running	on	a	cooked	file
system.

In	fact,	RMAN	cannot	actually	duplicate	from	one	RAC	cluster	to	another	RAC	cluster.
It	can	duplicate	only	to	a	single-thread	database.	However,	once	the	database	is	duplicated,
you	can	easily	turn	the	clone	database	into	a	RAC	database.	Just	make	sure	you	duplicate
to	an	ASM	disk	group	on	a	node	that	already	has	CRS	installed.

RMAN	Workshop:	Duplicating	a	RAC	Database	to	a
Single-Node	Database
Workshop	Notes
This	Workshop	creates	a	single-node	clone	of	a	two-node	database.	You	can	do	this

either	to	a	new	server	or	to	a	cooked	file	system	on	one	of	the	nodes	of	the	RAC
cluster.	This	example	duplicates	to	a	file	system	on	one	of	the	nodes	in	the	RAC
cluster.	Because	duplication	must	perform	recovery,	you	must	remember	that	a
recovery	session	has	access	only	to	the	node	on	which	the	recovery	is	being
performed,	so	that	node	must	have	access	to	all	the	nodes’	archive	logs.	This
Workshop	assumes	that	you	have	NFS-mounted	the	archive	destination	of	each	node
on	each	other	node	so	that	a	full	copy	of	each	archive	log	stream	is	available	at
every	node.

The	two	nodes	of	our	cluster	are	opcbs01	and	opcbs02,	with	instances	of	V112A
and	V112B,	respectively.	We	will	be	connecting	to	V112B	for	all	RMAN
operations.

Step	1.			Build	your	auxiliary	database	directory	structures:

Step	2.			Copy	the	target	init.ora	file	to	the	auxiliary	location.	If	your	target	database
uses	an	SPFILE,	you	need	to	create	a	PFILE	from	the	SPFILE	to	capture	parameters
to	move	over.

If	you	use	an	SPFILE	at	your	target,	enter	the	following:

If	you	use	an	init.ora	file	at	your	target,	enter	the	following:

Step	3.			Make	all	necessary	changes	to	your	aux1	init.ora	file:

You	can	remove	the	following	parameters	entirely,	including	those	that	refer	to
the	other	instance:

You	can	replace	them	by	just	having	the	following:

Step	4.			Build	your	aux1	password	file	using	the	orapwd	utility.

Step	5.			Start	the	aux1	instance	in	NOMOUNT	mode:

Step	6.			Configure	your	network	files	for	connection	to	aux1.	After	you	make	any
changes	to	your	listener.ora	file,	be	sure	that	you	bounce	your	listener,	or	the	change
will	not	take	effect:

The	tnsnames.ora	file	should	have	an	entry	like	this:

The	listener.ora	file	should	have	an	entry	like	this:

Step	7.			From	RMAN,	connect	to	the	target	database	and	the	auxiliary	instance	and
run	the	duplicate	command:

The	Single-Node	Standby	Database
Of	course,	if	we	can	duplicate	to	a	single	node,	then	we	can	also	use	the	duplicate
command	to	create	a	standby	database	for	our	RAC	cluster	on	a	single	node.	Perhaps	more
so	than	even	straight	duplication,	this	feature	gives	us	an	excellent	cost-to-performance
strategy	for	providing	a	disaster	recovery	solution	for	our	RAC	database.	Instead	of
purchasing	all	the	hardware	and	software	necessary	to	have	a	complete	second	RAC

system	set	up	but	unused	for	a	standby	database,	you	can	create	the	standby	database	on	a
single-node	system.	Obviously,	it	won’t	have	the	computing	power	or	load-balancing
features	of	the	RAC	database,	but	it	gives	a	reasonable	disaster	recovery	solution	so	that
you	can	hobble	along	until	the	RAC	database	is	restored.

As	with	the	duplication	process,	the	secret	lies	in	using	the
DB_FILE_NAME_CONVERT	parameter	to	switch	the	files	from	OCFS	or	ASM	disk
groups	to	normal,	nonclustered	file	systems.	In	addition,	the	single-node	standby	database
can	receive	archive	logs	from	each	of	the	nodes	in	the	RAC	cluster	and	apply	them	in	the
correct	chronological	order.

RMAN	Workshop:	Creating	a	Single-Node	Standby
Database	from	a	RAC	Database
Step	1.			Use	RMAN	to	create	a	standby	control	file:

You	need	to	specify	a	point	in	time	after	you	created	this	standby	control	file,	so
perform	a	few	log	switches	and	then	record	the	last	log	sequence	number	from
V$ARCHIVED_LOG.	It	doesn’t	matter	which	thread	you	choose,	because	the
following	command	will	force	a	log	switch	at	all	nodes:

Step	2.			Build	your	standby	database	directory	structures:

Step	3.			Copy	the	target	init.ora	file	to	the	auxiliary	location.	If	your	target	database
uses	an	SPFILE,	you	need	to	create	a	PFILE	from	the	SPFILE	to	capture	parameters
to	move	over.

If	you	use	an	SPFILE	at	your	target,	enter	the	following:

If	you	use	an	init.ora	file	at	your	target,	enter	the	following:

Step	4.			Make	all	necessary	changes	to	your	stby	init.ora	file:

You	can	remove	the	following	parameters	entirely,	including	those	that	refer	to
the	other	instance:

You	can	replace	them	by	just	having	the	following:

Step	5.			Build	your	stby	password	file	with	the	orapwd	command.

Step	6.			Start	the	stby	instance	in	NOMOUNT	mode:

Step	7.			Configure	your	network	files	for	connection	to	stby.	After	making	any
changes	to	your	listener.ora	file,	be	sure	that	you	bounce	your	listener,	or	the	change
will	not	take	effect:

The	tnsnames.ora	file	should	have	an	entry	like	this:

The	listener.ora	file	should	have	an	entry	like	this:

Step	8.			From	RMAN,	connect	to	the	target	and	auxiliary	instance	and	run	the
duplicate	command:

Backing	Up	the	Multinode	RAC	Database
Once	you	have	created	the	single-node	standby	database,	you	can	take	all	of	your	backups
from	the	standby	database,	just	as	you	would	in	a	normal	environment.	This	means	that
you	can	offload	your	production	RAC	backups	from	the	RAC	cluster	itself	to	the	node	that
is	set	up	and	running	as	a	standby	database.	This	takes	the	load	off	the	cluster,	gives	you	a
disaster	recovery	solution,	and	gives	you	a	simplified	backup	solution	for	archive	logs,
because	all	the	archive	logs	from	all	nodes	will	necessarily	exist	on	the	standby	database.

Again,	the	secret	is	in	the	DB_FILE_NAME_CONVERT	parameter.	You	are	taking
backups	from	the	standby	database	that	has	the	datafiles	on	a	cooked	file	system,	but	even
the	standby	database	control	file	knows	the	original	location	of	the	files	(the	raw	system).
Therefore,	when	you	go	to	restore	a	backup	taken	from	the	standby	on	the	production
RAC	database,	RMAN	checks	with	the	control	file,	finds	the	raw	locations,	and	places	the
files	there.

For	such	a	solution	to	work	for	you,	you	must	use	a	recovery	catalog.	The	recovery
catalog	acts	as	the	transition	agent	for	the	metadata	about	the	backups	from	the	standby
database	control	file	to	the	primary	database	control	file.	After	you	take	the	backup	from
the	standby	database,	RMAN	resyncs	with	the	recovery	catalog,	recording	the	backup
metadata.	Then,	when	you	connect	RMAN	to	the	primary	database	and	perform	a	manual
resync,	the	backup	metadata	from	the	standby	database	control	file	is	placed	in	the
primary	database	control	file	records.

It	is	important	to	make	sure	you	connect	to	the	standby	database	as	the	target	database
when	performing	backups	from	the	standby	database.	Then,	you	connect	to	the	primary
database	as	the	target	database	as	well,	to	perform	the	resync.	RMAN	can	do	this
smoothly	because	it	sees	no	functional	difference	between	the	two	databases:	they	have
the	same	DB_NAME,	the	same	DBID,	and	the	same	redo	stream	history.

Summary
In	this	chapter,	we	discussed	the	means	by	which	RMAN	interacts	with	databases	in	RAC
clusters.	We	discussed	how	RMAN	can	allocate	channels	on	each	node	for	backup,	but
that	recovery	requires	that	all	backups	be	accessible	from	a	single	node.	We	discussed	the
complications	caused	in	archive	log	backups	due	to	multiple	threads	of	redo	being
generated	at	different	nodes.	We	concluded	with	examples	for	duplicating	a	RAC	database
to	a	single-node	database	and	for	creating	a	single-node	standby	database	from	a	RAC
database.

CHAPTER
19

Zero	Data	Loss	Recovery	Appliance:
Evolution	of	RMAN	to	Enterprise-wide

Database	Protection	Solution

A
s	an	Oracle	Backup	and	Recovery	product	manager,	we	personally	have	the	opportunity	to
work	with	customers	worldwide	on	their	broad	and	varied	backup	needs.	And,
as	attested	by	the	wealth	of	practical	DBA	experience	in	this	book,	it’s	clear
that	virtually	all	Oracle	customers—large	and	small—depend	on	RMAN	to
ensure	their	databases	are	backed	up	properly.	More	importantly,	it	must	be

possible	to	recover	these	databases	wherever	needed	and	within	the	constraints	that	are
provided	for	in	SLAs	and	other	customer-facing	documents.

This	book	has	made	it	clear	that	RMAN	is	incredibly	feature	rich	and	flexible—so
much	so	that	it’s	honestly	hard	to	keep	up	with	all	the	new	bells	and	whistles—which	is
hopefully	one	of	the	reasons	why	you	buy	books	like	this	one.

Our	environments	never	get	less	complex.	Where	we	were	at	one	time	backing	up	a
few	databases,	now	we	back	up	dozens.	Where	we	were	backing	up	dozens,	we	now	back
up	hundreds,	and	so	forth.	However,	a	number	of	problems	arise	as	your	backup
infrastructure	grows	ever	larger.	Everything,	including	maintaining	the	scripts	used	to
perform	the	backups,	the	schedules	that	manage	the	backup	jobs,	and	all	of	your	reporting
and	other	functionality,	becomes	harder	to	manage	as	your	Oracle	environment	grows	to
hundreds,	thousands,	or	more	databases.	The	human	cost	in	terms	of	time	also	becomes
more	difficult	to	manage.	Resources	are	not	infinite,	nor	are	dollars.	We	need	a	solution	to
this	problem	of	scale.

Understanding	these	problems	of	scale	in	the	enterprise,	Oracle	began	to	develop	a
solution	that	could	address	these	and	many	other	concerns.	RMAN	is	a	great	tool,	but
more	was	needed	to	manage	the	scale	problem.	It	was	important	to	leverage	the	RMAN
knowledge	within	the	DBA	community	while	considering	a	solution	to	deal	with	the
problems	enterprises	were	facing	in	the	backup	world.	So	it	was	at	Oracle	OpenWorld
2014	that	Oracle	announced	a	new	engineered	system—the	“Zero	Data	Loss	Recovery
Appliance.”	It	was	the	beginning	of	Oracle’s	effort	to	provide	a	truly	enterprise-worthy
database	data	protection	solution,	addressing	the	problems	of	scale.

The	Zero	Data	Loss	Recovery	Appliance:	An
Overview
The	Zero	Data	Loss	Recovery	Appliance	is	designed	to	dramatically	reduce	data	loss	and
data	protection	overhead	for	all	Oracle	databases	in	the	enterprise.	Backup	processing	is
offloaded	to	the	appliance,	boosting	production	performance,	while	data	loss	exposure	is
minimized	via	real-time	redo	transport.	Oracle	Enterprise	Manager	Cloud	Control
oversees	administration	and	control	of	the	entire	environment,	providing	a	“single	pane	of
glass”	view	of	the	entire	backup	lifecycle	for	each	database,	whether	backups	reside	on
disk,	tape,	or	a	replicated	appliance.	The	integrated	hardware	for	the	appliance,	based	on
the	industry-proven	Exadata	platform,	is	fully	fault	tolerant,	offers	extremely	high
performance,	and	scales	to	easily	accommodate	the	data	growth	needs	of	the	enterprise.

The	key	components	and	workflow	within	the	environment	are	shown	in	Figure	19-1.

FIGURE	19-1.			Zero	Data	Loss	Recovery	Appliance	environment

Architecture
The	appliance	is	natively	integrated	with	RMAN—at	the	heart	of	the	system	is	an
embedded	Oracle	Database,	running	Oracle	Real	Application	Clusters	(RAC),	that	serves
as	the	centralized	RMAN	Recovery	Catalog	for	all	the	protected	databases.	The	catalog
maintains	all	backup	metadata	in	Automatic	Storage	Management	(ASM)	disk	groups
running	on	high-capacity	disks	using	high-redundancy	mode.	The	backup	data	itself	is
also	stored	in	ASM	disk	groups,	using	normal	redundancy.	You	can	expand	the	appliance
in	compute	and	storage	capacity	by	simply	adding	more	racks.	Backup	connectivity	into
and	out	of	the	system	is	provided	through	standard	10GigE.	For	tape	archival	operations,
the	appliance	comes	with	preinstalled	Oracle	Secure	Backup	(OSB)	media	management
software	and	a	16Gb	Fibre	Channel	adapter	on	each	compute	server	to	connect	directly	to
tape	hardware.

NOTE

Alternatively,	other	vendors’	tape	backup	agents	may	be	deployed	on	the
Recovery	Appliance	for	integration	with	existing	tape	backup	software	and
processes.	In	this	configuration,	the	agents	must	connect	to	their	specialized
media	servers	that	are	deployed	external	to	the	appliance.

Protected	Databases
Databases	supported	with	the	Recovery	Appliance	can	range	from	Oracle	Database	10g
Release	2	through	Oracle	Database	12c,	on	any	Oracle-supported	OS	platform.	A	database

is	made	“Recovery	Appliance	aware”	via	installation	of	the	Recovery	Appliance	Backup
Module	that	integrates	with	RMAN.	No	specialized	backup	agents	are	required.

The	Recovery	Appliance	Backup	Module	allows	RMAN	SBT	channels	to	be
configured	to	back	up	and	restore	via	standard	HTTP	to	or	from	the	Recovery	Appliance,
as	shown	in	Figure	19-2.

FIGURE	19-2.			RMAN	SBT	channel	configuration	to	the	Recovery	Appliance

In	this	example,	the	backup	module	libra.so	allows	SBT	channels	to	connect	over
HTTP	to	Recovery	Appliance	recoveryappliance2	via	the	access	point
recoveryappliance2-ingest.company.com	using	credentials	stored	in	the	Oracle	wallet
RA_WALLET.

We	will	now	discuss	two	unique	architectural	components	of	the	Recovery	Appliance:
Delta	Push	and	Delta	Store.

Delta	Push
Delta	Push	consists	of	two	processes	that	are	run	on	each	protected	database:

			RMAN	incremental	backups

			Real-time	redo	transport

Let’s	look	at	each	of	these	processes	in	a	bit	more	detail.

RMAN	Incremental	Backups
In	normal	operation,	the	Recovery	Appliance	receives	regularly	scheduled	RMAN
incremental	level	1	backups	from	each	protected	database,	which	consist	of	the	data
blocks	changed	since	the	previous	backup.	At	the	Recovery	Appliance,	the	incoming
backup	data	is	validated	to	ensure	that	there	are	no	physical	corruptions	in	the	Oracle	data
blocks,	then	compressed	using	specialized	block-level	algorithms,	and	finally	written	to	a
storage	pool	contained	within	one	or	more	preconfigured	ASM	disk	groups.

No	full	backups	are	needed	from	the	protected	database,	apart	from	the	initial	full.
Thus,	the	Recovery	Appliance	implements	an	incremental	forever	backup	strategy,
eliminating	traditional	backup	windows	and	the	associated	system	impact,	while	boosting
production	server	performance.	More	details	are	discussed	in	the	section	“Delta	Store,”
later	in	the	chapter.

Real-time	Redo	Transport
If	the	production	system	and	storage	are	lost,	data	can	only	be	recovered	to	the	point	in

time	of	the	last	good	backup	and,	more	specifically	for	databases,	to	the	last	good	archived
log	backup.	Since	archived	logs	hold	records	of	all	changes	that	occur	in	the	database,
these	critical	files	must	be	backed	up	regularly,	if	not	more	frequently	(for	example,	every
few	hours	for	active	systems)	than	data	files.	Frequent	backups	reduce	the	potential	data
loss	if	the	production	system	is	indeed	lost	and	backups	need	to	be	recovered.

In	recognizing	the	critical	nature	of	redo	as	it	pertains	to	data	loss,	the	Recovery
Appliance	supports	real-time	redo	transport	with	Oracle	Database	11g	and	12c,	the	first	of
its	kind	in	the	industry	to	do	so,	providing	sub-second	data	loss	protection.	Based	on	the
industry-proven	Oracle	Data	Guard	redo	transport	technology,	the	Recovery	Appliance
receives	incoming	redo	blocks	directly	from	the	memory	(SGA)	of	these	protected
databases	and	writes	the	logs	into	a	redo	staging	location,	from	where	they	are	converted
into	compressed	archived	log	backups	and	then	written	to	the	Delta	Store.	This	means
frequent	resource-intensive	archived	log	backups	are	no	longer	required	on	the	production
systems,	as	in	a	typical	backup	strategy.	Archived	log	backups	generated	by	the	appliance
are	recorded	in	the	recovery	catalog	as	normal	and	can	be	restored	and	applied	to	data	files
via	standard	RMAN	RECOVER	commands.	Figure	19-3	provides	a	graphic	look	at	how
real-time	redo	transport	works.

FIGURE	19-3.			Recovery	Appliance	real-time	redo	transport

If	there	is	an	unexpected	termination	in	the	redo	stream,	the	appliance	has	the	ability	to
close	the	incoming	redo	stream	and	create	a	partial	archived	redo	log,	thereby	preserving
data	loss	protection.	Upon	detecting	that	the	redo	stream	has	restarted,	the	appliance
automatically	retrieves	all	missing	archived	logs	from	the	protected	database	to	preserve
the	recovery	window	goal.

Delta	Store
The	Delta	Store	is	the	key	processing	engine	for	the	Recovery	Appliance,	creating	and
storing	virtual	full	backups,	based	on	the	Delta	Push	incremental	backups.	Delta	Store
technology	converts	an	incoming	incremental	level	1	backup	into	a	virtual	representation
of	an	incremental	level	0	(that	is,	full)	backup,	as	of	the	level	1’s	timestamp.	For	example,
an	incremental	level	1	backup	Day1_Incr	as	of	time	Day1	is	converted	into	a	virtual	full
backup	called	Day1_VB,	which	is	simply	a	set	of	metadata	maintained	in	the	recovery
catalog	with	references	to	the	data	file	blocks	from	the	incremental	backup	Day1_Incr
and	to	blocks	from	previous	incremental	backups,	going	all	the	way	back	to	the	initial
incremental	level	0	backup.	In	effect,	the	blocks	referenced	by	the	virtual	full	backup

make	up	the	physical	full	backup	set	that	can	be	restored	to	the	point	in	time	Day1.	Thus,
Delta	Store	enables	the	Recovery	Appliance	to	create	a	“full	backup”	at	the	cost	of	only	an
incremental,	using	a	fraction	of	the	time	and	storage	consumption	of	a	standard	full
backup	operation,	as	shown	in	Figure	19-4.

FIGURE	19-4.			Delta	Store	virtual	full	backups

Since	the	protected	database	uses	familiar	RMAN	BACKUP	commands,	all	virtual	full
backups	show	up	as	normal	incremental	level	0	backups	in	the	recovery	catalog	and	can
be	used	by	future	RMAN	restore	operations	as	needed.	When	a	protected	database	issues
an	RMAN	RESTORE,	the	Recovery	Appliance	responds	by	reading	the	appropriate
virtual	full	backup	blocks,	constructing	the	physical	full	backup	sets,	and	then	sending	the
backup	sets	to	the	database,	where	they	are	restored.	Figure	19-5	illustrates	how	a	physical
full	backup	set	at	Day	“N”	is	created	from	its	virtual	full	backup,	which	references	blocks
from	Day	1,	2,	and	N	incremental	backups.

FIGURE	19-5.			Day	“N”	virtual	full	restore

Virtual	full	backups	are	completely	transparent	to	RMAN	and	the	protected	database—

DBAs	continue	to	utilize	their	existing	RMAN	skill	set	with	the	Recovery	Appliance.

Replication
The	RMAN	transparency	model	also	holds	when	replicating	a	local	Recovery	Appliance’s
backups	to	a	secondary	Recovery	Appliance	for	protection	against	server	or	site	outage.
After	an	incremental	backup	is	received	by	the	local	Recovery	Appliance,	it	is
automatically	queued	for	forwarding	to	a	secondary	Recovery	Appliance—that	is,	just	the
changed	blocks	are	replicated,	not	full	backups.	When	the	incremental	is	received	at	the
replica	Recovery	Appliance,	a	virtual	full	is	created	on	the	system	as	normal,	with	new
backup	records	created	in	its	own	recovery	catalog	and	propagated	back	to	the	local
Recovery	Appliance’s	catalog.	You	can	see	examples	of	the	various	replication	models	the
Recovery	Appliance	supports	in	Figure	19-6.

FIGURE	19-6.			Recovery	Appliance	replication	models

Since	records	of	the	replicated	backups	in	the	secondary	Recovery	Appliance	are	also
maintained	in	the	local	Recovery	Appliance,	any	virtual	full	backup	requests	that	cannot

be	satisfied	by	the	local	Recovery	Appliance	are	automatically	forwarded	to	the	replica
Recovery	Appliance,	where	the	physical	backup	sets	are	constructed	as	normal	and	sent
back	to	the	protected	database.	Again,	DBAs	continue	to	utilize	RMAN	as	normal,
without	needing	to	understand	where	or	how	the	backup	sets	originated.

Autonomous	Tape	Archival
In	contrast	to	disk-only	backup	systems,	the	Recovery	Appliance	is	an	excellent	fit	in	IT
organizations	that	have	continued	to	rely	on	tapes	for	long-term	retention	and	archival
purposes.	As	previously	discussed,	the	Recovery	Appliance	comes	with	preinstalled
Oracle	Secure	Backup	software	and	a	16Gb	Fibre	Channel	adapter	on	each	compute	server
to	connect	directly	to	tape	hardware.	When	the	Recovery	Appliance	executes	a	tape
archival	job	for	a	virtual	full	backup,	the	physical	backup	sets	are	first	constructed,	then
pushed	to	tape	via	the	built-in	SBT	interface.	Once	the	tape	backups	complete,	the
appropriate	backup	metadata	is	written	to	the	recovery	catalog.	All	tape	copy	operations
are	performed	by	the	Recovery	Appliance	with	zero	impact	on	the	production	system.
That	means	tape	operations	can	run	24/7	on	the	appliance,	unlike	production	systems,
thereby	reducing	tape	hardware	requirements.	Figure	19-7	provides	a	graphic
demonstration	of	these	features.

FIGURE	19-7.			Copy	virtual	full	backup	Day	“N”	to	tape

A	RESTORE	request	that	requires	backups	from	tape	is	automatically	retrieved	by	the
Recovery	Appliance—no	special	action	is	needed	by	the	DBA.	Furthermore,	because	the
backups	on	tape	are	physical	backup	sets,	these	backups	can	be	restored	directly	by	the
protected	databases	if	needed.	The	protected	database	simply	needs	to	be	configured	with
the	SBT	plug-in	module	that	is	included	with	the	Oracle	Secure	Backup	installation,	and
then	SBT	channels	are	allocated	as	normal	to	perform	the	restore	operations	directly	from
tape.

Backup	Validation
One	of	the	basic	principles	of	a	well-rounded	backup	and	recovery	strategy	is	to	ensure

that	the	backups	created	can	be	restored	and	used	successfully.	To	ensure	that	there	are	no
physical	corruptions	within	the	backed-up	data	blocks	and	that	they	can	be	properly
restored,	backups	must	be	validated	on	a	regular	basis.	This	typically	means	running	an
RMAN	RESTORE	VALIDATE	job	regularly,	along	with	running	periodic	full	restore	and
recovery	operations	to	a	separate	machine.	All	of	these	add	overhead	to	an	already	taxed
production	system.	With	Recovery	Appliance,	incoming	backups	are	automatically
validated	in-line	for	Oracle	block	correctness.	Similarly,	backups	that	are	replicated	to	a
secondary	Recovery	Appliance	and/or	copied	to	tape	are	also	validated.	Furthermore,
virtual	full	backups	themselves	are	periodically	validated	in-place	by	a	background	task
running	on	the	appliance.	Another	benefit	is	that	backup	validation	operations	are	now
offloaded	from	the	production	system	to	the	Recovery	Appliance,	thus	improving
production	system	performance.	Finally,	because	ASM	is	used	for	storing	the	backup	data
on	the	appliance,	it	is	also	made	fully	redundant	through	ASM	mirrored	copies,	where
corrupted	blocks	discovered	by	ASM	on	the	primary	disk	can	be	automatically	repaired	by
a	mirrored	copy.

Protection	Policy
Recovery	Appliance	introduces	the	concept	of	a	protection	policy,	which	defines	granular
recovery	window	goals	that	are	enforced	on	a	per-database	basis	for	backups	on	the	local
or	replica	Recovery	Appliance	and/or	tape.	Using	protection	policies,	databases	can	be
easily	grouped	by	recovery	service	tier;	for	example,	“Gold”	tier	databases	require
backups	kept	for	a	35-day	recovery	window	goal	on	the	local	Recovery	Appliance	and	90
days	on	tape,	whereas	“Silver”	tier	databases	only	require	10	days	on	the	local	Recovery
Appliance	and	45	days	on	tape.	An	optional	maximum	disk	retention	(for	example,	in
days,	weeks,	or	months)	can	be	defined	within	a	policy,	to	hard-limit	the	amount	of	space
consumed	by	the	policy’s	databases.	Separate	protection	policies	can	also	be	set	up	at	the
replica	Recovery	Appliance,	which	will	govern	the	space	management	of	the	replicated
backups.	Figure	19-8	illustrates	how	the	Recovery	Appliance	provides	protection	services.

FIGURE	19-8.			Recovery	Appliance:	Database	Protection	as	a	Service

With	this	unique	implementation,	Recovery	Appliance	introduces	the	concept	of
Database	Protection	as	a	Service,	through	which	database	protection	strategies	can	easily
be	implemented	based	on	the	criticality	of	the	business	application,	rather	than	simply	on
the	availability	of	storage	space.

Cooperative	Space	Management
Once	a	protection	policy	is	created,	a	database	can	then	be	assigned	to	it,	along	with	a
minimum	space	reservation	(for	example,	in	GB	or	TB)	that	is	used	by	the	Recovery
Appliance	to	provision	backup	space	per	the	defined	recovery	window	goals.	The	database
space	reservation	defines	the	minimum	amount	of	space	that	is	always	available	for	use	by
the	database’s	backups.	Space	is	provisioned	by	first	using	any	free	space	and,	if	needed,
by	purging	obsolete	virtual	full	backups	(that	is,	backups	no	longer	needed	to	meet	a
database’s	recovery	window	goal).	Figure	19-9	illustrates	the	use	of	protection	policies.

FIGURE	19-9.			Protection	policy–based	space	management

For	example,	if	the	HR	database	requires	1TB	space	today	to	support	a	three-week
recovery	window	(shown	in	the	grey	bar),	and	its	backup	space	needs	increase	to	2TB
tomorrow	due	to	higher	workloads,	then	the	storage	location	will	attempt	to	meet	the
additional	1TB	space	need	by	utilizing	any	available	free	space	and,	if	necessary,	by
purging	obsolete	virtual	full	backups	and	their	corresponding	archived	log	backups	from
other	databases	(for	example,	FIN	and	CRM).	Conversely,	after	the	workloads	on	HR
subside	and	it	once	again	requires	just	1TB	space	to	support	a	three-week	recovery
window,	then	any	of	its	obsolete	virtual	full	backups	may	be	purged	by	the	Recovery
Appliance	if	other	databases	need	additional	space	to	meet	their	respective	recovery
window	goals.	Backups	may	also	be	proactively	purged	as	needed	in	anticipation	of	future
space	needs—this	“predictive	purging”	background	process	is	based	on	historical	space
usage	patterns.

In	the	event	that	all	obsolete	backups	have	been	purged	and	certain	databases	still
require	additional	space	to	meet	their	recovery	window,	then	the	storage	location	will
begin	purging	the	oldest	virtual	full	backups	for	each	database	that	is	consuming	more
than	its	minimum	space	reservation,	prioritized	in	order	of	databases	with	the	highest
percentage	of	space	overage.	Note	that	in	some	cases,	this	action	can	compromise	a
database’s	recovery	window	goal.	If	this	occurs,	the	system	can	alert	the	administrator	that
additional	capacity	is	needed	in	order	to	maintain	the	stated	recovery	windows.	The
administrator	can	then	take	action	to	add	disk	capacity	and	increase	space	reservation	to
allow	the	system	to	return	to	a	balanced	state,	where	all	recovery	windows	can	be
satisfied.

Recovery	Appliance	fully	manages	all	backup	space	in	order	to	meet	each	database’s
recovery	window	goal,	automatically	re	provisioning	space	as	needed	and	proactively
purging	backups	in	advance	of	future	space	needs.

Monitoring	and	Administration

Oracle	Enterprise	Manager	Cloud	Control	provides	a	complete	end-to-end	view	into	the
backup	lifecycle	managed	by	the	Recovery	Appliance,	from	the	time	the	RMAN	backup	is
initiated	on	the	database,	to	when	it	is	stored	on	disk,	tape,	and/or	replicated	to	a
secondary	appliance.	All	appliance	monitoring	and	administration	functions	are	enabled
via	installation	of	the	Enterprise	Manager	Recovery	Appliance	plug-in.

Standard	metrics	such	as	overall	backup	volume/performance	and	aggregate/per-
database	space	consumption	are	easily	accessed	from	the	console,	as	seen	in	Figure	19-10
and	Figure	19-11.

FIGURE	19-10.			Recovery	Appliance	Enterprise	Manager	home	page:	overall
performance	and	storage	metrics

FIGURE	19-11.			Storage	location	detail:	per-database	backup	space	needed	to	meet
recovery	window	goal

Because	database	recovery	window	goals	form	a	core	component	of	Recovery
Appliance,	administrators	can	immediately	see	whether	any	databases	are	currently	not
meeting	their	goals	from	the	Recovery	Appliance	home	page,	as	shown	in	Figure	19-12.

FIGURE	19-12.			Recovery	Appliance	Enterprise	Manager:	“STORE26”	not	meeting
recovery	window	goal

Scale-out	Hardware
The	Recovery	Appliance	can	easily	scale	to	accommodate	growing	amounts	of	protected
databases,	backup	traffic,	and	storage	usage:	you	simply	add	more	compute	and	storage
servers.	The	Base	Rack	includes	two	compute	servers	and	three	storage	servers,	providing
up	to	94TB	usable	capacity	for	backups.	The	Base	Rack	can	be	upgraded	in	increments	of
one	storage	server	up	to	a	maximum	of	18	storage	servers	with	580TB	of	usable	capacity,
providing	an	effective	capacity	of	up	to	5.8PB	(petabytes)	of	virtual	full	backups	with	a
120TB/hr	virtual	backup	rate	(12TB/hr	sustained	delta	ingest).	If	additional	compute
servers	are	required,	a	second	Base	Rack	can	be	connected	via	Infiniband	to	the	first	rack
—storage	capacity	can	then	be	easily	expanded,	as	done	in	the	first	rack.	Up	to	18	fully
configured	racks	can	be	connected	together,	providing	up	to	10PB	of	usable	capacity,
effectively	storing	100PB	of	virtual	full	backups,	with	a	2PB/hr	virtual	backup	rate
(216TB/hr	delta	ingest	rate).	A	full	rack	can	restore	up	to	12TB/hr,	and	18	fully	configured
racks	can	restore	up	to	216TB/hr.

Summary
The	Zero	Data	Loss	Recovery	Appliance	heralds	a	new	era	in	Oracle	data	protection
technology.	Key	innovations	include	an	incremental-forever	strategy	to	reduce	production
overhead,	real-time	redo	transport	for	reducing	data	loss	exposure	down	to	the	sub	second,
end-to-end	data	validation	and	database	recoverability	status,	and,	finally,	scale-out
hardware	and	storage	built	on	the	proven	Exadata	platform.	The	Recovery	Appliance
directly	targets	the	challenges	of	managing	backup	and	recovery	at-scale	in	large	Oracle

environments.	For	more	information,	including	data	sheets,	white	papers,	and	videos,	visit
oracle.com/recoveryappliance.

CHAPTER
20

RMAN	in	the	Workplace:	Case	Studies

W
e	included	this	chapter	in	our	very	first	RMAN	book	way	back	in	Oracle	9i.	We	felt	it	was
important	to	not	only	provide	you	with	the	mechanics	of	doing	RMAN
backup	and	recovery,	but	also	to	give	you	some	practical	examples	to
follow	so	that	you	could	improve	your	backup	and	recovery	knowledge.	It
is	with	this	purpose	in	mind	that	we	present	the	case	studies	in	this	chapter.

Based	on	both	reading	through	this	book	and	your	own	experience,	we	are	sure	you
have	figured	out	that	you	face	an	almost	infinite	number	of	recovery	combinations.
Recovery	can	be	simple,	and	it	can	be	complex.	Sometimes,	it’s	not	about	recovering	the
database	at	all,	but	about	getting	the	database	to	perform.	Yes,	in	some	respects	even
performance	tuning	can	be	a	form	of	database	recovery.	However,	you	don’t	do	database
performance	tuning	with	RMAN,	so	we	will	save	that	topic	for	other	books.

What	we	will	do	in	this	chapter	is	provide	you	with	various	case	studies	to	help	you
review	your	knowledge	of	backup	and	recovery	(see	if	you	can	figure	out	the	solution
before	you	read	it).	When	you	do	come	across	these	situations,	the	case	studies	may	well
help	you	avoid	some	mistakes	you	might	otherwise	make	when	trying	to	recover	your
database.	You	can	even	use	these	case	studies	to	practice	performing	recoveries	so	that
you	become	an	RMAN	backup	and	recovery	expert.

We	hope	that	you	will	go	through	this	chapter	and	make	a	list	of	the	case	studies	that
apply	to	you.	It	might	be	that	some	of	them	won’t.	If	you	are	running	your	database	in
NOARCHIVELOG	mode,	for	whatever	reason,	then	restoring	from	an	online	backup	isn’t
going	to	be	possible	for	you.	Once	you	have	identified	the	case	studies	in	this	chapter	that
apply	to	you,	you	might	want	to	make	a	list	of	situations	you	might	face	that	are	not
contained	in	this	chapter.	For	example,	we	don’t	provide	a	case	study	on	restoring	your	OS
from	scratch,	since	we	can’t	possibly	know	which	OS	you	are	using.	This	seems	like	a
reasonable	thing	to	practice.

Once	you	have	that	list,	we	strongly	suggest	that	you	practice	these	case	studies	on	a
regularly	scheduled	basis.	Also,	use	this	list	to	help	your	more	junior	DBAs	improve	their
skills	with	RMAN	backup	and	recovery.	They	need	to	practice	these	things	over	and	over
—so	that	it’s	second	nature	to	them.	Even	if	you	are	an	experienced	DBA,	keep	practicing
so	it	stays	fresh	in	your	mind.	Heck,	we	wrote	this	book	and	we	still	practice	backup	and
recovery	all	the	time.

Before	we	get	into	the	case	studies,	though,	the	following	section	provides	a	quick
overview	about	facing	the	ultimate	disaster—a	real-life	failure	of	your	database.

Before	the	Recovery
Disaster	strikes.	Often,	when	you	are	in	a	recovery	situation,	everyone	is	in	a	big	rush	to
recover	the	database.	Customers	are	calling,	management	is	panicking,	and	your	boss	is
looking	at	you	for	answers,	all	of	which	is	making	you	nervous,	wondering	if	your	résumé
is	up	to	date.	When	the	real	recovery	situation	occurs,	stop.	Take	a	few	moments	to	collect
yourself	and	ask	these	questions:

			What	is	the	exact	nature	of	the	failure?

			What	are	the	recovery	options	available	to	me?

			Might	I	need	Oracle	Support?

			Is	there	anyone	who	can	act	as	a	second	pair	of	eyes	for	me	during	this
recovery?

Let’s	address	each	of	these	questions	in	detail.

What	Is	the	Exact	Nature	of	the	Failure?
Here’s	some	firsthand	experience	from	one	of	the	authors.	Back	in	the	days	when	I	was
contracting,	I	was	paged	one	night	(on	Halloween,	no	less!)	because	a	server	had	failed,
and	once	they	got	the	server	back	up,	none	of	the	databases	would	come	up.	Before	I
received	the	page,	the	DBAs	at	this	site	had	spent	upward	of	eight	hours	trying	to	restart
the	25	databases	on	that	box.	Most	of	the	databases	would	not	start.	The	DBAs	had
recovered	a	couple	of	the	seemingly	lost	databases,	yet	even	those	databases	still	would
not	open.	The	DBAs	called	Oracle,	and	Oracle	seemed	unsure	as	to	what	the	problem	was.
Finally,	the	DBAs	paged	me	(while	I	was	out	trick-or-treating	with	my	kids).

Within	about	20	minutes	after	arriving	at	the	office,	I	knew	what	the	answer	was.	I
didn’t	find	the	answer	because	I	was	smarter	than	all	the	other	DBAs	there	(I	wasn’t,	in
fact).	I	found	the	answer	for	a	couple	of	reasons.	First,	I	approached	the	problem	from	a
fresh	perspective	(after	eight	hours	of	problem	solving,	one’s	eyes	tend	to	become	burned
and	red!).	Second,	I	looked	to	find	the	nature	of	the	failure	rather	than	just	assuming	the
nature	of	the	failure	was	a	corrupted	database.

What	ended	up	being	the	problem,	pretty	clearly	to	a	fresh	pair	of	eyes,	was	a	set	of
corrupted	Oracle	libraries.	Once	we	recovered	those	libraries,	all	the	databases	came	up
quickly,	without	a	problem.	The	moral	of	the	story	is	that	when	you	have	a	database	that
has	crashed,	or	that	will	not	open,	do	not	assume	that	the	cause	is	a	corrupted	datafile	or	a
bad	disk	drive.	Find	out	for	sure	what	the	problem	is	by	investigative	analysis.	Good
analysis	may	take	a	little	longer	to	begin	with,	but,	generally,	it	will	prove	valuable	in	the
long	run.

This	also	implies	that	one	of	the	more	important	skills	a	DBA	should	possess	is	the
ability	to	do	research.	Develop	a	list	of	resources	you	will	use	when	a	problem	occurs	and
develop	your	understanding	of	how	to	use	those	resources.	For	example,	you	might	know
how	to	log	onto	Oracle’s	support	portal	and	open	an	SR—but	do	you	know	what	to	do	if
you	feel	like	your	severity	1	SR	is	not	moving	fast	enough	or	if	the	support	analyst	does
not	seem	to	be	“getting”	your	problem?	Oracle	Support	has	some	great	training	available
online	to	teach	you	how	to	effectively	use	this	support	mechanism.	Take	advantage	of	that
training	and	learn	how	to	“work	the	system”	before	you	actually	need	to	do	so.

What	Recovery	Options	Are	Available?
Recovery	situations	can	offer	a	number	of	solutions.	Again,	back	when	I	was	a	consultant,
I	had	a	customer	who	had	a	disk	controller	drive	fail	over	a	weekend,	and	the	result	was
the	loss	of	file	systems	on	the	box,	including	files	belonging	to	an	Oracle	database	in
ARCHIVELOG	mode.	The	DBA	at	the	customer	site	went	ahead	and	recovered	the	entire

database	(about	150GB),	which	took,	as	I	recall,	a	couple	of	hours.

The	following	Monday,	the	DBA	and	I	had	a	discussion	about	the	recovery	method	he
selected.	The	corrupted	file	systems	actually	impacted	only	about	five	database	datafiles
(the	other	file	systems	contained	web	server	files	that	we	were	not	concerned	with).	The
total	size	of	the	impacted	database	datafiles	was	no	more	than	8	or	10GB.	The	DBA	was
pretty	upset	about	having	to	come	into	the	office	and	spend	several	hours	recovering	the
database.	When	I	asked	the	DBA	why	he	hadn’t	just	recovered	the	five	datafiles	instead	of
the	entire	database,	he	replied	that	it	just	had	not	occurred	to	him.

The	moral	of	this	story	is	that	it’s	important	to	consider	your	recovery	options.	The	type
of	recovery	you	do	may	make	a	big	difference	in	how	long	it	takes	you	to	recover	your
database.	Another	moral	of	this	story	is	to	really	become	a	backup	and	recovery	expert.
Part	of	the	reason	the	DBA	in	this	case	had	not	considered	datafile	recovery,	I	think,	is	that
he	had	never	done	such	a	recovery.	When	facing	a	stressful	situation,	people	tend	not	to
consider	options	they	are	not	familiar	with.	Therefore,	we	strongly	suggest	you	set	up	a
backup	and	recovery	lab	and	practice	recoveries	until	you	can	do	them	in	your	sleep.

Might	Oracle	Support	Be	Needed?
You	might	well	be	a	backup	and	recovery	expert,	but	even	the	experts	need	help	from	time
to	time.	This	is	what	Oracle	Support	is	there	for.	Even	though	I	feel	like	I	know	something
about	backup	and	recovery,	I	ask	myself	if	a	failure	looks	to	be	something	that	I	might
need	Oracle	Support	for.	Generally,	if	the	failure	is	something	odd,	even	if	I	think	I	can
solve	it	on	my	own,	I	“prime”	support	by	opening	a	service	request	on	the	problem.	That
way,	if	I	need	help,	I	have	already	provided	Oracle	with	the	information	they	need	(or	at
least	some	initial	information)	and	have	them	ready	to	support	me	should	I	need	it.	If	you
are	paying	for	Oracle	Support,	use	it	now,	don’t	wait	for	later.

We	mentioned	earlier	the	benefit	of	learning	how	to	effectively	use	Oracle	Support.
This	one	thing	is	so	important	that	we	opted	to	mention	it	again	here.

Who	Ca	Act	as	a	Second	Pair	of	Eyes	During	Recovery?
When	I’m	in	a	stressful	situation,	first	of	all	it’s	nice	to	have	someone	to	share	the	stress
with.	Somehow	I	feel	a	bit	more	comfortable	when	someone	is	there	just	to	talk	things	out
with.	Further,	when	you	are	working	on	a	critical	problem,	mistakes	can	be	costly.	Having
a	second	experienced	pair	of	eyes	there	to	support	you	as	you	recover	your	database	is	a
great	idea!

Recovery	Case	Studies
Now	to	the	meat	of	the	chapter—the	recovery	case	studies.	In	this	section,	we	provide	you
with	a	number	of	case	studies,	listed	next	in	the	order	they	appear:

1.			Recovering	from	complete	database	loss	in	NOARCHIVELOG	mode	with	a
recovery	catalog

2.			Recovering	from	complete	database	loss	in	NOARCHIVELOG	mode

without	a	recovery	catalog

3.			Recovering	from	complete	database	loss	in	ARCHIVELOG	mode	without	a
recovery	catalog

4.			Recovering	from	complete	database	loss	in	ARCHIVELOG	mode	with	a
recovery	catalog

5.			Recovering	from	the	loss	of	the	SYSTEM	tablespace

6.			Recovering	online	from	the	loss	of	a	datafile	or	tablespace

7.			Recovering	from	loss	of	an	unarchived	online	redo	log

8.			Recovering	through	resetlogs

9.			Completing	a	failed	duplication	manually

10.			Using	RMAN	duplication	to	create	a	historical	subset	of	the	target	database

11.			Recovering	from	a	lost	datafile	in	ARCHIVELOG	mode	using	an	image
copy	in	the	Fast	Recovery	Area

12.			Recovering	from	running	the	production	datafile	out	of	the	Fast	Recovery
Area

13.			Using	Flashback	Database	and	media	recovery	to	pinpoint	the	exact
moment	to	open	the	database	with	resetlogs

In	each	of	these	case	studies,	we	provide	you	with	the	following	information:

			The	Scenario			Outlines	the	environment	for	you

			The	Problem			Defines	a	problem	that	needs	to	be	solved

			The	Solution			Outlines	the	solution	for	you,	including	RMAN	output	solving
the	problem

Now,	let’s	look	at	our	case	studies!

Case	#1:	Recovering	from	Complete	Database	Loss
(NOARCHIVELOG	Mode)	with	a	Recovery	Catalog

The	Scenario
Thom	is	a	new	DBA	at	Unfortunate	Company.	Upon	arriving	at	his	new	job,	he	finds	that
his	databases	are	not	backed	up	at	all	and	that	they	are	all	in	NOARCHIVELOG	mode.
Because	Thom’s	manager	will	not	shell	out	the	money	for	additional	disk	space	for
archived	redo	logs,	Thom	is	forced	to	do	offline	backups.	Thom	manages	to	find	disk
space	to	back	up	the	database	to,	and	he	configures	space	as	an	FRA.	Thom	also	turns	on
autobackups	of	his	control	file	and	has	converted	the	database	so	that	it	is	using	an
SPFILE.	Thom	also	decides	that	he	should	create	and	use	a	recovery	catalog	database.
After	all	this	configuration,	Thom	manages	to	perform	a	cold	backup	of	the	database	by
logging	into	RMAN	and	issuing	the	following	commands:

The	Problem
Unfortunate	Company’s	cheap	buying	practices	catch	up	to	it	in	the	few	days	following
Thom’s	initial	work,	when	the	off-brand	(cheap)	disks	that	it	has	purchased	all	become
corrupted	due	to	a	bad	controller	card.	Thom’s	database	is	lost.

Thom’s	offline	database	backup	strategy	includes	tape	backups	to	a	local	tape	drive.
Once	the	hardware	problems	are	solved,	the	system	administrator	quickly	rebuilds	the	lost
file	systems,	and	Thom	quickly	gets	the	Oracle	software	installed.	Now,	Thom	needs	to
get	the	database	back	up	and	running	immediately.

The	Solution
Thom’s	only	recovery	option	in	this	case	is	to	restore	from	the	last	offline	backup.	In	this
case,	Thom’s	recovery	catalog	database	was	not	lost	(it	was	on	another	server),	and	his	file
systems	are	in	place,	so	all	he	needs	to	do	is	recover	the	database.	First,	Thom	needs	to
recover	the	database	SPFILE,	followed	by	the	control	file.	Then,	he	needs	to	recover	the
database	datafiles	to	the	file	systems.

The	Solution	Revealed			Based	on	the	preceding	considerations,	Thom	devises	and
implements	the	following	recovery	plan:

1.			Restore	a	copy	of	the	SPFILE.	Note	that	in	this	case,	Thom	is	able	to	start	the
Oracle	Database	instance	without	having	to	create	a	parameter	file	first.	Once
Thom	is	able	to	start	the	instance,	he	will	proceed	to	restore	the	SPFILE.

Because	Thom	does	not	yet	have	a	parameter	file	or	a	control	file	set	up,	the
persistent	settings	that	he	would	normally	need	are	not	available.	As	a	result,	he
will	need	to	add	some	special	parameters	to	the	restore	spfile	command.	Here,	he
has	used	the	db_name	and	recovery_area	parameters	of	the	restore	command.
These	parameters	indicate	the	name	of	the	database	and	the	location	for	the	FRA.
The	end	result	is	an	easy	recovery	of	the	SPFILE.	Here	are	the	commands	Thom
used:

NOTE

If	you	are	not	using	the	FRA	or	a	recovery	catalog,	there	will	be	additional
steps	you	will	need	to	follow	to	restore	the	database	parameter	file.

2.			Now,	Thom	will	restore	a	copy	of	the	control	file.	He	will	use	the	same
RMAN	session	as	in	Step	1.	After	previously	restoring	the	SPFILE,	Thom	restarted
the	instance	so	that	the	SPFILE	parameters	will	be	in	effect.	The	result	is	that
RMAN	now	knows	the	name	of	the	database	and	the	location	of	the	SPFILE.	As	a
result,	the	restore	controlfile	command	is	much	simpler	than	the	restore	spfile
command	was.	Once	Thom	restores	the	control	file,	he	mounts	the	database	in
preparation	to	restore	the	database	datafiles:

3.			Since	Thom	has	restored	the	control	file,	the	settings	that	configure	the	FRA
are	now	correctly	set	for	the	database	instance.	So,	now	he	is	ready	to	restore	the
database	files	and	then	recover	the	database.	When	he	runs	the	restore,	RMAN	will
automatically	catalog	the	files	in	the	FRA.	Therefore,	if	Thom	would	have	had	to
restore	these	files	from	some	other	backup	media,	RMAN	would	have
automatically	located	and	cataloged	the	backup	files	in	the	FRA	before	starting	the
restore.

NOTE

Thom	used	the	alter	database	open	resetlogs	command.	He	could	have	used
the	SQL	command	(sql	“alter	database	open	resetlogs”),	too.	However,	one
benefit	of	using	the	RMAN	alter	command	is	that	the	catalog	and	the	database
will	both	be	reset.	Using	the	SQL	version,	only	the	database	is	reset.

Case	#2:	Recovering	from	Complete	Database	Loss
(NOARCHIVELOG	Mode)	Without	a	Recovery	Catalog

The	Scenario
Elys	is	the	DBA	of	a	development	OLTP	system.	Because	it	is	a	development	system,	the
decision	was	made	to	do	RMAN	offline	backups	and	to	leave	the	database	in
NOARCHIVELOG	mode.	Elys	did	not	decide	to	use	a	recovery	catalog	when	doing	her

backups.	Further,	she	has	configured	RMAN	to	back	up	the	control	file	backups	to	disk	by
default,	rather	than	to	tape.	Finally,	Elys	has	recorded	the	DBID	of	the	database	from	the
V$DATABASE	view,	which	she	will	use	should	she	need	to	perform	a	database	restore.

The	Problem
Sevi,	a	developer,	developed	a	piece	of	PL/SQL	code	designed	to	truncate	specific	tables
in	the	database.	However,	due	to	a	logic	bug,	the	code	managed	to	truncate	all	the	tables	in
the	schema,	wiping	out	all	test	data.

The	Solution
If	there	were	a	logical	backup	of	the	database,	this	would	be	the	perfect	time	to	use	it.
Unfortunately,	there	is	no	logical	backup	of	the	database,	so	Elys	is	left	with	performing
an	RMAN	recovery.	Because	her	database	is	in	NOARCHIVELOG	mode,	Elys	has	only
one	recovery	option	in	this	case,	which	is	to	restore	from	the	last	offline	backup.	Because
all	the	pieces	to	do	recovery	are	in	place	(the	RMAN	disk	backups,	the	Oracle	software,
and	the	file	systems),	all	that	needs	to	be	done	is	to	fire	up	RMAN	and	recover	the
database.

The	Solution	Revealed			Based	on	the	preceding	considerations,	Elys	devises	and
implements	the	following	recovery	plan:

1.			Restore	the	control	file.	When	doing	a	recovery	from	a	cold	backup,	it	is
always	a	good	idea	to	recover	the	control	file	associated	with	that	backup	(this
prevents	odd	things	from	happening).	In	this	case,	Elys	will	be	using	the	latest
control	file	backup	(because	she	doesn’t	back	up	the	control	file	at	other	times).
Because	Elys	uses	the	default	location	to	create	control	file	backup	sets	to,	she
doesn’t	need	to	allocate	any	channels.	If	Elys	is	not	using	the	Oracle	Fast	Recovery
Area	and	not	using	a	recovery	catalog,	she	will	need	to	set	the	DBID	of	the	system
before	she	can	restore	the	control	file.	If	Elys	were	using	a	recovery	catalog	or	the
FRA,	then	setting	the	DBID	would	not	be	required.	To	start	the	restore,	Elys	begins
restoring	the	control	file	and	then	she	mounts	the	database:

NOTE

If	you	are	using	the	FRA,	you	will	not	need	to	set	the	database	DBID.

2.			The	control	file	that	Elys	restored	has	the	correct	default	persistent
parameters	already	configured	in	it,	so	all	she	needs	to	do	is	perform	the	restore	and

recovery:

Case	#3:	Recovering	from	Complete	Database	Loss
(ARCHIVELOG	Mode)	Without	a	Recovery	Catalog

The	Scenario
We	meet	Thom	from	Case	#1	again.	Thom’s	company	finally	has	decided	that	putting	the
database	in	ARCHIVELOG	mode	seems	like	a	good	idea.	(Thom’s	boss	thought	it	was	his
idea!)	Unfortunately	for	Thom,	due	to	budget	restrictions,	he	was	forced	to	use	the	space
that	was	allocated	to	the	recovery	catalog	to	store	archived	redo	logs.	Thus,	Thom	no
longer	has	a	recovery	catalog	at	his	disposal.

In	addition	to	space	for	the	archived	redo	logs	that	Thom’s	company	has	provided,	a
tape	backup	system	has	been	put	into	place.	Thom	has	configured	this	tape	backup
infrastructure	and	is	using	it	to	store	his	backups	on.	The	controlfile	autobackups	are
backed	up	to	tape	as	well.

The	Problem
As	if	things	have	not	been	hard	enough	on	Thom,	we	also	find	that	Unfortunate	Company
is	an	unfortunately	located	company.	The	server	room,	located	in	the	basement	of	the
company’s	headquarters,	suffered	the	fate	of	a	broken	water	main	nearby.	The	entire	room
was	flooded,	and	the	server	on	which	Thom’s	database	resides	has	been	completely
destroyed.

Thom’s	backup	strategy	has	improved.	It	now	includes	tape	backups	to	an	offsite	media
management	server.	Also,	he’s	sending	his	automated	control	file/SPFILE	backups	to	tape
rather	than	to	disk.	Again,	he’s	salvaged	a	smaller	server	from	the	wreckage,	which
already	has	Oracle	installed	on	the	system,	and	now	he	needs	to	get	the	database	back	up
and	running	immediately.

The	Solution
Again,	Thom	has	lost	the	current	control	file	and	the	online	redo	logs	for	his	database,	so
it’s	time	to	employ	the	point-in-time	recovery	skills.	Thom	still	has	control	file
autobackups	turned	on,	so	he	can	use	them	to	get	recovery	started.	In	addition,	he’s
restoring	to	a	new	server,	so	he	wants	to	be	aware	of	the	challenges	that	restoring	to	a	new
server	brings;	there	are	media	management,	file	system	layout,	and	memory	utilization
considerations.

Media	Management	Considerations			Because	he’s	restoring	files	to	a	new	server,	Thom
must	first	make	sure	that	the	MML	file	has	been	properly	set	up	for	use	on	his	emergency
server.	This	means	having	the	media	management	client	software	and	Oracle	Plug-In
installed	prior	to	using	RMAN	for	restore/recovery.

Next,	Thom	needs	to	configure	his	tape	channels	to	specify	the	client	name	of	the
server	that	has	been	destroyed.	Thom	will	need	to	specify	the	name	of	the	client	from
which	the	backups	were	taken.	In	addition,	he	needs	to	ensure	that	the	media	management
server	has	been	configured	to	allow	for	backups	to	be	restored	from	a	different	client	to	his
emergency	server.

File	System	Layout	Considerations			Thom’s	new	system	has	a	different	file	system
structure	from	his	original	server.	The	production	database	had	files	manually	striped	over
six	mount	points:	/u02,	/u03,	/u04,	/u05,	/u06,	and	/u07.	His	new	server	has	only	two
mount	points:	/u02	and	/u03.	Fortunately,	Thom	employed	directory	structure	standards
across	his	enterprise,	and	all	data	directories	are	/oradata/prod/	on	all	mount	points.	In
addition,	he	has	a	standard	that	always	puts	the	ORACLE_HOME	on	the	same	mount
point	and	directory	structure	on	every	server.

Memory	Utilization	Considerations			Thom’s	emergency	server	has	less	physical
memory	than	his	lost	production	server.	This	means	he	will	have	to	significantly	scale
back	the	memory	utilization	for	the	time	being	in	order	to	at	least	get	the	database	up	and
operational.

The	Solution	Revealed			Based	on	the	preceding	considerations,	Thom	devises	and
implements	the	following	recovery	plan:

1.			Determine	the	DBID	of	the	target	database.	Thom	can	do	this	by	looking	at
the	file	handle	for	his	control	file	autobackup.	He	needs	to	be	able	to	view	the
media	management	catalog	to	do	so.	Even	easier,	Thom	has	every	DBID	for	all	his
databases	stored	somewhere	in	a	log—a	notebook,	a	PDA,	whatever.	(Whatever
you	decide	to	use,	just	make	sure	it’s	accessible	in	an	emergency.)	If	Thom	were
using	the	FRA,	he	would	not	need	to	worry	about	the	DBID	of	the	target	database.

2.			Restore	a	copy	of	the	SPFILE.	To	start	this	process,	he	will	issue	the	startup
nomount	command	to	start	the	Oracle	instance.	Then	he	can	restore	the	correct
SPFILE	from	backup.	Because	Thom	changed	the	default	location	for	his	control
file/SPFILE	autobackups	to	tape,	he	needs	to	manually	configure	the	channel	for
this	backup	because	he	doesn’t	have	a	control	file	yet;	thus,	he	cannot	configure
channels	permanently.	Instead,	he	has	to	imbed	channel	allocation	commands	in	a
run	block,	and	then	issue	the	startup	command	to	start	the	database	with	the
correct	SPFILE.

NOTE

If	you	are	using	the	FRA,	you	will	not	need	to	set	the	database	DBID.	Also,	if
Thom	were	using	a	recovery	catalog,	this	step	and	Step	3	would	have	been	much
easier	to	do.

3.			Make	changes	to	the	SPFILE.	Thom	must	modify	his	SPFILE	to	take	into
account	the	new	server	configuration.	This	means	changing	memory	utilization
parameters	and	setting	filename	conversion	parameters.	He	must	connect	to	the
newly	started	instance	from	SQL*Plus	and	make	the	necessary	changes.

NOTE

You	could	also	choose	to	use	the	set	newname	option	here.

4.			Restore	a	copy	of	the	control	file.	Using	the	same	RMAN	session	as	the
preceding,	Thom	can	do	this	quite	simply	(he	has	already	set	the	DBID).	Then,
mount	the	database	using	the	restored	control	file.	Again,	if	Thom	had	used	the
FRA,	then	no	DBID	would	be	needed.

5.			Configure	permanent	channel	parameters.	Now	that	Thom	has	a	control	file
restored,	he	can	update	the	persistent	parameters	for	channel	allocation	to	include
the	name	of	the	lost	server	as	the	media	management	client.	This	serves	two
purposes:	it	allows	RMAN	to	access	the	backups	that	were	taken	from	the	lost
server,	and	RMAN	will	pass	this	client	name	to	the	media	management	server	when
any	backups	are	taken	from	the	new	server.	That	way,	when	the	lost	server	is
rebuilt,	any	backups	taken	from	this	stopgap	system	will	be	accessible	at	the	newly
reconstructed	production	server.

6.			Determine	the	last	archive	log	for	which	there	is	a	copy.	Because	Thom	lost
the	entire	server,	he	also	lost	any	archive	logs	that	had	not	yet	been	backed	up	by
RMAN.	So,	he	must	query	RMAN	to	determine	what	the	last	archive	log	is	for
which	a	backup	exists.

7.			With	the	last	log	sequence	number	in	hand,	Thom	performs	his	restore.	Note
that	because	the	until	sequence	recovers	up	to	but	not	including	the	listed	sequence
number,	Thom	will	add	1	to	the	log	sequence	number.	He	will	then	recover	and
open	the	database:

Case	#4:	Recovering	from	Complete	Database	Loss
(ARCHIVELOG	Mode)	with	a	Recovery	Catalog

The	Scenario
Charles	is	taking	over	for	Thom	because	management	recognized	that	Thom	was	a	hero	of
a	DBA	and	therefore	sent	him	and	his	wife	to	Hawaii	for	two	weeks	of	R	and	R.	Before
Thom	left,	his	company	added	more	disk	storage	and	decided	that	using	the	RMAN
recovery	catalog	was	probably	a	good	idea.

Unfortunately	for	Charles,	disaster	seems	to	follow	him	around.	At	his	last	company,	a

huge	electrical	fire	caused	all	sorts	of	mayhem,	and	this	time,	it’s	gophers.	Yes,	gophers.
Somewhere	outside	the	computer	room,	a	lone	gopher	ate	through	the	power	cable	leading
to	the	computer	room.	This	resulted	in	an	electrical	fire	and	a	halon	release	into	the
computer	room.	As	a	result	of	the	electrical	fire,	the	server	and	disks	on	which	his
database	resides	have	been	completely	destroyed…again.

The	Problem
Charles	reviews	Thom’s	backup	strategy.	Like	Thom,	Charles	has	salvaged	a	smaller
server	that	survived	the	fiasco,	which	already	has	Oracle	installed,	and	now	he	needs	to
get	the	database	back	up	and	running	immediately.	Fortunately,	the	recovery	catalog	server
is	intact,	so	Charles	can	use	it	during	the	recovery.

The	Solution
It	seems	that	Charles	has	lost	the	current	control	file	and	the	online	redo	logs	for	his
database,	so	it’s	time	to	employ	his	point-in-time	recovery	skills.	The	backup	strategy	still
has	control	file	autobackups	turned	on,	so	Charles	can	use	them	to	get	recovery	started.	In
addition,	he’s	restoring	to	a	new	server,	so	he	wants	to	be	aware	of	the	challenges	that
restoring	to	a	new	server	brings;	there	are	media	management,	file	system	layout,	and
memory	utilization	considerations.

Media	Management	Considerations			Because	Charles	is	restoring	files	to	a	new	server,
he	must	first	make	sure	that	the	MML	file	has	been	properly	set	up	for	use	on	his
emergency	server.	This	means	having	the	media	management	client	software	and	Oracle
Plug-In	installed	prior	to	using	RMAN	for	restore/recovery.	Charles	uses	sbttest	to	check
to	make	sure	the	media	manager	is	accessible.

Next,	Charles	needs	to	configure	his	tape	channels	to	specify	the	client	name	of	the
server	that	has	been	destroyed.	Charles	will	need	to	specify	the	name	of	the	client	from
which	the	backups	were	taken.	In	addition,	he	needs	to	ensure	that	the	media	management
server	has	been	configured	to	allow	for	backups	to	be	restored	from	a	different	client	to	his
emergency	server.

File	System	Layout	Considerations			On	Charles’s	new	system,	the	file	system	structure
is	different	from	that	on	his	original	server.	The	production	database	had	files	manually
striped	over	six	mount	points:	/u02,	/u03,	/u04,	/u05,	/u06,	and	/u07.	His	new	server	has
only	two	mount	points:	/u02	and	/u03.	Luckily,	directory	structure	standards	exist	across
his	enterprise,	and	all	data	directories	are	/oradata/prod/	on	all	mount	points.	In	addition,
he	has	a	standard	that	always	puts	the	ORACLE_HOME	on	the	same	mount	point	and
directory	structure	on	every	server.

Memory	Considerations			Charles’s	emergency	server	has	less	physical	memory	than	his
lost	production	server.	This	means	he	has	to	significantly	scale	back	the	memory
utilization	for	the	time	being	in	order	to	at	least	get	the	database	up	and	operational.

The	Solution	Revealed			Based	on	the	preceding	considerations,	Charles	devises	and
implements	the	following	recovery	plan:

1.			Get	a	copy	of	the	SPFILE	restored.	First,	Charles	will	nomount	the	database

instance	without	a	parameter	file,	since	Oracle	supports	this.	Then,	he	will	restore
the	correct	SPFILE	from	backup.	Because	he	doesn’t	have	a	control	file	yet,	he
cannot	configure	channels	permanently.	Instead,	he	has	to	embed	channel
allocation	commands	in	a	run	block,	and	then	issue	the	startup	command	to	start
the	database	with	the	correct	SPFILE.	Because	he	has	a	recovery	catalog,	he
doesn’t	need	to	set	the	machine	ID	as	he	did	earlier.

2.			Make	changes	to	the	SPFILE.	Charles	must	modify	his	SPFILE	to	take	into
account	the	new	server	configuration.	This	means	changing	memory	utilization
parameters	and	setting	filename	conversion	parameters.	He	must	connect	to	the
newly	started	instance	from	SQL*Plus	and	make	the	necessary	changes.

3.			Restore	a	copy	of	the	control	file.	Using	the	same	RMAN	session,	Charles
can	do	this	quite	simply	(he’s	already	set	the	DBID).	Then,	he	must	mount	the
database	using	the	restored	control	file.

4.			Configure	permanent	channel	parameters.	Now	that	Charles	has	a	control	file
restored,	he	can	update	the	persistent	parameters	for	channel	allocation	to	include
the	name	of	the	lost	server	as	the	media	management	client.	This	serves	two
purposes:	it	allows	RMAN	to	access	the	backups	that	were	taken	from	the	lost
server,	and	RMAN	will	pass	this	client	name	to	the	media	management	server	when
any	backups	are	taken	from	the	new	server.	That	way,	when	the	lost	server	is
rebuilt,	any	backups	taken	from	this	stopgap	system	will	be	accessible	at	the	newly
reconstructed	production	server.

5.			Determine	the	last	archive	log	for	which	there	is	a	copy.	Because	Charles	lost
the	entire	server,	he	also	lost	any	archive	logs	that	had	not	yet	been	backed	up	by
RMAN.	So,	he	must	query	RMAN	to	determine	what’s	the	last	archive	log	for
which	a	backup	exists:

6.			With	the	last	log	sequence	number	in	hand,	Charles	performs	his	restore	and
recovery.	Note	that	because	the	until	sequence	recovers	up	to	but	not	including	the
listed	sequence	number,	Charles	adds	1	to	the	sequence	number.	He	then	opens	the
database:

Case	#5:	Recovering	from	the	Loss	of	the	SYSTEM
Tablespace

The	Scenario
Nancy,	an	awesome	DBA,	is	in	charge	of	a	large	database	installation.	She	shut	down	her
database	so	the	system	administrators	of	her	Unix	system	could	do	some	file	system
maintenance.

The	Problem

Unfortunately,	during	the	maintenance	operation,	the	system	administrators	at	her
company	managed	to	drop	a	file	system	her	database	is	sitting	on.	They	have	since
restored	the	file	system,	but	none	of	the	files	from	her	database	are	on	it,	so	she	must
recover	them.	Nancy	lost	all	datafiles	from	the	following	tablespaces:	USERS,	SYSTEM,
and	INDEX.

The	Solution
Fortunately	for	Nancy,	this	is	not	a	complete	loss	of	her	system.	Her	online	redo	logs	and
control	file	are	all	intact.	Because	she	has	to	recover	the	SYSTEM	tablespace,	she	has	to
do	her	recovery	with	the	database	closed,	not	open.	Otherwise,	the	recovery	is	a	pretty
easy	one.

The	Solution	Revealed			Based	on	the	preceding	considerations,	the	recovery	plan	that
Nancy	devises	and	implements	simply	requires	her	to	restore	the	database,	as	follows:

Case	#6:	Recovering	Online	from	the	Loss	of	a	Datafile	or
Tablespace

The	Scenario
Yang	was	working	on	his	database	the	other	day	when	a	power	surge	caused	a	media
failure.

The	Problem
Unfortunately	for	Yang,	he	lost	one	file	system.	This	file	system	contained	the	following:

			All	the	datafiles	for	a	tablespace	called	WORKING_DATA

			One	datafile	for	a	tablespace	called	HISTORICAL_DATA

Several	other	tablespaces	in	this	database	are	not	related	to	the	tablespace	he	is
recovering,	so	Yang	needs	to	do	this	recovery	with	the	database	up	and	running.

The	Solution
Yang	will	restore	the	WORKING_DATA	tablespace	and	the	lone	datafile	missing	from	the
HISTORICAL_DATA	tablespace	via	RMAN.	He	first	will	take	offline	the	tablespace	and
datafile	so	that	others	may	continue	to	work.

The	Solution	Revealed			Based	on	the	preceding	considerations,	Yang	devises	and
implements	the	following	recovery	plan:

NOTE

In	Oracle	Database	12c	you	no	longer	have	to	proceed	SQL	statements	with
the	RMAN	sql	command.

1.			Take	offline	the	WORKING_DATA	tablespace:

2.			Take	offline	the	HISTORICAL_DATA	datafile	needed	to	recover	(Yang	has
already	queried	the	V$DATAFILE	view	to	determine	that	it	is	datafile	13):

3.			Restore	and	recover	the	tablespace	and	datafile	using	RMAN	and	then	bring
them	online:

NOTE

If	either	tablespace	contains	active	rollback	segments,	this	recovery	case	may
not	work.	In	the	event	of	the	loss	of	active	rollback	segment	tablespaces,	you	may
well	be	required	to	do	an	offline	recovery	of	that	tablespace	or	datafile.

Case	#7:	Recovering	from	Loss	of	an	Unarchived	Online
Redo	Log

The	Scenario
Today	is	not	Bill’s	day.	A	large	thunderstorm	is	raging	outside,	and	Bill	has	forgotten	that
his	car’s	soft	top	is	down.	To	make	Bill’s	day	worse,	a	strike	of	lightning	hits	the
datacenter	and	fries	several	disk	drives	that	Bill’s	database	calls	home.

The	Problem
Once	the	hardware	is	repaired,	Bill	is	horrified	to	find	that	he	has	lost	all	of	his	online	redo
logs,	in	addition	to	some	of	his	datafiles.	Fortunately,	his	control	file	is	intact.

The	Solution
Bill	needs	to	restore	his	database	by	using	incomplete	recovery.	Because	the	online	redo
logs	are	not	available,	Bill	has	to	accept	that	there	will	be	some	data	loss	as	a	result	of	the
recovery.

The	Solution	Revealed			Based	on	the	preceding	considerations,	Bill	devises	and
implements	the	following	recovery	plan:

1.			Determine	the	last	archive	log	for	which	there	is	a	copy.	Because	Bill	has	to
do	incomplete	recovery,	he	must	query	RMAN	to	determine	the	last	archive	log	for
which	a	backup	exists.

The	output	will	look	something	like	the	following—note	the	log	sequence
number	(log	sequence	number	3	in	bold	at	the	bottom	of	the	report).	Because	this	is
the	oldest	backed	up	archived	redo	log,	this	is	as	far	as	Bill	can	recover	to.

2.			With	the	last	log	sequence	number	in	hand,	perform	the	restore	and	recovery
and	open	the	database.	Bill	first	restores	the	database	using	the	until	sequence
parameter.	This	ensures	that	all	database	datafiles	will	be	restored	to	a	point	in	time

no	later	than	log	sequence	3.	Also	note	the	use	of	the	force	parameter,	which
ensures	that	all	datafiles	are	restored.	Recall	that	one	of	the	requirements	for	point-
in-time	recovery	is	that	all	database	datafiles	must	be	restored	to	the	same
consistent	point	in	time.	Thus,	it’s	important	to	restore	all	datafiles	to	at	least	a
point	in	time	prior	to	the	point	in	time	to	which	Bill	wants	to	recover.

3.			Recover	the	database	until	sequence	4	(because	the	until	sequence	recovers
up	to	but	not	including	the	listed	sequence	number,	Bill	added	one	number	to	the
last	sequence	number,	and	thus	gets	4):

4.			Open	the	database:

NOTE

If	Bill’s	database	had	been	shut	down	normally	(via	shutdown	normal,
immediate,	or	transactional)	before	the	online	redo	logs	were	lost,	he	may	well
have	been	able	to	open	the	database	without	needing	to	recover	it.

Case	#8:	Recovering	Through	resetlogs

The	Scenario
Bill	spent	all	night	doing	his	recovery	and	then	called	in	Tim	to	monitor	the	restore	and
finish	the	database	recovery.	Once	the	recovery	was	done,	Tim	was	supposed	to	back	up
the	database.	One	problem	is	that	the	business	requirement	demanded	that	the	database	be
open	and	available	during	the	backup.

Tim	came	in	and	finished	the	recovery.	Following	that,	he	opened	the	database	using
the	resetlogs	command	(as	previously	described	in	Case	#7).	Following	the	business
requirements,	Tim	began	the	backup,	but	allowed	users	access	to	the	database.

The	Problem
Unfortunately,	on	this	troubled	day,	a	power	surge	hit	Tim’s	system,	and	one	of	the	disk
drives	of	Tim’s	database	was	damaged.	After	another	hardware	repair,	Tim	finds	that
several	datafiles	were	lost.	To	make	matters	worse,	he	has	no	complete	backup	of	these
datafiles	since	he	issued	the	resetlogs	command.	Fortunately	for	Tim,	this	database	was
upgraded	about	three	months	ago.	So,	Tim	is	in	luck.	Since	Oracle	Database	10g,	Oracle
has	made	recovery	through	the	resetlogs	command	much	easier.

When	the	database	was	upgraded	to	Oracle	Database	11g,	the
LOG_ARCHIVE_FORMAT	parameter	was	changed.	The	DBA	added	the	new	%R
parameter	so	that	LOG_ARCHIVE_FORMAT	now	looks	like	this:

Now	the	LOG_ARCHIVE_FORMAT	parameter	includes	the	%R	placeholder,	which
means	the	resetlogs	ID	is	contained	in	the	archived	redo	logs’	filenames.	This	will	save
our	intrepid	DBAs	much	time	during	this	recovery!

The	Solution
Tim	is	going	to	use	RMAN	to	recover	the	database	through	resetlogs.	For	the	most	part,
this	is	a	recovery	that	is	easy	to	complete	since	Oracle	Database	10g.

The	Solution	Revealed			Based	on	the	preceding	considerations,	Tim	devises	and
implements	the	following	recovery	plan:

1.			Mount	the	database:

2.			Tim	knows	that	datafile	4	is	missing.	It	is	part	of	the	USERS	tablespace.	He
therefore	restores	datafile	4:

NOTE

Tim	didn’t	even	have	to	reset	the	incarnation	of	the	database!	This	is	new	since
Oracle	Database	10g	and	makes	cross-incarnation	recovery	so	much	easier.

3.			Having	restored	the	datafile,	Tim	now	recovers	it	and	then	opens	the
database:

NOTE

Did	it	occur	to	you	that	Tim	could	have	opened	the	database	by	just	taking	the
datafile	offline?	He	then	could	have	restored	the	datafile	and	brought	it	online
after	the	recovery.	Here	is	an	example	of	the	commands	he	would	have	used	to	do
an	online	recovery:

Case	#9:	Completing	a	Failed	Duplication	Manually

The	Scenario
Tim	decided	to	use	RMAN	duplication	to	create	a	clone	of	his	production	database	on	a
different	server.	He	ran	the	duplicate	command,	and	the	datafiles	were	successfully
restored	to	the	new	server.	The	database	is	very	large,	and	this	file	restore	process	took	six
hours	to	complete.

The	Problem
Tim	forgot	to	move	the	archive	logs	over	to	the	auxiliary	server	for	media	recovery,	so	the
duplication	failed.	This	means	that	the	cloned	database	is	not	fully	recovered	and	does	not
have	a	new	DBID.

The	Solution
Tim	isn’t	worried,	though,	and	he	certainly	isn’t	going	to	take	another	six	hours	to	perform
the	file	restore.	Tim	can	manually	perform	the	media	recovery	and	then	use	the
DBNEWID	utility	on	the	clone	database	to	create	a	new	DBID	and	finish	the	duplication
process	without	RMAN’s	assistance.

The	Solution	Revealed			Based	on	the	solution	he	decided	upon,	Tim	will	implement	the
following	action	plan	to	complete	his	failed	duplication:

1.			Move	the	archive	logs	from	the	production	to	the	auxiliary	site:

2.			Use	FTP	to	move	the	arch.tar	file	to	the	auxiliary	system,	and	then	enter	the
following:

3.			Perform	manual	recovery	on	the	database.	Tim	needs	to	note	the	sequence
number	of	the	last	archive	log	available	on	his	target	database	and	then	set	the
recovery	to	stop	at	that	sequence	number.	The	%s	variable	in	the
LOG_ARCHIVE_FORMAT	parameter	signifies	the	sequence	number	and	will	be
in	the	archive	log	name.	Tim	will	perform	manual	recovery	from	SQL*Plus,

connecting	locally	to	his	auxiliary	database	(at	the	auxiliary	site).

4.			Use	DBNEWID	(nid)	to	create	a	new	DBID	for	the	clone	database.	Tim’s
auxiliary	database	has	been	mounted,	but	it	has	not	yet	been	opened.	This	is	the
right	state	in	which	to	use	DBNEWID.	(If	you	are	unsure	of	the	database	state,	you
can	go	ahead	and	remount	it	without	doing	any	harm.)

Case	#10:	Using	RMAN	Duplication	to	Create	a	Historical
Subset	of	the	Target	Database

The	Scenario
Svetlana	is	a	DBA	at	an	online	toy-train	reseller.	Her	production	database	is	under	heavy
load,	with	constant	updates,	inserts,	and	deletes.	Over	time,	Svetlana	has	noticed	that
performance	is	starting	to	trail	off	for	data-mining	operations	against	certain	inventory-
tracking	tables.

The	Problem
She	suspects	foul	play	from	the	Cost-Based	Optimizer,	thinking	that	the	Explain	Plan
might	be	changing	in	an	adverse	way.	To	test	things,	she	is	looking	for	a	way	to	get	a
historical	snapshot	of	a	subset	of	production	tables.	She’s	considered	duplication	in	the
past,	but	doesn’t	have	enough	room	on	any	server	to	clone	the	entire	production	database.

The	Solution
Svetlana	can	use	the	Oracle	RMAN	feature	of	being	able	to	specify	tablespaces	to	skip
during	duplication.	In	this	way,	she	can	include	only	tablespaces	that	are	part	of	the	subset
that	she	needs	to	test.	In	addition	to	skipping	tablespaces,	she	can	specify	an	until	clause
in	the	duplication	command	itself	to	set	the	historical	point	in	time	that	she	would	like	to
test	against.

The	Solution	Revealed			Svetlana	will	be	duplicating	to	the	same	server	that	runs	her
target	database,	so	she	needs	to	make	sure	that	she	has	her	file-renaming	strategy	worked
out.	Then,	she	needs	to	get	an	auxiliary	database	started	in	NOMOUNT	mode.	After	that,
she	runs	her	duplication	code:

RMAN	would	then	generate	the	script	required	to	duplicate	the	database	as	requested
and	then	execute	that	script.	Remember	that	when	you	set	an	until	sequence	clause	in
RMAN,	the	sequence	you	specify	is	not	included	as	part	of	the	recover	set.	So,	in
Svetlana’s	code,	she	has	archive	logs	through	sequence	10,	but	not	sequence	11.

Case	#11:	Recovering	from	a	Lost	Datafile	(ARCHIVELOG
Mode)	Using	an	Image	Copy	in	the	Fast	Recovery	Area

The	Scenario
Tim,	a	senior	DBA	for	a	large	manufacturing	firm,	has	long	lived	by	the	maxim	“Just
because	you	are	paranoid	doesn’t	mean	they	aren’t	out	to	get	you.”	In	this	vein,	he	has
fought	hard	up	the	management	chain	to	garner	the	resources	to	keep	a	full	database
backup	on	disk	instead	of	streaming	directly	to	tape.	There	is	not	enough	room	for	every
datafile	backup	on	disk,	so	he	has	chosen	those	datafiles	that	represent	the	data	that	is
most	important	to	operations	and	that	would	be	the	most	impacted	by	a	prolonged	outage.

After	the	database	was	migrated,	Tim	set	up	his	Fast	Recovery	Area	and	created	an
image	copy	of	his	most	important	files	in	the	FRA.	He	now	takes	a	nightly	incremental
backup	and	applies	the	incremental	to	the	image	copy	of	those	files.

The	Problem
Disaster	strikes,	as	it	invariably	does,	near	the	end	of	month,	when	massive	data
processing	is	taking	place.	Tim’s	cell	phone	starts	chirping	with	alert	text	messages	only
moments	before	a	deluge	of	angry	department	heads	start	calling	him.	Tim	turns	off	his
phone	and	checks	the	database.	He	finds	that	one	of	the	critical	tablespaces	has	a	corrupt
datafile,	file	number	5.	The	file	shows	up	on	disk	as	0	bytes.	The	end-of-month	processing
cannot	continue	until	the	file	is	recovered.

The	Solution
Tim	will	switch	to	the	datafile	running	in	the	FRA,	which	is	current	as	of	the	level	1
incremental	backup	the	night	before.	Then	it’s	just	a	matter	of	applying	archive	logs	to	the
file	to	bring	it	up	to	the	current	point	in	time.

The	Solution	Revealed			Tim’s	preparation	means	his	outage	will	be	significantly
minimized.	Here	is	his	action	plan:

1.			Switch	datafile	5	to	the	copy	in	the	FRA:

2.			Recover	datafile	5:

3.			Bring	datafile	5	online:

Case	#12:	Recovering	from	Running	the	Production	Datafile
Out	of	the	Fast	Recovery	Area

The	Scenario
Tim	used	his	FRA	setup	to	significantly	minimize	the	outage	due	to	a	corrupted	datafile	5.
However,	now	he	is	running	a	production	datafile	out	of	the	FRA,	the	bad	disk	has	been
replaced,	and	it	is	time	to	get	the	datafile	properly	restored	to	its	normal	location.

The	Problem
Using	the	datafile	switch	methodology	to	decrease	MTTR	is,	of	course,	a	very	good	thing.
But	it	means	that	the	production	database	is	running	live	with	a	datafile	that	is	in	the	Fast
Recovery	Area.	This	can	hold	for	a	short	period,	but	ultimately	the	file	has	to	be	switched
back	to	the	correct	standard	location.

The	Solution
Tim	needs	to	make	a	new	backup	of	datafile	5,	restore	it	to	the	original	file	location,	and
then	take	a	temporary	outage	while	he	switches	back	to	this	datafile	and	recovers	it.

For	Tim	to	restore	the	production	datafile	to	the	production	environment,	he	has	to	plan
a	temporary	outage.	One	of	the	trade-offs	of	a	quick	recovery	time	is	this	preplanned
temporary	outage.	However,	Tim	can	plan	for	it	to	occur	deep	in	the	night,	when	few	users
will	be	affected,	and	can	absolutely	minimize	the	amount	of	time	the	outage	requires.

The	Solution	Revealed			Tim	will	use	the	following	action	plan:

1.			Take	a	new	image	copy	backup	of	datafile	5.	(Alternatively,	Tim	could	use	a
previous	backup	of	datafile	5	from	tape,	but	Tim	felt	that	taking	a	new	backup	of
the	file	and	restoring	it	from	disk	would	actually	be	faster	than	trying	to	get	the	tape

loaded	and	restored.)

2.			Restore	datafile	5	to	the	original	file	location.	In	the	code	displayed
previously,	the	file	was	backed	up	directly	to	the	original	location,	so	the	restore	is
not	required.

3.			Switch	datafile	5	to	the	copy	in	the	original	location:

4.			Recover	datafile	5	and	bring	the	file	online:

Case	#13:	Using	Flashback	Database	and	Media	Recovery
to	Pinpoint	the	Exact	Moment	to	Open	the	Database	with
resetlogs

The	Scenario
Farouk	did	not	notice	the	problem	for	all	of	Monday	and	part	of	Tuesday	morning,
because	it	was	not	brought	to	his	attention.	Finally,	Tuesday	morning,	one	of	the	managers
for	the	woodscrew	department	called	him	to	say	that	the	Woodscrew	database	was	missing
records	for	some	of	the	most	popular	woodscrew	models.	Farouk	checked	the	database
and,	sure	enough,	found	that	someone	had	deleted	rows	from	a	primary	table.

The	Problem
Finding	out	who	did	it,	and	why,	would	have	to	wait.	First,	it	was	time	to	act.	The	manager
said	he	had	noticed	the	problem	around	lunchtime	on	Monday.	Farouk	checked	his
Flashback	Query	option,	but	found	that	the	transaction	was	already	older	than	his	undo
segments.	He	checked	his	Flashback	Database	option	and	found	that	he	could	still	flash
back	nearly	48	hours.

The	Solution
Farouk	will	use	Flashback	Database	to	do	a	point-in-time	recovery	of	his	entire	database.
There	is	no	other	option	at	this	time.	However,	Farouk	does	not	know	the	exact	moment	of
failure,	so	he	needs	to	be	able	to	move	back	and	forth	in	time	to	pinpoint	the	very	last
transaction	before	the	failure.	He	will	use	Flashback	Database	and	archive	log	recovery	to
scroll	back	and	forth	until	he	finds	the	correct	moment	to	open	the	database.	He	will	open
the	database	in	READ	ONLY	mode	to	check	the	table.

The	Solution	Revealed			Farouk	devises	the	following	plan:

1.			He	flashes	back	the	database	to	the	approximated	first	point	of	the	failure:

2.			He	selects	from	the	affected	table	to	see	if	the	values	are	in	place:

3.			Farouk	finds	the	values	are	not	there,	so	he	flashes	back	again:

4.			He	checks	the	values	again:

5.			The	values	are	there,	but	are	missing	a	few	rows	that	can	be	gained.	So
Farouk	can	shut	down	the	database	again	and	recover	a	bit	further.

6.			The	values	are	the	best	they	can	be,	under	the	circumstances.	Farouk	opens
the	database	in	read/write	mode:

Summary
We	hope	you	found	these	case	studies	helpful.	We	have	done	our	best	to	provide	you	with
a	number	of	different	circumstances	that	might	come	your	way	and	solutions	you	can
practice	on	a	test	system	so	that	you	will	be	ready	to	implement	them	in	real	life,	should
the	occasion	arise.

PART
V

RMAN	Media	Management

CHAPTER
21

Media	Management	Considerations

T
he	RMAN	utility	in	Oracle	Database	12c	focuses	on	the	best	way	to	leverage	disk	backups
as	the	media	recovery	solution.	With	the	price	of	disks	falling,	massive	storage
area	networks	(SANs)	have	found	a	permanent	place	in	many	datacenters.	With
the	business	evolving	toward	cheaper	and	larger	disks,	upgrades	in	RMAN
functionality	(such	as	the	Fast	Recovery	Area)	were	implemented	to	make	best

use	of	the	available	storage	space.

It’s	a	logical	progression	for	the	RMAN	backup	utility,	and,	of	course,	writing	to	disk	is
something	that	the	Oracle	Database	is	extremely	good	at.	Therefore,	any	time	it	gets	to
leverage	its	disk-writing	muscle,	the	RDBMS	will	do	so	for	performance	improvements.

But,	for	many	customers,	the	world	of	unlimited	disk	storage	has	not	arrived.	For	many,
the	size	of	the	database,	or	its	location,	keeps	it	from	being	backed	up	to	disk.	Or,	there
still	may	be	a	business	requirement	to	make	a	copy	of	the	data	and	archive	it	offsite.	So
what	does	RMAN	do	if	it	needs	to	write	to	good,	old-fashioned	tape?

Tape	backups	of	the	Oracle	database	require	third-party	assistance.	This	is	primarily
due	to	the	disparate	nature	of	the	different	sequential	media	subsystems	that	are	on	the
market	and	that	are	used	every	day.	Instead	of	trying	to	employ	different	system	calls	for
each	different	type	of	tape	device,	RMAN’s	development	team	decided	to	employ	those
software	vendors	that	already	earn	a	living	by	selling	products	that	can	read	and	write
from	tape.

Oracle	has	its	own	media	management	software	solution,	Oracle	Secure	Backup
(OSB).	OSB	is	a	fully	integrated	RMAN-to-tape	solution	that	does	not	require	any	third-
party	vendor	software	plug-in,	and	OSB	has	come	a	long	way	since	its	introduction	in
10gR2.	However,	many	customers	will	continue	to	purchase	a	license	from	any	of	the
number	of	certified	backup	providers	that	have	an	Oracle	RMAN	plug-in	(more	on	this	in
a	minute).

This	chapter	covers	the	conceptual	architecture	of	employing	a	media	manager	to	back
up	your	database	directly	to	disk.	It	does	so	from	a	generic	standpoint,	by	staying	focused
on	the	RMAN	side	of	the	equation	and	speaking	in	sweeping	generalizations	about	the
media	management	products	themselves.	We	will	talk	about	the	setup	from	the	RMAN
side,	how	it	all	works,	and	what	changes	when	you	use	tape	for	your	output	device.
Several	chapters	in	this	book	go	into	detail	about	many	of	the	most	popular	media
management	products	on	the	market	and	talk	about	configuring	and	using	them
specifically.

In	Oracle	Database	12c,	you	can	utilize	OSB	to	provide	free	backup-to-tape
functionality,	provided	that	you	have	a	single	tape	head	and	it	is	attached	directly	to	the
server	that	contains	the	Oracle	database	that	you	want	to	back	up.	In	other	words,	you	will
pay	for	centralized	tape	farms.	To	get	additional	backup-to-tape	functionality,	you	will
have	to	purchase	the	full	version	of	OSB	or	buy	a	product	from	a	media	management
vendor.

Tape	Backups	in	a	Disk	Backup	World

In	the	world	of	Oracle	databases,	size	does	matter.	In	fact,	less	than	a	decade	ago,	a
database	of	a	few	gigabytes	was	considered	very	large.	Now,	databases	range	upward	into
the	terabytes,	the	first	petabyte	database	has	been	reported,	and	the	average	database	is
100GB	and	growing.	So	when	it	comes	to	backups,	trying	to	find	enough	contiguous
space	on	disk	to	get	the	thing	backed	up	can	be	difficult,	even	with	the	massive	number	of
SANs	being	deployed	in	the	enterprise.

Therefore,	the	first	reason	for	considering	tape	backups	is	the	size	of	the	database.	The
size	of	a	database	determines	whether	you	need	to	back	up	to	tape:	buying	more	hard
drives	can	get	pricey.	But	even	with	disk	prices	dropping	radically,	tapes	are	still	cheaper
and	reliable,	considering	their	purpose	is	to	hold	copies	of	data—copies	that	likely	will
rarely	get	used.	Of	course,	sometimes	disk	backups	become	a	critical	piece	of	a	strategy
that	stresses	quick	recovery,	and	using	tape	backups	is	much	slower	than	using	disks	on
both	the	backup	and	the	restore.	The	price	point	of	a	tape,	compared	with	disks,	remains	a
compelling	reason	for	tape	backups.

The	second	reason	to	use	tape	backups	is	manageability.	Typically,	enterprise-wide
backup	strategies	are	implemented	and	executed	by	one	person	on	a	centralized	system.
And	this	allows	your	company	to	invest	in	large	tape	storage	jukeboxes	that	can	stream
data	from	multiple	sources.	Then,	the	data	backups	can	be	catalogued	and	removed
without	having	someone	trek	all	over	the	enterprise	distributing	tapes,	troubleshooting
individual	tape	devices,	or	training	users	on	new	software	rollouts.

A	third	and	frequently	disregarded	reason	for	tape	backups	is	their	portability.	A	pile	of
tapes	can	easily	be	moved	offsite	for	archiving	and	disaster-proofing.	Hard	drives	just
don’t	transport	that	well.

The	drawback	to	pooling	backup	resources	is	that	it	leads	to	complications,	especially
in	regard	to	Oracle	databases.	The	complexity	of	Oracle	datafiles,	log	files,	and	control
files	means	that	we	cannot	simply	let	an	OS	job	step	in	and	copy	the	files	at	its	leisure.
Instead,	we	have	to	prepare	the	database	for	the	backup	job,	signal	the	copy	to	begin,	and
afterward	reconfigure	the	database—or,	so	it	was	in	the	old-school	world	(refer	to	Chapter
2).

Using	RMAN	means	that	this	kind	of	database	configuration	is	eliminated	and	that
backups	can	occur	anytime,	under	any	circumstance.	However,	to	get	the	backups	to
stream	to	your	centralized	tape	backup	location,	you	have	to	do	some	RMAN-specific
configuration.

RMAN	and	the	Media	Manager:	An	Overview
RMAN	streams	backups	to	tape	by	engaging	a	media	manager.	A	media	manager	is
software	provided	by	a	third-party	vendor	that	takes	the	data	stream	of	blocks	passed	from
the	RMAN	channel	process	and	redirects	it	to	the	appropriate	tape.	Most	often,	a	media
management	server	exists	in	an	enterprise	network.	A	media	management	server	is	a
centralized	system	that	handles	all	enterprise-wide	backup	operations	to	tape	devices	that
it	manages.

To	engage	a	media	manager,	a	computer	system	must	have	the	corresponding	media

management	client	software	installed	on	it.	This	is	the	software	that	makes	the	connection
to	the	media	management	server	and	passes	the	data	to	it	over	the	network.	For	RMAN	to
engage	the	media	management	server,	an	additional	software	component	is	needed.	After
you	install	the	client	software,	you	must	also	install	the	Oracle	module	for	the	media
manager.	The	Oracle	module	is	a	software	plug-in	for	the	Oracle	RDBMS	that	connects
RMAN	to	the	client	media	management	software,	which	can	then	make	the	pass	to	the
media	management	server.	This	plug-in	for	Oracle	is	referred	to	as	the	Media
Management	Library	(MML).	Figure	21-1	shows	a	generalized	overview	of	the	backup
topology	when	a	media	manager	is	used	to	back	up	to	tape.

FIGURE	21-1.			Network	topology	when	backing	up	to	tape

The	Media	Manager	Catalog
The	media	manager	is	a	separate	subsystem	in	the	overall	backup	system	you	will	use.	It
has	three	essential	components,	as	previously	described:	the	Media	Management	Library
that	integrates	with	Oracle,	the	media	management	client,	and	the	media	management
server.	The	media	management	server	has	multiple	components,	the	specifics	of	which
depend	upon	the	vendor.	But	all	media	management	servers	must	have	a	few	similar
components,	the	most	important	of	which	(from	the	perspective	of	this	chapter)	is	the
media	manager	catalog.

The	media	manager	catalog	is	the	database	at	the	media	management	server	that	holds
information	about	the	physical	tapes,	who	has	access	to	those	tapes,	and	what	is	being
stored	on	those	tapes.	This	catalog	records	the	RMAN	file	handle	when	a	backup	is
complete.	The	handle	refers	to	the	name	of	the	backup	piece	that	gets	created	when	you
perform	a	backup	with	RMAN.	When	you	back	up	to	disk,	the	handle	is	the	physical
filename.	When	you	back	up	to	tape,	the	handle	is	used	in	the	media	manager	catalog	to

refer	to	the	location	on	tape	where	the	backups	can	be	located.

RMAN	completes	a	backup	to	tape	by	providing	the	handle	name	to	the	media
manager,	which	records	that	handle	in	the	catalog.	When	a	restore	is	required,	RMAN
requests	a	specific	handle	(based	on	its	own	catalog)	from	the	media	manager.	The	media
manager	looks	for	that	handle,	associates	it	with	a	specific	tape,	and	determines	if	that	tape
is	available.	If	the	tape	is	available,	the	media	manager	engages	the	tape	and	begins	to
stream	the	data	back	to	RMAN	so	that	you	can	rebuild	the	datafiles.

The	Media	Manager:	Other	Software	Components
In	addition	to	the	catalog,	the	media	management	server	comprises	two	essential	pieces:

			Device	agent			The	component	responsible	for	engaging	the	actual	tape	device
and	passing	data	to	and	from	it.

			Robotic	interface			The	software	that	controls	any	robotics	that	are
responsible	for	changing	tapes	when	they	are	full	or	for	retrieving	a	tape	that	has
been	filled.

From	the	Oracle	perspective,	RMAN	is	blind	to	these	components.	RMAN	simply
sends	a	command	request	to	its	MML,	and	the	media	management	software	handles	the
coordination	of	all	events	after	that.	However,	it	is	important	to	be	familiar	with	these
software	components	because	your	backup	and	recovery	success	depends	on	them.	Many
problems	that	come	from	using	RMAN	are	related	to	the	device	agent	or	the	robotic
interface,	but	from	the	RMAN	interface	these	problems	are	nearly	impossible	to	discern.

Media	Management	Library
The	MML	is	simply	a	library	file	that	interprets	generic	requests	from	RMAN	for	a
particular	backup	or	restore	operation,	and	translates	that	request	into	the	specific	system
call	necessary	at	the	media	management	server	to	turn	that	request	into	reality.	The	MML
is	provided	by	the	same	vendor	that	supplies	the	media	management	client	and	server
software,	but	you	purchase	and	license	the	MML	separately	from	the	client	and	server
software.

The	MML	is	loaded	into	the	Oracle	memory	space	as	an	integrated	library	file	when	a
tape	channel	is	first	allocated;	it	is	logically	part	of	the	Oracle	RDBMS	software	so	that
RMAN	can	make	the	correct	calls	to	the	media	management	client	software.	The
integration	is	simple:	When	a	channel	to	tape	is	allocated,	Oracle	loads	a	file	called
libobk.so.	This	file,	located	in	the	ORACLE_HOME/lib	directory,	is	just	a	symbolic	link
to	whichever	MML	file	you	will	be	using.	On	the	Windows	platform,	Oracle	looks	for	a
file	called	orasbt.dll	in	the	searchable	path.	Regardless	of	which	media	management
provider	you	use,	its	media	management	DLL	will	be	named	orasbt.dll,	and	media
management	providers	usually	write	it	to	the	WINDOWS\system32	directory.	If	your
media	management	provider	does	not	do	this,	it	will	append	to	the	system	path
environment	variable	a	searchable	path	that	leads	to	orasbt.dll.

In	the	next	several	chapters,	we	discuss	the	linking	process	by	which	you	can	establish
your	vendor’s	MML	file	as	the	one	RMAN	initiates	when	a	channel	is	allocated.	For

testing	purposes,	Oracle	provides	a	test	MML	file.	This	library	file	allows	you	to	allocate	a
channel	to	tape	but	then	to	write	the	backup	to	disk.	In	the	following	RMAN	Workshop,
we	show	you	how	to	use	this	test	MML.

RMAN	Workshop:	Test	Tape	Channels	with	the	Oracle
Default	SBT	Interface
Workshop	Notes
You	need	access	to	a	sufficient	amount	of	disk	space,	and	you	need	to	create	a
directory	in	which	to	place	the	backup	piece.	In	our	example,	we	use	the	mount
point	u04,	on	which	we	created	a	directory	called	backup.	Make	sure	you	have
sufficient	memory	available	for	the	backup,	as	outlined	in	Chapter	3,	and	be	aware
of	the	disk	I/O	that	goes	to	the	backup	location.	Try	to	allocate	space	on	a	controller
other	than	those	that	house	your	actual	database.

Step	1.			Build	your	backup	directory:

Step	2.			Make	sure	permissions	are	established	so	that	the	Oracle	Database,	which
operates	as	the	user	that	installed	the	software,	can	write	to	this	location:

Step	3.			Initiate	RMAN	and	connect	to	the	target.	In	the	following	example,	we	are
connecting	locally	to	the	target	PROD.	This	means	that	if	you	check	the
environment	on	a	Linux	system,	the	environment	variable	ORACLE_SID	would
point	to	PROD.

Step	4.			Run	your	backup	by	using	the	PARMS	parameter	during	channel	allocation
to	specify	the	Oracle	test	library	file.	You	also	need	to	specify	a	BACKUP_DIR
directory,	which	is	the	location	that	RMAN	will	write	the	backup	to.	Here,	we
specify	this	as	/u04/backup:

Alternatively,	you	can	use	a	permanent	configuration	command	to	set	the	Oracle
library	(but	remember	that	you’ve	done	it,	and	don’t	leave	it	lying	around	for	too
long):

This	is	a	great	test	if	you	are	trying	to	troubleshoot	possible	problems	with	your	media
manager	backup	solution	and	cannot	get	the	backups	to	work.	By	allocating	a	“fake”	tape
channel,	you	can	see	that	RMAN	is	configured	correctly.

CAUTION

Do	not	use	the	test	MML	file	for	production	backups.	If	you	will	be	backing	up
to	disk	in	a	production	environment,	allocate	a	disk	channel.	The	performance	of
the	fake	MML	is	terrible	because	RMAN	is	allocating	memory	buffers	for	tape,
not	disk,	and	therefore	is	not	taking	advantage	of	the	speed	of	disk	writes	versus
tape	writes.

If	you	have	not	successfully	loaded	your	vendor’s	MML	file	and	you	do	not	specify	in
the	PARMS	section	of	the	channel	allocation	that	you	want	to	use	Oracle’s	disk	SBT
interface,	you	will	receive	an	error	when	you	try	to	allocate	a	channel	to	tape:

Interfacing	with	the	MML
When	you	are	linking	Oracle	and	the	MML,	you	are	establishing	the	means	by	which
RMAN	can	pass	a	command	that	engages	the	MML	and,	by	extension,	the	media
management	client	software	installed	on	the	database	server.	But	how	do	you	know	which
media	management	server	to	engage?

To	specify	the	media	management	server,	you	must	pass	an	environment	variable
within	the	RMAN	session	to	specify	the	server	name.	We	specify	the	server	name	as	an
environment	variable	when	we	allocate	our	tape	channel.	As	you	saw	in	the	previous
RMAN	Workshop,	you	pass	the	environment	variable	by	using	the	PARMS	option	of	the
allocate	channel	command.	Different	media	management	products	have	different
environment	variables	that	they	accept.	VERITAS	NetBackup,	for	example,	requires	the
parameter	NB_ORA_SERV:

In	the	preceding	example,	the	name	of	the	media	management	server	is	storage1,	and
our	database	server	has	already	been	registered	in	this	server	and	has	permission	to	write
to	its	tape	devices.

In	addition	to	passing	the	name	of	the	server,	we	can	pass	numerous	other	parameters	at
the	time	of	the	channel	allocation	to	take	advantage	of	management	functions	at	the	server.
For	instance,	NetBackup	offers	the	ability	to	specify	the	class	or	the	schedule	to	use	for
this	backup,	whereas	EMC	Networker	allows	you	to	specify	the	resource	pool.

The	SBT	API
RMAN	can	engage	different	media	managers	with	impunity	because	it	sends	the	same
marching	orders	no	matter	what	MML	has	been	loaded.	Oracle	developed	RMAN	with	a
generic	API	called	the	SBT	API,	which	is	provided	to	third-party	vendors	that	wish	to
write	integration	products	for	Oracle	database	backups.	This	API	is	the	means	by	which
RMAN	sends	commands	to	the	media	manager.

The	SBT	API	is	responsible	for	sending	the	commands	to	the	media	management
server	to	initiate	the	creation	of	backup	files	on	tape.	It	also	sends	commands	to	search	for
previous	backups	based	on	the	file	handle	in	the	media	manager	catalog.	It	can	send
commands	to	remove	these	backups,	as	well	as	write	new	backups	and,	of	course,	read
from	the	backup	location.	There	are	two	versions	of	the	Oracle	RMAN	SBT	API:	1.1	and
2.0.	Version	1.1	was	published	and	used	with	Oracle	8.0.x,	and	that’s	it.	Since	then,
RMAN	has	made	calls	to	the	media	manager	by	using	the	specifications	of	version	2.0.
You	can	see	this	version	in	RMAN’s	output	when	you	run	a	backup:

RMAN	also	returns	the	version	of	the	MML	that	it	initializes	at	channel	allocation
time.	This	is	seen	during	channel	allocation	in	the	RMAN	output:

Not	only	is	this	a	good	way	to	determine	your	MML	version,	but	it	also	means	that	you
have	successfully	linked	in	your	MML	with	RMAN—otherwise,	it	would	not	be	able	to
extract	the	version	information.

Back	Up	to	Tape:	From	Start	to	Finish
In	this	section,	we	do	a	walkthrough	of	a	backup	to	tape	and	show	the	different	calls	made
to	the	SBT	API	and	how	they	are	handled	by	the	media	manager.	Again,	please	note	that
we	are	giving	you	a	very	generic	overview,	and	the	specifics	are	handled	by	the	vendor
that	writes	the	integration	MML.

When	you	allocate	a	tape	channel,	RMAN	spawns	a	server	process	at	your	target
database.	This	server	process	then	makes	a	call	to	the	SBT	API	of	sbtinit().	This	call

initializes	the	MML	file	and	loads	it	into	memory.	It	also	returns	to	RMAN	the	version	of
SBT	API	supported	by	that	MML.	After	calling	sbtinit(),	RMAN	calls	sbtinit2(),	which
supplies	further	configuration	details	to	the	media	manager	software.

After	RMAN	has	parsed	your	backup	command,	it	executes	the	RPC	that	makes	the
call	to	sys.dbms_backup_restore.backuppiececreate.	At	this	time,	the	channel	process	calls
sbtbackup(),	which	handles	the	creation	of	the	backup	piece	at	the	specified	tape	location.
This	call	informs	the	media	manager	that	Oracle	will	begin	pushing	the	flow	of	data
blocks	to	it,	so	it	should	prepare	the	tape	device	for	the	onslaught.

The	RMAN	input	buffers	fill	up	and	make	the	memory-to-memory	write	to	the	output
buffer.	When	the	output	buffer	fills,	the	channel	process	calls	sbtwrite2(),	which	performs
the	write	of	filled	output	buffers	to	the	tape	location	(for	more	on	input	buffers,	see
Chapter	3).	Typically,	this	means	engaging	the	device	agent	at	the	media	management
server	in	order	to	access	the	tape	itself.

When	all	the	output	buffers	for	a	particular	backup	set	have	been	cleared	out	and	there
is	no	more	work	for	sbtwrite2(),	the	channel	session	calls	sbtclose2().	This	flushes	out	any
media	manager	buffers	and	commits	the	backup	piece	to	tape.

After	we	complete	the	backup	piece,	the	channel	process	invokes	sbtinfo2()	to	make
sure	the	media	manager	catalog	has	documented	the	backup	piece.	It	requests	the	tape,	the
tape	location,	and	the	expiration	time	of	the	backup	from	the	catalog.	Then,	it	writes	the
backup	piece	handle	to	the	catalog.

After	confirming	the	backup	piece	location,	the	channel	process	calls	sbtend(),	which
cleans	up	any	remaining	resources	and	releases	them	for	other	database	use.	The	final
action	performed	is	the	deallocation	of	the	channel	process,	which	is	terminated	at	the
target	database.

Restore	from	Tape:	From	Start	to	Finish
Of	course,	sooner	or	later,	all	that	backing	up	you’ve	been	doing	will	get	put	to	the	test,
and	you	will	need	to	perform	a	restore.	As	with	a	backup,	the	SBT	API	has	a	specific
series	of	steps	that	it	goes	through	during	a	restore	operation	in	order	to	get	the	backups	on
tape	back	into	place	for	your	database.	In	this	section,	we	briefly	run	through	the	SBT	API
during	a	restore	operation.

When	you	allocate	the	tape	channel	for	restore,	RMAN	creates	a	server	process	at	the
target	database.	This	channel	then	calls	sbtinit()	to	initialize	the	media	manager	software.
This	is	identical	to	the	initialization	that	would	take	place	for	a	backup:	the	MML	file	is
loaded	into	memory.

Based	on	the	parameters	of	our	restore	command	in	RMAN,	RMAN	will	have	checked
its	catalog	to	determine	the	handle	name	of	the	backup	required	for	the	restore.	It	then
takes	this	requested	backup	piece	handle	and	passes	it	to	the	media	manager	by	using
sbtrestore().	The	sbtrestore()	function	instructs	the	media	manager	to	prepare	the
appropriate	tape	for	a	restore	operation.	This	means	engaging	the	media	manager	catalog
and	finding	the	appropriate	tape,	and	then	(if	necessary)	passing	the	command	to	the

robotic	instruction	set	to	get	the	tape.	After	the	tape	is	loaded,	it	will	need	to	be	rewound
to	the	backup	piece	starting	point.

After	preparing	the	tape	for	the	restore,	the	channel	process	calls	the	sbtread2()
function	to	read	the	data	from	the	tape	device	and	stream	it	to	the	Oracle	process.	This
data	is	loaded	into	the	input	buffers,	written	to	the	output	buffers,	and	finally	written	to	the
datafile	locations	as	specified	by	the	control	file.

When	the	end	of	a	backup	piece	is	detected	on	tape,	the	tape	channel	process	calls	the
sbtclose()	function	to	disengage	the	particular	tape	that	had	that	piece	on	it.	This	signals
that	Oracle	is	done	with	the	tape.	If	there	are	more	backup	pieces	that	need	to	be	read	for
the	restore	operation,	then	the	channel	process	returns	to	the	second	step	and	calls
sbtrestore()	for	a	different	backup	piece.

After	the	restore	is	complete	and	RMAN	requests	no	more	backup	pieces,	the	channel
process	calls	the	sbtend()	function,	which	cleans	up	the	channel	resources	and	releases
them	for	other	use.	Then	the	channel	process	is	terminated,	after	which	the	media	manager
is	free	to	unload	any	tapes	that	had	been	requested.

Using	sbttest	and	loadsbt.exe
As	we	mentioned	previously,	there	are	always	indications	as	to	whether	you	have
successfully	linked	your	MML	with	Oracle.	The	information	from	the	channel	allocation
shows	the	MML	version,	for	instance.	However,	these	sorts	of	indicators	do	not	guarantee
success,	because	a	failure	may	occur	further	down	the	topology:	at	the	media	management
client	level	or	at	the	media	management	server.	Oracle	provides	a	utility	called	sbttest	that
can	test	to	make	sure	that	RMAN	will	be	able	to	perform	backups	to	tape	by	using	your
media	management	configuration.	This	utility	is	called	from	a	command	line	and	performs
a	complete	test:	it	writes	a	block	to	tape	and	then	requests	a	read	of	that	block.	In	this	way,
it	runs	through	the	entire	gamut	of	SBT	API	functions	that	would	occur	during	backup	and
makes	sure	they	will	all	be	successful.

Using	sbttest	is	simple.	After	making	sure	that	you	have	completed	the	full
configuration	of	your	media	management	configuration,	go	to	the	command	prompt
within	the	environment	from	which	you	will	run	RMAN	and	type	sbttest	and	a	test
filename.	The	following	code	walks	you	through	each	of	the	sbt()	calls	previously	listed	in
the	“Restore	from	Tape:	From	Start	to	Finish”	section	and	provides	output	on	whether
each	call	succeeded:

The	sbttest	utility	has	matured	impressively	since	its	inception	as	a	simple	binary
indicator	of	success	or	failure.	Now,	a	number	of	parameters	can	be	passed	to	tweak	the
exact	test	you	would	like	to	take	your	media	management	system	through.	This	includes
naming	the	database	you	want	to	test,	changing	the	number	of	blocks	that	are	written	by
sbttest,	and	specifying	how	to	further	handle	the	file	that	sbttest	writes	to	tape.	Simply
typing	sbttest	at	the	command	prompt	will	give	you	all	the	switches	you	can	use,	along
with	simple	text	descriptions.

The	sbttest	utility	is	only	available	for	Unix	platforms;	on	Windows,	you	can	request
the	utility	loadsbt.exe	from	Oracle	Support.	Unfortunately,	this	utility	does	not	have	the
same	capabilities	as	sbttest	and	instead	simply	checks	the	searchable	path	for	a	file	called
orasbt.dll.	If	it	finds	this	file,	it	will	try	to	load	it	the	same	way	that	Oracle	will	during	a
tape	backup.	It	will	tell	you	if	it	can	be	loaded,	but	it	will	not	attempt	to	write	a	block	to
tape,	so	it	does	not	“swim	downstream”	very	far	to	see	if	the	entire	configuration	works.
As	such,	it	is	not	as	useful	as	sbttest.

Media	Management	Errors
Error	reporting	in	RMAN	looks	much	the	same	when	reporting	media	management
problems	as	it	does	when	reporting	any	other	problem,	and	this	can	lead	to	some
confusion.	It	is	critical	when	troubleshooting	RMAN	errors	to	be	able	to	determine	where
exactly	the	error	is	coming	from:	is	it	RMAN,	the	target	database,	the	catalog	database,	or
the	media	manager?

There	are	specific	ways	to	determine	if	an	error	that	is	being	returned	in	RMAN	is

related	to	the	media	manager.	Some	of	them	are	obvious,	particularly	if	you	have	not
linked	the	MML	correctly.	We’ve	shown	examples	of	these	errors	already.	However,	if
you	have	properly	linked	the	MML	with	your	Oracle	installation,	how	can	you	tell	if	an
error	is	related	to	the	MML?

There	are	a	number	of	different	errors,	but	the	most	common	error	you	will	see	related
to	the	media	manager	is	ORA-19511.	This	error	is	actually	a	blank	error,	meaning	that
Oracle	supplies	no	text;	instead,	Oracle	provides	this	as	an	error	trap	for	media
management	errors.	So	if	you	see	the	following	error,	there	is	no	doubt	that	you	have
linked	your	MML	correctly	and	that	the	problem	you	are	having	is	irrefutably	a	problem
with	the	media	manager:

Other	indicators	of	media	management	problems	are	not	so	clear,	but	just	as	telling.	For
instance,	if	you	ever	see	in	the	error	stack	RMAN	referring	to	a	“sequential	file,”	then	you
are	dealing	with	a	tape	backup,	and	the	problem	is	due	to	a	failed	read	or	write	to	the
sequential	file	on	tape.	Another	common	error	is	ORA-27206:

Again,	the	wording	indicates	a	problem	communicating	with	the	media	management
catalog,	which	is	where	you	would	need	to	look	to	resolve	the	problem.

In	addition	to	actual	errors,	any	hang	you	might	encounter	in	RMAN	is	usually	related
to	media	management	problems.	Usually.	When	RMAN	makes	an	sbtwrite()	call	to	the
media	manager,	for	instance,	RMAN	cannot	possibly	know	how	long	this	will	take	to
complete.	Therefore,	RMAN	does	not	provide	any	sort	of	timeout	for	the	operation—it
will	wait	indefinitely	for	the	media	manager	to	return	with	either	a	successful	write	or	an
error.	If	the	media	manager	is	waiting	on	a	particular	event	that	has	no	timeout,	such	as	a
tape	switch	or	a	tape	load,	the	media	manager	waits,	and	so	RMAN	waits.	And	so	you
wait.	And	wait.	As	we	said,	RMAN	will	not	time	out,	so	if	you	notice	that	RMAN	is
taking	a	particularly	long	time	to	complete	and	you	see	no	progress	in
V$SESSION_LONGOPS	(see	Chapter	3),	then	your	first	instinct	should	be	to	check	the
media	manager	for	an	untrapped	error	or	for	an	event	such	as	a	tape	load	or	tape	switch.

Summary
In	this	chapter,	we	discussed	the	concepts	behind	how	RMAN	utilizes	the	media
management	software	of	a	third-party	vendor	to	make	backups	to	tape.	We	walked	through
the	specific	steps	that	RMAN	makes	using	the	SBT	API.	We	also	briefly	discussed	media
management	errors	in	RMAN.

CHAPTER
22

Oracle	Secure	Backup

O
racle	Secure	Backup	(OSB)	is	a	reliable,	complete,	and	centralized	tape	backup
management	solution.	OSB	provides	heterogeneous	data	protection	in
distributed,	mixed-platform	environments.	It	protects	Oracle	Database	and	file
system	data,	such	as	the	contents	of	Oracle	Home.	In	addition	to	tape	backup,
OSB	delivers	an	integrated	Oracle	database	backup	to	third-party	cloud

(Internet)	storage,	through	the	Oracle	Secure	Backup	Cloud	Module.	Oracle	Secure
Backup	offers	two	tape	management	editions:	OSB	and	OSB	Express.

This	chapter	discusses	features	of	OSB,	its	interfaces,	components	of	OSB,	and	how	to
install	and	configure	OSB.

Features	of	Oracle	Secure	Backup
Oracle	Secure	Backup	(OSB)	is	an	Oracle	product	that	integrates	tightly	with	RMAN.
OSB	provides	a	conduit	between	Oracle	databases,	RMAN,	and	a	number	of	major	table
drives	and	table	libraries.	Additionally,	OSB	supports	the	most	common	TCP/IP	protocols,
including	Internet	Protocol	v4	(IPv4),	Internet	Protocol	v6	(IPv6),	and	mixed	IPv4/IPv6
environments	on	all	platforms	that	support	IPv6.	In	association	with	TCP/IP	support,	OSB
provides	support	for	NFS	(network	file	system)	or	CIFS	(Common	Internet	File	System)
file	systems.	Additionally,	support	for	fibre-attached	devices	is	provided	by	OSB.

With	Oracle	Database	12c,	OSB	offers	the	ability	to	back	up	directly	to	local	disks	as
well	as	a	host	of	other	features:

			Ability	to	use	wildcards	and	exclusion	lists	to	specify	the	files	for	backup

			Support	for	multilevel	incremental	backups,	duplexed	database	backups,	and
backups	that	span	multiple	volumes

			Automatic	tape-drive	sharing	to	reduce	idle	tape-drive	write	periods

			Use	of	direct-to-block	positioning	and	direct	access	restore	to	avoid
unnecessarily	reading	tape	blocks	to	locate	files

Additional	features	of	OSB	include	the	following:

			Highly	configurable	encryption	for	file	system	backups

			Support	for	fast	backup	compression.

			Support	for	ACSLS	(Automated	Cartridge	System	Library	Software)	and
vaulting

			Reports	on	the	progress	of	backup	or	restore	jobs	during	the	operations

			Offers	tight	RMAN	integration

			Integrated	with	Oracle	Cloud	Control

			Allows	direct	backup	to	cloud	storage	using	the	Oracle	Secure	Backup	Cloud
Module

			Acts	as	single	point	of	contact	for	issues	involving	Recovery	Manager
(RMAN)	and	the	media	manager

			Includes	Oracle	Secure	Backup	Express,	available	free	with	the	Oracle
Database	and	Oracle	Applications,	which	may	be	employed	for	the	backup	and
restore	of	one	server	to	a	single	tape	drive

Oracle	Secure	Backup	and	Recovery	Manager
Oracle	Secure	Backup	is	a	media	management	layer	for	RMAN,	and	it	supplies	an	SBT
interface	that	RMAN	can	use	to	back	up	database	files	to	tape.	The	OSB	SBT	library	is	the
only	interface	that	supports	RMAN	encrypted	backups	and	unused	block	compression
directly	to	tape.	The	RMAN	ability	to	eliminate	backup	of	committed	undo	is	exclusive	to
OSB	and	is	not	available	with	other	media	management	products.	In	Oracle	Database	11g,
CPU	overhead	is	reduced	by	using	a	shared	buffer	for	SBT	(System	Backup	to	Tape)	and
tape	to	eliminate	the	copy	process	from	SBT	to	the	tape	buffer.	OSB	is	better	integrated
with	Oracle	Enterprise	Manager	(OEM)	as	compared	with	other	media	managers,	and
managing	tapes,	media	servers,	and	tape	devices	using	OEM	is	exclusive	to	OSB.

Differences	Between	OSB	and	OSB	Express
The	following	are	the	common	features	with	Oracle	Secure	Backup	and	Oracle	Secure
Backup	Express:

			Integrated	with	RMAN	for	online	tape	backup	and	restore	of	Oracle	Database

			Backs	up	and	restores	file	system	data

			Integrated	with	Oracle	Enterprise	Manager	(Oracle	Database	10gR2	and
higher)

These	features	are	available	only	with	Oracle	Secure	Backup:

			Backs	up	Real	Application	Clusters	(RAC)	environments

			Integrated	with	Oracle	Enterprise	Manager	Grid	Control	(Oracle	Database
10gR2	and	higher)

			Enables	multiple	tape	drive	usage	within	the	backup	environment

			Provides	Fibre-attached	device	support

			Offers	backup	encryption	to	tape

			Includes	Oracle	fast	backup	compression

			Supports	ACSLS	and	vaulting

			Features	networked	backup	of	distributed	servers	and/or	tape	devices

Backup	Encryption
Oracle	Secure	Backup	encryption	is	available	for	both	RMAN	and	file	system	backup
operations.	The	data	is	encrypted	on	the	server	before	transport	over	the	network,	or
written	to	a	locally	attached	tape	device.	Database	data	is	encrypted	after	RMAN	has
passed	the	data	through	the	SBT	to	OSB.	If	the	RMAN	data	from	the	SBT	is	encrypted,
then	no	further	encryption	occurs.	Backup	encryption	is	normally	available	only	with	the

purchase	of	the	Oracle	Advanced	Security	Option	(ASO).

Fast	Database	Backup	Compression
Fast	database	backup	compression	is	normally	available	only	with	the	purchase	of	the
Oracle	Advanced	Compression	Option	(ACO).

Oracle	Secure	Backup	Cloud	Module
The	Oracle	Secure	Backup	Cloud	Module	is	independent	of	the	OSB	tape	management
editions.	The	module	has	been	qualified	only	with	Amazon	S3	(Simple	Storage	Service)
for	now,	but	it	might	be	expanded	to	other	cloud	storage	vendors	in	the	future.	The
number	of	Oracle	Secure	Backup	Cloud	Module	licenses	depends	on	the	number	of
RMAN	channels	for	backup	to	the	cloud	and	does	not	depend	on	the	number	of	Oracle
database	backups.	For	example,	four	OSB	Cloud	Module	licenses	could	be	used	to	back
up	two	Oracle	databases	using	two	RMAN	channels	for	each	or	used	to	back	up	one
Oracle	database	using	four	RMAN	channels.

Oracle	Secure	Backup	Interfaces
Figure	22-1	illustrates	the	interfaces	you	may	use	to	access	Oracle	Secure	Backup,
described	here:

FIGURE	22-1.			OSB	interfaces

			Oracle	Enterprise	Manager	Database	Control	and	Grid	Control			This	is
the	preferred	graphical	user	interface	(GUI)	for	managing	OSB.	Most	OSB	tasks	can
be	performed	via	OEM.	The	OSB	administrative	server	can	be	configured	as	a	target
in	OEM	Grid	Control	and	can	be	used	to	perform	file	system	backup	and	restore
operations.

			Oracle	Secure	Backup	Web	tool			This	interface	is	a	browser-based	GUI	that
enables	you	to	configure	an	administrative	domain,	browse	the	backup	catalog,
manage	backup	and	restore	of	file	system	data,	and	perform	certain	other	tasks	not
possible	in	OEM.	It	exposes	all	functions	of	obtool.	The	Web	tool	employs	an

Apache	web	server	running	on	the	administrative	server.

			Oracle	Secure	Backup	command-line	interface	(obtool)			This	command-
line	program	is	the	primary	interface	to	OSB	and	is	in	the	bin	subdirectory	of	the
OSB	home.	Using	obtool,	you	may	log	into	the	administrative	domain	to	back	up
and	restore	file	system	data,	as	well	as	to	perform	configuration	and	administrative
tasks.	You	may	run	obtool	on	any	host	within	the	administrative	domain.

			Recovery	Manager	command-line	interface			The	RMAN	command-line
interface	may	be	used	to	configure	and	initiate	database	backup	and	restore
operations	for	utilization	of	OSB.	The	RMAN	utility	is	located	in	the	bin	directory
of	an	ORACLE_HOME	directory.	The	RMAN	command-line	client	will	run	on	any
database	host,	as	long	as	the	client	is	able	to	connect	to	the	target	database.	The	OSB
SBT	library	must	exist	on	the	same	host	as	the	target	database	in	order	for	RMAN	to
make	backups	using	OSB.

Oracle	Secure	Backup	Components
An	administrative	domain	is	a	group	of	hosts	managed	as	a	common	unit	for	performing
backup	and	restore	operations.	When	configuring	OSB,	you	assign	roles	to	each	host	in
the	domain.	A	single	host	may	consist	of	one	or	more	of	the	following	roles:

			Administrative	server			Starting	and	monitoring	backup	and	recovery	jobs	is
accomplished	by	the	administrative	server	running	within	an	administrative	domain.
The	administrative	server	may	also	run	other	applications	in	addition	to	OSB.

			Media	server			Houses	secondary	storage	devices	such	as	tape	drives	or	tape
libraries.	At	least	one	media	server	will	be	defined	for	each	administrative	domain.

			Client			A	host	whose	local	data	is	backed	up	by	OSB.	One	or	more	clients
will	be	defined	in	each	administrative	domain.	Most	hosts	in	the	administrative
domain	are	clients.

Figure	22-2	illustrates	an	OSB	administrative	domain.	The	domain	includes	an
administrative	server,	a	media	server	with	an	attached	tape	library,	three	clients,	and	five
hosts.

FIGURE	22-2.			OSB	administrative	domain

Figure	22-3	demonstrates	an	OSB	administrative	domain	containing	a	single	Linux
host.	This	Linux	host	assumes	the	roles	of	administrative	server,	media	server,	and	client.
An	Oracle	database	and	a	locally	attached	tape	library	are	configured	for	the	Linux	host.

FIGURE	22-3.			OSB	administrative	domain	with	a	single	host

Oracle	Secure	Backup	Daemons
An	administrative	domain	uses	seven	types	of	OSB	daemons:

			Service	daemon			This	daemon	runs	on	the	administrative	server,	media
server,	and	client.	Access	to	OSB	configuration	data	on	the	administrative	server	is
provided	by	the	service	daemon.	It	also	runs	jobs	requested	by	the	schedule	daemon.
On	a	media	server	or	a	client,	the	daemon	handles	membership	in	an	administrative
domain.

			Schedule	daemon			This	runs	only	on	the	administrative	server.	It	is	the	OSB
scheduler.

			Index	daemon			This	daemon	runs	only	on	the	administrative	server,	to
manage	the	backup	catalog.	It	starts	when	a	backup	is	completed	or	the	catalog	is
accessed	for	restore	or	browsing	operations.

			Apache	web	server	daemon			This	runs	only	on	the	administrative	server	and
provides	the	Web	tool	interface.

			NDMP	daemon			This	daemon	runs	on	a	media	server	and	a	client,	and
provides	data	communication	between	them.

			Robot	daemon			This	runs	on	a	media	server	and	manipulates	tapes	in	a	tape
library.	The	service	daemon	starts	one	robot	daemon	for	each	tape	library	when	a
tape	manipulation	is	needed.

			Proxy	daemon			This	daemon	runs	on	a	client	to	verify	user	access	for	SBT
backup	and	restore	operations.

Host	Access	Modes
Communicating	to	a	host	in	an	administrative	domain	is	possible	through	two	access
modes:

			Primary			For	primary	access	mode,	OSB	is	installed	on	a	host.	The	access
mode	is	used	by	OSB	daemons.	An	Oracle	database	typically	exists	on	a	host
accessed	via	this	mode.	In	OEM,	it	is	referred	to	as	“native”	access	mode.	In	OSB
Web	tool,	it	is	called	“OB”	access	mode.

			NDMP			The	Network	Data	Management	Protocol	host	is	a	storage	appliance
provided	by	third-party	vendors,	such	as	DinoStor,	Mirapoint,	and	Network
Appliance.	Using	a	vendor-specific	implementation,	the	NDMP	host	uses	the	NDMP
protocol	to	back	up	and	restore	file	systems.	OSB	is	accessible	via	NDMP,	although
OSB	software	is	not	installed	on	an	NDMP	host.

Administrative	Data
OSB	arranges	information	for	the	administrative	domain	as	a	hierarchy	of	files	in	the	OSB
home	on	the	administrative	server.	The	directory	that	OSB	is	installed	into	is	the	OSB
home.

Figure	22-4	illustrates	the	directory	structure	for	an	OSB	home.	All	platforms	have	the
same	directory	structure,	although	the	default	home	is	/usr/local/oracle/backup	for	Unix
and	Linux	systems,	but	is	C:\Program	Files\Oracle\Backup	for	Microsoft	Windows
systems.

FIGURE	22-4.			Administrative	server	directories

Domain-wide	entities,	such	as	media	families,	classes,	and	devices,	are	included	within
the	administrative	data.	Figure	22-4	illustrates	how	the	config	directory	contains	several
subdirectories.	These	subdirectories	each	represent	an	object	maintained	by	OSB.	For	each
object	directory,	OSB	creates	files	describing	the	characteristics	for	the	corresponding
object.

Only	in	rare	circumstances	would	it	be	necessary	to	access	the	administrative	database
directly	from	the	file	system.	The	OEM,	Web	tool,	and	obtool	interfaces	are	commonly
used	to	access	catalogs	and	configuration	data.

Oracle	Secure	Backup	Users	and	Classes
To	enable	OSB	to	maintain	consistent	user	identities	across	the	administrative	domain,
OSB	saves	information	for	OSB	users,	as	well	as	their	rights,	on	the	administrative	server.

On	the	administrative	server,	each	OSB	user	has	an	account	and	an	encrypted
password.	Using	Web	tool	or	obtool,	operating	system	users	may	enter	their	username	and
password.	Using	an	encrypted	SSL	connection,	the	client	program	transmits	the	password
to	the	administrative	server.

The	admin	user	is	created	by	default	during	OSB	installation	on	the	administrative
server.	Also	during	the	installation,	you	can	create	the	oracle	user	to	back	up	and	recover
Oracle	databases.	The	installer	assigns	a	random	password	to	the	oracle	user.	Usually,	it	is
unnecessary	to	log	into	OSB	by	using	this	user.

Operating	System	Accounts
For	OSB	users,	the	namespace	is	distinct	from	the	namespaces	for	Linux,	Unix,	and
Microsoft	Windows	users.	Therefore,	if	you	access	a	host	in	the	administrative	domain	as,
for	example,	the	operating	system	user	backup_usr,	and	if	the	OSB	user	in	the	domain	is
named	backup_usr,	these	accounts	will	be	managed	separately,	though	the	names	are
identical.	You	may	find	it	convenient	to	create	the	OSB	user	with	the	same	name	and
password	as	an	operating	system	user.

At	the	time	you	create	an	OSB	user,	you	may	associate	the	user	with	Unix	and
Microsoft	Windows	accounts.	Accounts	of	this	type	are	used	with	an	unprivileged	backup,
which	is	a	backup	that	is	not	run	with	root	privileges.	Privileged	backup	and	restore
operations	use	a	client	with	root	(Unix)	or	Local	System	(Microsoft	Windows)
permissions.

If	you	were	to	create	an	OSB	user	named	backup_usr	and	associate	it	with	Unix
account	ubackup_usr	and	Microsoft	Windows	account	wbackup_usr,	when	backup_usr
uses	the	backup—unprivileged	command	to	back	up	a	client,	the	jobs	will	run	under	the
operating	system	account	associated	with	backup_usr.	Therefore,	backup_usr	is	only	able
to	back	up	files	on	a	Unix	client	accessible	to	ubackup_usr,	and	able	to	back	up	files	on	a
Microsoft	Windows	client	accessible	to	wbackup_usr.

With	the	“modify	administrative	domain’s	configuration”	right,	you	may	configure	the
preauthorization	attribute	for	an	OSB	user.	This	right	allows	you	to	preauthorize	operating
system	users	to	create	RMAN	backups	or	to	access	the	OSB	command-line	utilities.

NDMP	Hosts
When	setting	up	an	OSB	user	account,	you	may	configure	user	access	to	Network	Data
Management	Protocol	(NDMP).	You	may	set	up	the	host	to	use	a	user-defined	text
password,	a	null	password,	or	the	default	NDMP	password.	A	password	for	an	NDMP	host
is	associated	with	the	host,	not	the	user.	You	may	configure	a	password	authentication
method	such	as	MD5-encrypted	or	text.

Oracle	Secure	Backup	Rights	and	Classes

A	defined	set	of	rights	granted	to	an	OSB	user	is	considered	an	OSB	class.	Though	similar
to	a	Unix	group,	an	OSB	class	has	a	finer	granularity	of	access	rights	specific	for	the
needs	of	OSB.	As	shown	in	Figure	22-5,	multiple	users	may	be	assigned	to	a	class,	while
each	user	is	a	member	of	a	single	class.

FIGURE	22-5.			Rights	and	classes

These	classes	are	important	to	understanding	the	rights	of	an	OSB	user:

			admin			Utilized	for	overall	administration	of	a	domain,	it	consists	of	all	rights
necessary	to	change	domain	configurations	and	to	complete	backup	and	restore
operations.

			monitor			Does	not	allow	users	to	receive	e-mail	notifications,	change	domain
configurations,	or	to	complete	backup	and	restore	operations.	The	users	can	only
access	backups,	see	information	about	storage	devices	and	domain	configuration,
and	list	scheduled	jobs.

			operator			For	standard	day-to-day	operations,	it	has	no	configuration	rights,
but	consists	of	all	the	rights	needed	for	backup	and	restore	operations.	This	class
allows	the	user	to	control	and	query	the	state	of	primary	and	secondary	storage
devices.

			oracle			Much	like	the	operator	class,	but	with	rights	enabling	the	user	to
change	Oracle	database	configuration	settings	and	to	perform	Oracle	database
backups.	Members	of	this	class	usually	are	OSB	users	mapped	to	operating	system
accounts	of	an	Oracle	database	installation.

			reader			Allows	members	to	browse	the	OSB	catalog.	Readers	may	modify

only	the	name	and	password	for	their	OSB	user	accounts.

			user			Assigned	to	users	to	allow	them	rights	to	interact	in	limited	ways	with
their	domains.	This	class	allows	users	to	browse	their	own	data	within	the	OSB
catalog	and	to	perform	user-based	restores.

Installing	and	Configuring	Oracle	Secure	Backup
OSB	is	available	for	delivery	on	CD-ROM	or	may	be	downloaded	from	the	Oracle
Technology	Network	(OTN)	website	at	the	following	address:

http://www.oracle.com/technology/products/secure-backup/index.html

The	following	are	requirements	for	installing	and	configuring	OSB:

			Each	host	in	the	OSB	administrative	domain	must	run	TCP/IP.	Static	IP
addresses	should	be	assigned	to	all	hosts,	or	it	should	be	ensured	that	the	DHCP
server	always	assigns	the	same	IP	address.

			There	should	be	no	duplicate	host	names	in	the	OSB	administrative	domain
because	index	catalog	data	is	based	on	the	client	host	name.

			For	Linux	media	servers,	the	SCSI	Generic	(SG)	driver	needs	to	be	installed.

			Each	node	of	a	RAC	cluster	using	OSB	requires	an	installation	of	OSB.

RMAN	Workshop:	Install	and	Configure	Oracle	Secure
Backup
Workshop	Notes
The	following	example	uses	the	Linux	operating	system.	OSB	is	downloaded	from
OTN.	The	recommended	directory	for	the	installation	of	OSB	on	Linux	is
/usr/local/oracle/backup.	To	simplify	the	example,	the	administrative	server,	media
server,	and	client	are	all	installed	on	the	same	machine.

Step	1.			As	the	root	user,	check	whether	the	uncompress	utility	is	installed	on	the
system.	If	it	is	not,	create	a	symbolic	link	pointing	to	the	gunzip	utility:

Step	2.			Create	a	directory	for	the	download	and	then	issue	the	cd	(change
directory)	command	to	that	directory:

Step	3.			Download	OSB	into	the	download	directory	and	then	unzip	the	product:

http://www.oracle.com/technology/products/secure-backup/index.html

Step	4.			Create	the	directory	where	the	install	will	place	OSB	files:

Step	5.			Issue	the	cd	(change	directory)	command	to	the	OSB	destination	and	run
setup:

The	following	output	is	returned:

Step	6.			Leaving	the	default	parameters	for	now,	press	ENTER	to	choose	the	default
answer.	The	following	output	is	returned:

Step	7.			Again,	press	ENTER	to	choose	the	default	answer.	The	following	output	is
returned:

Step	8.			Again,	press	ENTER	to	choose	the	default	answer	and	to	leave	the	default
parameters.	The	following	output	is	returned:

Step	9.			You	are	going	to	install	all	three	components	of	OSB	on	the	same	server,	so
again	press	ENTER	to	choose	the	default	answer.	The	following	output	is	returned:

Step	10.			Enter	the	OSB	encryption	key	twice.	The	key	is	not	displayed.	You	will
see	the	following	output:

Step	11.			Enter	the	admin	password	twice.	The	password	is	not	displayed.	You	will
see	the	following	output:

Step	12.			Leave	the	e-mail	address	blank	for	now.	The	following	output	is	returned:

Step	13.			Since,	in	this	example,	you	use	a	Linux	system,	answer	“no,”	as
recommended	by	Oracle,	and	configure	the	media	server	later.	The	following
summary	is	returned:

The	OSB	administrative	server,	media	server,	and	client	are	now	installed.	The
OSB	Web	tool	is	used	to	configure	the	tape	library	and	tape	drives.	Let’s	add	the
oracle	user	and	a	Database	Backup	Storage	Selector	to	enable	backup	of	an	Oracle
database.

Step	14.			Connect	and	log	into	the	OSB	Web	tool	using	the	https://<administrative
server>	link	as	the	admin	user.	Go	to	the	Configure	page,	click	the	Users	link,	click
the	Add	button,	and	add	the	oracle	user,	as	shown	next.

Step	15.			After	the	oracle	user	is	added,	click	the	Edit	button	and	change
Preauthorized	Access.

Step	16.			As	a	result,	you	will	have	the	admin	and	oracle	users.

Step	17.			Go	to	Configure:	Hosts,	and	make	sure	that	the	server	has	the	mediaserver
role,	as	shown	here.

Step	18.			To	add	a	storage	selector,	click	the	Database	Backup	Storage	Selectors
link	at	the	bottom	of	the	Configure	page,	click	Add,	and	fill	in	the	fields,	as	shown
in	the	illustration.

Step	19.			Click	OK	and	the	storage	will	be	created,	as	shown.

Step	20.			Now,	let’s	configure	OEM	for	OSB	usage.	Connect	to	the	database	and	go
to	the	Availability	tab	in	OEM.	Click	Backup	Settings	and	go	to	the	end	of	the	page
shown	in	this	illustration.

Step	21.			Click	Configure	to	specify	your	OSB	target,	and	on	the	Specify	Oracle
Secure	Backup	Target	page,	click	the	Add	button	and	then	enter	the	host.

Step	22.			Click	Continue	and	enter	the	values	shown	here.

Step	23.			After	clicking	two	OK	buttons,	you	will	see	the	Backup	Storage	Selectors
page,	shown	next.

Step	24.			Click	Return,	and	the	OSB	Server	target	is	ready	for	backing	up	Oracle
databases	to	tape,	as	shown	in	the	illustration.

The	OSB	administrative	server	is	configured	as	an	OEM	target	and	can	be
managed	by	OEM.

Step	25.			Find	the	OSB	server	on	the	All	Target	page	in	OEM,	and	click	it	to	see
what	is	shown	next.

Step	26.			Click	the	Setup	tab	to	configure	the	OSB	server.	The	OSB	devices	can	be
configured	on	the	Devices	page,	as	shown	in	the	illustration.

If	you	click	the	Manage	tab,	file	system	data	backup	and	restore	jobs	can	be
scheduled.

Oracle	Database	and	File	System	Data	Backup
Using	Oracle	Secure	Backup
It	is	not	possible	to	perform	Oracle	database	backup	and	restore	using	the	OSB	Web	tool.
Therefore,	we	recommend	using	OEM	as	a	centralized	interface	to	schedule	backup	and
restore	jobs	for	Oracle	database	and	file	system	data.

RMAN	Workshop:	Schedule	Oracle	Database	and	File
System	Data	Backups
Workshop	Notes
This	workshop	schedules	OSB	Oracle	database	and	file	system	data	backups.	First,
let’s	take	a	full	Oracle	database	backup.

Step	1.			Connect	to	the	database,	go	to	the	Availability	tab	in	OEM,	and	click
Schedule	Backup.	Then,	choose	Whole	Database	and	click	Schedule	Customized

Backup.	On	this	page,	you	can	choose	different	backup	options.	Click	Next,	and	on
the	Settings	page,	choose	Tape	and	click	Next.

Step	2.			Choose	the	job	as	a	one-time	job	and	review	the	scheduled	job.	Click
Submit	Job,	as	shown	here.

Step	3.			OEM	will	indicate	that	the	job	has	been	submitted.	You	can	click	View	Job
to	see	the	status,	as	shown	in	the	illustration.

Step	4.			The	executed	job	can	be	found	on	the	Jobs	tab.

Now,	let’s	take	a	backup	of	the	listener.ora	file.

Step	5.			On	the	Manage	page	of	OEM	OSB	Server,	click	Schedule	Backup	and	then
choose	Specify	Hosts,	Directories	and	Files.

Step	6.			Add	the	listener.ora	file	to	be	included	in	the	backup,	as	shown.

Step	7.			Click	Next,	check	Privileged	user	to	have	the	job	run	by	the	root	user,	and
click	Next	again.	On	the	Specify	Device	Pool	page,	the	tape	device	can	be	specified
for	the	backup,	as	the	illustration	shows.

Step	8.			Click	Next,	select	the	job	schedule,	and	click	Next	again.	Review	the
backup	job.

Step	9.			After	the	job	is	submitted,	you	can	see	the	OEM	confirmation.	The	job
execution	status	can	be	seen	on	the	Jobs	page.

Oracle	Database	Backup	Using	Oracle	Secure
Backup	Cloud	Module
OSB	provides	the	ability	to	use	storage	clouds,	such	as	Amazon	S3,	as	offsite	backup
storage	destinations.	To	utilize	Amazon	S3	as	backup	storage,	you	need	to	sign	up	for
Amazon	S3	service	and	get	the	Access	Key	ID	and	the	Secret	Access	Key.	After	the
access	identifiers	are	collected,	they	can	be	used	to	configure	OSB	during	the	OSB	Cloud
Module	installation.	The	OSB	Cloud	Module	install	tool	can	be	downloaded	from	OTN	at
the	following	address:

http://www.oracle.com/technology/software/tech/cloud/index.html.

RMAN	Workshop:	Installing	OSB	Cloud	Module	and
Using	It	for	OSB	Backups
Workshop	Notes
This	workshop	installs	the	OSB	Cloud	Module	and	schedules	an	OSB	Oracle
database	backup.

Step	1.			Download	and	install	OSB	Cloud	Module:

http://www.oracle.com/technology/software/tech/cloud/index.html

Step	2.			Connect	to	the	database,	go	to	the	Availability	tab	in	OEM,	and	click
Schedule	Backup.	Then,	choose	Whole	Database	and	click	Schedule	Customized
Backup.	We	recommend	you	encrypt	the	backup	to	keep	it	in	offsite	storage.

Step	3.			On	the	Settings	page,	choose	Tape	and	click	Next.

Step	4.			Choose	the	job	as	a	one-time	job,	review	the	scheduled	job,	and	click
Submit	Job.

Step	5.			OEM	will	show	that	the	job	has	been	submitted.	The	executed	job	can	be
found	on	the	Jobs	tab,	as	shown	here.

Summary
Oracle	Secure	Backup	delivers	high	performance	and	secure	data	protection	crucial	for
both	offsite	and	local	storage	of	mission-critical	data.	Complete	product	support	from
Oracle	Support	Services,	integration	with	Oracle	Enterprise	Manager,	the	ability	to	use	the
cloud	as	a	next-generation	offsite	backup	storage,	and	excellent	pricing	are	only	a	few	of
the	many	reasons	for	employing	OSB	to	meet	your	file	system	and	Oracle	database
backup	requirements.	For	a	centralized	backup	tape	management	system	in	mixed
distributed	environments	that	provides	a	complete	backup	solution	for	the	enterprise,	OSB
is	a	strong	contender.

CHAPTER
23

Backing	Up	to	Amazon	Web	Services
Using	the	Oracle	Secure	Backup	Cloud

Module

O
racle	and	Amazon.com	have	provided	a	media	management	library	for	RMAN	that	allows
Oracle	databases	to	be	backed	up	directly	to	the	Amazon	Web	Services	cloud.
This	chapter	provides	an	overview	of	cloud	computing	and	how	Amazon’s
cloud	works,	how	Oracle	can	be	used	in	a	cloud	computing	context,	and	why
backing	up	using	the	OSB	Cloud	Module	and	Amazon	S3	may	be	a	good	idea

for	some	sites.	Additionally,	we	provide	detailed	instructions	on	installing	and	deploying
the	OSB	Cloud	Module	and	Amazon	S3	as	a	backup	solution.

Conventional	Backups:	Assumptions	and
Limitations
Two	key	requirements	for	robust	Oracle	backup	and	recovery	are	a	scalable	high-capacity
onsite	backup	infrastructure	and	regular	offsite	storage	of	backups	in	a	location	separate
from	the	database.

Traditionally,	an	onsite	backup	infrastructure	has	consisted	of	large	tape	libraries	or
disk	arrays.	Offsite	storage	has	been	accomplished	by	physically	moving	tapes	to	a	secure
remote	facility.	Offsite	tape	storage	companies	provide	transport	and	remote	facilities	for	a
fee.

These	traditional	approaches	have	a	number	of	disadvantages:

			High	cost	of	enterprise	backup	infrastructure

			Limited	capacity	of	enterprise	backup	infrastructure

			High	cost	of	offsite	media	transport	and	storage

			Long	time	to	recovery	(TTR)	for	offsite	backups

			Reliance	on	physical	security	for	offsite	backups

The	Oracle	Secure	Backup	Cloud	Module
The	OSB	Cloud	Module	is	a	media	management	library	(MML)	for	Recovery	Manager
(RMAN)	that	allows	backups	to	be	written	directly	to	Amazon.com’s	Simple	Storage
Service	(S3)	over	the	Internet	as	if	it	were	a	tape	library.	S3	is	a	component	of	Amazon
Web	Services,	Amazon’s	cloud	computing	platform.

Cloud	computing,	an	emerging	infrastructure	model	being	pioneered	by	Amazon.com
and	others,	offers	a	viable	alternative	to	both	physical	hosting	infrastructure	and	offsite
data	storage.	The	cloud	backup	model	addresses	many	of	the	drawbacks	of	traditional
backups.	Additionally,	storing	backups	in	a	cloud	storage	service	offers	several	potential
advantages.

NOTE

While	we	are	specifically	covering	Amazon’s	S3	cloud	offerings	in	this	chapter,
numerous	cloud	backup	storage	offerings	are	available.	The	general	instructions
here	will	apply	to	any	of	those	vendors—with	slight	variations	on	implementation.

What	Is	Cloud	Computing?
The	term	cloud	computing	suffers	from	having	been	appropriated	for	use	by	numerous
technology	vendors	to	apply	in	various	ways	to	their	own	products	or	services.	This
diffusion	of	the	term’s	meaning	has	led	to	confusion	among	many	in	the	technology	field.

Generally,	cloud	computing	refers	to	a	remote	pool	of	storage	and	computing	resources
available	to	the	public	over	the	Internet	at	as	small	or	as	large	a	scale	as	users	require.	The
cloud	resources	of	one	user	are	discrete	and	secure	from	those	of	other	users.	Users
manage	cloud	resources	using	a	uniform,	published	software	API	(application	program
interface).	A	computing	cloud	conforms	to	set	availability	and	performance	service	levels
published	by	the	provider.

More	simply,	from	a	user’s	perspective,	a	computing	cloud	is	an	Internet	service	on
which	users	can	deploy	applications	and	services	on	a	professionally	managed	enterprise-
class	infrastructure.

In	the	case	of	Google,	software	such	as	visualization	and	mapping	tools	is	available	to
be	integrated	into	a	user’s	web	pages	or	applications	as	a	component.

In	the	case	of	Amazon,	users	can	deploy	virtual	server	hosts	and	virtual	storage.	From
the	perspective	of	the	users	and	applications,	cloud	services	look	and	behave	similarly	to
stand-alone	server	and	storage	equipment.

Oracle	and	the	Amazon	Cloud
Oracle	and	Amazon.com	have	worked	together	to	provide	a	way	to	deploy	several
components	of	Oracle	technology	on	Amazon	Web	Services	(AWS),	Amazon.com’s	cloud
computing	platform.	Currently,	Oracle	supports	two	classes	of	services	on	AWS:

			Running	Oracle	software	on	AWS	Elastic	Compute	Cloud	(EC2)

			Backing	up	Oracle	databases	to	AWS	Simple	Storage	Service	(S3)

Elastic	Compute	Cloud	(EC2)	and	Elastic	Block	Store	(EBS)
Amazon	EC2	and	EBS	allow	users	to	deploy	virtual	hosts	running	Windows	or	Linux	and
highly	available	volume	storage	to	support	virtually	any	application	that	runs	on	those
operating	systems.	EC2	provides	virtual	hosts,	and	EBS	provides	storage	volumes.

Simple	Storage	Service	(S3):	Oracle’s	Cloud	Backup
Solution

Yet	another	component	of	Amazon’s	cloud	is	S3,	a	low-cost,	reliable,	redundant	mass-
storage	service.	Popular	software	packages	such	as	Jungle	Disk	use	S3	as	an	inexpensive
way	to	back	up	your	personal	computer	or	just	to	get	some	extra	storage	space.	Oracle	has
followed	suit,	providing	the	Oracle	Secure	Backup	(OSB)	Cloud	Module,	an	RMAN
media	management	library	(MML)	for	S3.	The	OSB	Cloud	Module	allows	Oracle
databases	on	the	Amazon	cloud	and	at	customer	sites	to	back	up	directly	to	S3	on	the
Amazon	cloud	from	RMAN.

RMAN	Backup	to	S3:	The	Oracle	Secure	Backup	Cloud
Module
The	OSB	Cloud	Module	is	essentially	a	MML	that	provides	access	to	Amazon	S3	storage
via	the	SBT	channel	interface	of	RMAN.	Just	as	with	tape	MMLs,	the	OSB	Cloud	Module
is	implemented	as	a	shared	library	for	Linux/Unix	and	as	a	DLL	for	Windows.

The	OSB	Cloud	Module	is	available	for	Oracle	versions	9i	and	higher	on	32-	and	64-
bit	Linux,	32-bit	Windows,	and	Solaris	(SPARC	64-bit).	Oracle	has	offered	to	port	it	to
any	other	brand	of	Unix	upon	customer	request.

S3	Backup	over	the	Internet	or	from	Amazon	EC2
A	database	hosted	somewhere	other	than	on	Amazon	Web	Services	can	back	up	over	the
public	Internet	to	S3.	As	such,	performance	may	be	variable.	In	contrast,	a	database	hosted
on	AWS	can	back	up	to	S3	over	Amazon’s	internal	network,	where	performance	will	be
predictably	good.

For	Amazon	cloud-hosted	databases,	the	decision	to	use	the	OSB	Cloud	Module	is
easy.	It	is	a	cheap,	reliable	way	to	store	backups.	It	is	also	among	the	only	options	for
cloud-hosted	databases.

For	databases	hosted	somewhere	other	than	AWS,	such	as	in	the	customer’s	own
datacenter,	it	is	necessary	to	determine	first	whether	acceptable	speed	and	performance
can	be	achieved.	This	is	discussed	later	in	this	chapter.

Oracle	Cloud	Backup	Advantages
There	are	several	benefits	to	using	cloud	backup	instead	of	local	or	offsite	disk	or	tape
storage.	Chief	among	these	are	the	following:

			No	up-front	equipment	costs			Tape	libraries	and	mass	storage	arrays	are
major	capital	expenses	and	require	ongoing	maintenance	and	upkeep.	When
physical	storage	capacity	is	exceeded,	new	equipment	must	be	purchased	and
deployed.	In	contrast,	deploying	backups	on	cloud	storage	is	affordable	and	requires
no	additional	equipment,	even	as	scale	increases.

			Low	ongoing	storage	costs			Amazon	S3	costs	vary,	but	are	reasonable.	The
cost	of	the	investment	in	S3	storage	can	be	very	competitive	with	other	forms	of
storage.

			Elasticity			With	cloud	computing,	you	can	use	as	few	or	as	many	resources	as
you	need.	As	requirements	grow,	there	is	no	need	to	replace	equipment	such	as	tape
libraries	with	new	equipment	of	larger	capacity.

			Reliability			Amazon	provides	redundancy	and	availability	within	their
internal	architecture	and	meets	a	published	SLA	(service-level	agreement)	of	99.99
percent	availability	for	S3.	One	of	the	key	features	of	S3	is	geographic	replication.
S3	replicates	data	to	three	availability	zones	within	an	Amazon	Web	Services
region.	Availability	zones	are	analogous	to	separate	datacenters.	Similar	redundancy
and	availability	within	a	customer’s	own	datacenter	would	have	to	be	architected	as
part	of	an	enterprise	backup	infrastructure	at	significant	expense	and	effort.

			Time	to	recovery			Unlike	offsited	tapes,	which	must	be	ordered	and	loaded
into	libraries,	RMAN	backups	to	Amazon	S3	are	always	online	and	available	for
recoveries.

			No	third-party	MML	license	costs			The	Oracle	Secure	Backup	Cloud
Module	is	licensed	through	Oracle	and	is	priced	per	channel.	That	means	that
customers	can	leverage	their	preexisting	license	relationship	with	Oracle.

RMAN	Workshop:	Deploying	RMAN	Backups	to
Amazon	S3
Workshop	Notes
A	few	prerequisites	and	credentials	are	required	to	use	the	OSB	Cloud	Module:

			An	Oracle.com	single	sign-on	account	(the	same	one	used	to	log	into	the
Oracle	Technology	Network)

			An	Amazon	Web	Services	account

Step	1.			Establish	an	Oracle	single	sign-on	account,	if	needed.	If	you	already	have
an	Oracle.com	or	Oracle	Technology	Network	account,	you	can	skip	this	step.
Otherwise:

a.			In	a	browser,	navigate	to	http://www.oracle.com/admin/account.

b.			Click	Create	your	Oracle	account	now.

Step	2.			Establish	an	Amazon	Web	Services	account:

a.			In	a	browser,	navigate	to	http://aws.amazon.com.

b.			Click	Sign	Up	Now.	You	will	be	prompted	to	sign	into	Amazon.com.
Your	AWS	account	is	accessed	via	your	Amazon.com	retail	account.	If	you
do	not	have	an	existing	account	at	Amazon.com,	select	I	am	a	new
customer.

c.			Once	you	are	logged	in,	you	must	check	a	box	and	click	Continue	to
accept	the	terms	of	the	AWS	Customer	Agreement.

Step	3.			When	you	successfully	establish	an	account	with	AWS,	you	still	need	to

http://www.oracle.com/admin/account
http://aws.amazon.com

sign	up	for	Amazon’s	Simple	Storage	Service	(S3):

a.			In	a	browser,	navigate	to	http://aws.amazon.com/s3.

b.			Click	Sign	up	for	Amazon	s3.

c.			On	subsequent	web	pages,	Amazon	will	prompt	you	to	provide	a	credit
card	for	payment	and	a	billing	address.	Finally,	you	will	be	prompted	to
review	your	selections	and	to	click	Complete	Sign	Up.

Step	4.			To	store	and	retrieve	data	on	S3,	you	will	need	your	private	access
identifiers.	The	link	to	obtain	these	values	should	be	sent	to	you	in	an	e-mail	from
Amazon.com	upon	signing	up	for	Amazon	S3.	If	you	do	not	have	the	URL	handy,
you	can	do	the	following:

a.			In	a	browser,	navigate	to	http://aws.amazon.com.

b.			Hover	your	cursor	over	Your	Account.

c.			Click	Security	Credentials.

d.			Note	the	values	for	Access	Key	ID	and	Secret	Access	Key.	Keep
these	values	in	a	safe	place.	They	are	the	keys	for	charging	AWS	services	to
your	account.

Step	5.			Download	and	install	the	Oracle	Secure	Backup	Cloud	Module	installer.

NOTE

If	you	are	performing	backups	for	an	Oracle	database	running	on
Amazon	EC2	using	one	of	Oracle’s	Amazon	Machine	Images	(AMIs),
you	do	not	need	to	install	the	OSB	Cloud	Module.	It	has	already	been
installed	for	you	under	/home/oracle/scripts/.

The	OSB	Cloud	Module	installer	can	be	downloaded	from	the	Oracle
Technology	Network	Cloud	Computing	Center:

a.			In	a	browser,	navigate	to
http://www.oracle.com/technology/software/tech/cloud.

b.			Review	the	license	agreement	and	then	click	All	Supported
Platforms.

c.			The	download	is	a	.zip	file	containing	a	.jar	file	and	a	readme.	Place	the
.zip	file	on	the	database	server	that	you	will	be	backing	up	under	the	user	that
runs	the	Oracle	software	(usually	oracle).

d.			Verify	that	you	have	the	appropriate	version	of	Java	installed.

e.			Install	the	OSB	Cloud	Module	by	running	the	installer	and	providing	the
appropriate	arguments	for	your	environment.	You	must	pass	these	arguments	to	the
installer:

http://aws.amazon.com/s3
http://aws.amazon.com
http://www.oracle.com/technology/software/tech/cloud

Linux	Example

Performing	Backups	by	Using	the	OSB	Cloud
Module
RMAN	backups	to	Amazon	S3	work	like	backups	to	traditional	MML	products.	From
within	RMAN

			Allocate	one	or	more	channels	of	type	SBT.

			Issue	backup	commands	to	the	SBT	channels.

RMAN	must	specify	the	location	of	the	S3	SBT	library	and	OSB	Cloud	Module
parameter	file	(both	created	during	install)	when	allocating	the	SBT	channel	to	S3.	You
can	specify	this	information	persistently	for	the	database	by	using	the	RMAN	configure
command,	or	each	time	you	allocate	a	channel.	If	you	also	use	other	media	management
libraries	such	as	NetWorker,	NetBackup,	and	Oracle	Secure	Backup,	you	should	not
configure	S3	persistently	to	be	the	default	MML	unless	you	really	mean	to	do	that.

To	Persistently	Store	S3	as	the	Default	SBT	Channel
The	following	RMAN	code	snippet	demonstrates	how	to	persistently	configure	the	default
settings	for	RMAN’s	SBT	I/O	channels	to	use	Amazon	S3	using	the	OSB	Cloud	Module.
Using	this	method,	the	default	destination	for	SBT	I/O	will	be	Amazon	S3.	If	other
RMAN	backup	jobs	need	to	write	to	or	read	from	local	tape,	for	instance,	they	will	have	to
specify	their	local	tape	MML	libraries	in	the	allocate	channel	command.

To	Specify	the	OSB	Cloud	Module	Each	Time	You	Allocate	a
Channel
The	following	RMAN	code	snippet	demonstrates	how	to	manually	configure	each	channel
to	use	the	OSB	Cloud	Module	at	script	run	time.	The	default	SBT	channel	configuration
will	remain	unchanged.	If	there	is	a	local	tape	MML	in	place,	jobs	that	use	that	service
will	continue	to	function	normally	without	modification.

The	following	RMAN	script	demonstrates	how	to	manually	allocate	an	SBT	I/O
channel	to	S3	using	the	OSB	Cloud	Module	and	then	perform	a	full	backup	of	the
database,	including	the	archived	redo	logs:

The	exact	syntax	for	allocating	the	SBT	channel	to	S3	varies	between	Oracle	versions.
For	instance,	Oracle	11gR2	does	not	accept	the	ENV	keyword.	Instead,	you	must	use	an
alternate	channel	allocation	syntax	using	the	SBT_PARMS	keyword.	On	some	versions,
you	may	also	have	to	create	a	symbolic	link	in	ORACLE_HOME/lib	called	libobk.so
pointing	to	libosbws11.so:

Listing	RMAN	Backups	and	Backup	Sets	Stored	on
S3
As	with	all	RMAN	backups,	all	management	of	stored	backups	must	be	performed	with
RMAN.	If	you	manually	delete	backup	sets,	future	RMAN	recoveries	will	continue	to
assume	that	they	exist.	RMAN	must	be	used	to	mark	as	obsolete	and	to	purge	all	RMAN
backups.

Similarly,	listing	and	reporting	existing	backups	is	best	performed	via	RMAN.	For
example,	the	following	command	lists	all	backups	stored	on	an	SBT	device	(such	as	S3
via	the	OSB	Cloud	Module)	in	the	past	24	hours:

Several	third-party	tools	exist	for	browsing	the	contents	of	your	S3	buckets,	where	the
OSB	Cloud	Module	stores	RMAN	backups.	One	such	popular	tool	is	a	Firefox	browser
add-on	called	S3fox.	Using	S3fox,	you	can	browse	the	backup	pieces	RMAN	stores	in	S3.

Optimizing	Backups	and	Recoveries	over	the	Internet	Using
the	OSB	Cloud	Module	and	Amazon	S3
The	effectiveness	of	backing	up	and	restoring	Oracle	database	backups	over	the	Internet	to
Amazon	S3	depends	on	a	number	of	factors:

			Size	of	database

			Redo	generation	rate

			Internet	bandwidth	between	the	Oracle	server	and	Amazon	S3

			Backup	strategy

			RMAN	options

			Requirements	for	time	to	recovery	(TTR)

Very	large	databases	not	hosted	in	the	Amazon	cloud	may	be	poor	candidates	for
backup	to	Amazon	S3	over	the	Internet,	depending	on	your	network	performance.	It	could
simply	take	too	long	to	complete	a	backup	and	too	long	to	restore	in	the	event	of	a
recovery.	For	the	same	reason,	databases	that	generate	very	large	amounts	of	redo	per	day
may	be	poor	candidates	for	this	backup	strategy.	Amazon	Web	Services	has	reliable	fast
connectivity	to	S3,	so	databases	hosted	on	Amazon	EC2	can	use	the	OSB	Cloud	Module
without	as	much	tuning	and	optimization.

For	example,	a	level	0	backup	of	a	database	of	500GB	that	generates	50GB	of	redo	per
day	might	compress	to	250GB.	With	a	single	T1,	it	might	take	over	50	hours	to	back	up	to
S3,	using	most	of	the	available	network	capacity.	For	this	reason,	you	must	carefully
consider	and	test	network	throughput	and	compressed	backup	size	when	contemplating
moving	to	an	S3-based	backup	strategy	over	the	Internet.	The	longest	backup	window	in

the	backup	cycle	must	be	able	to	accommodate	a	level	0	backup,	while	using	a	percentage
of	the	network	resources	that	is	acceptable	to	the	enterprise.	Additionally,	organizations
must	determine	if	the	amount	of	time	to	perform	a	complete	restore	from	S3	is	acceptable
to	the	enterprise.

Because	of	the	many	caveats	associated	with	deploying	backups	over	the	Internet	to	S3,
any	organization	contemplating	it	should	rigorously	test	both	backup	and	recovery
performance	before	embarking	on	a	large-scale	migration	to	this	architecture.

Regardless	of	database	size,	customers	using	the	OSB	Cloud	Module	can	optimize
backup	capacity	and	performance	using	a	variety	of	means.	By	improving	backup
efficiency,	customers	can	back	up	larger	databases	to	S3	over	the	Internet	than	would
otherwise	have	been	possible.	The	main	approaches	are	as	follows:

			Using	multiple	SBT	channels

			Backing	up	during	times	of	minimal	Internet	use

			Using	compressed	backup	sets

			Using	an	incremental	backup	strategy

			Backing	up	archive	logs	frequently

Sites	contemplating	an	Oracle	backup	strategy	over	the	Internet	to	Amazon	S3	must
have	sufficient	Internet	bandwidth	to	back	up	the	databases	in	question	within	an
acceptable	backup	window.	If	sufficient	bandwidth	is	available,	the	challenge	becomes
configuring	RMAN	to	consume	those	resources.	An	effective	way	to	maximize	the	use	of
network	resources	is	opening	multiple	SBT	channels.	In	testing,	the	goal	should	be	to	use
sufficient	network	resources	to	complete	the	backup	within	the	required	timeframe,	while
leaving	resources	available	for	other	services	and	purposes.

To	minimize	the	impact	to	other	users	and	services,	Oracle	backups	to	Amazon	S3
should	be	scheduled	for	periods	of	minimal	network	use.	The	quantity	of	data	transferred
can	be	further	reduced	with	compressed	backup	sets.

An	incremental	backup	strategy	can	additionally	reduce	the	daily	backup	size	that	must
be	written	to	Amazon	S3.	In	most	databases,	only	a	small	portion	of	the	data	changes	on	a
daily,	weekly,	or	even	monthly	basis.	Therefore,	full	or	level	0	backups	can	conceivably	be
taken	very	infrequently	and	can	even	be	spread	over	the	period	of	a	whole	night	or	a
whole	weekend.	On	a	nightly	or	weekly	basis,	differential	and	incremental	backups	can	be
used	to	maintain	recoverability	while	keeping	the	backup	size	small.

Example	with	Multiple	Channels	and	Compressed	Backup
Sets
The	following	RMAN	script	demonstrates	typical	syntax	for	opening	multiple	channels	to
Amazon	S3	using	the	OSB	Cloud	Module	and	then	performing	a	full	(level	0)	compressed
backup,	including	archived	redo	logs	over	those	channels:

Because	archive	log	generation	is	periodic,	it	is	possible	to	distribute	the	impact	of
archive	log	backup	throughout	the	day	and	night.	Frequently	backing	up	archive	logs
reduces	the	amount	of	data	to	be	backed	up	during	the	nightly	database	backup	window.
This	approach	has	the	added	benefit	of	improving	point-in-time	recoverability	because
more	recent	archive	logs	are	available	offsite	for	more	recent	points	in	time.

Licensing	Considerations
Most	media	management	library	(MML)	software	packages	for	Oracle	RMAN	require
licensing	with	a	third	party,	such	as	EMC	or	Symantec.	In	the	case	of	the	OSB	Cloud
Module,	the	Oracle	Secure	Backup	Licensing	Information	documentation	(P/N	E10310-
02)	states	that	customers	must	obtain	a	license	“for	each	RMAN	channel	simultaneously
used	by	the	backup	domain	to	an	Amazon	S3	destination.”

Customers	should	thoroughly	consult	the	documentation,	any	written	license
agreements,	and	their	own	legal	counsel	in	order	to	determine	the	correct	number	of
licenses	to	obtain	for	the	OSB	Cloud	Module.

Summary
The	OSB	Cloud	Module	provides	a	compelling	solution	for	secure	offsite	backup	storage
and	vaulting,	especially	for	Oracle	databases	hosted	on	Amazon’s	cloud.	Cloud	storage
has	the	potential	for	lower	cost,	better	time	to	recovery	(TTR),	and	more	geographically
distributed	disaster	recovery	properties,	when	compared	to	traditional	magnetic	tape
vaulting.

Careful	testing	for	performance	of	both	backup	and	restore	functions	in	a	range	of
scenarios	is	a	prerequisite	before	deploying	backups	to	S3.	In	addition,	those	considering
using	the	OSB	Cloud	Module	must	carefully	review	their	licensing	obligations	with
Oracle	for	the	package.

CHAPTER
24

Enhancing	RMAN	with	Veritas
NetBackup	for	Oracle

V
eritas	NetBackup	Server	software	and	Database	Agent	software	work	in	collaboration	with
RMAN	to	manage	enterprise	backup,	recovery,	and	storage	administration.	The
products	run	on	many	operating	systems,	support	popular	databases,	and
integrate	easily	with	an	assortment	of	storage	devices.	NetBackup’s	tantalizing
features,	coupled	with	the	vendor’s	close	partnership	with	Oracle,	make	it	a

desirable	choice.	The	information	and	downloads	in	this	chapter	are	available	on
Symantec’s	website,	as	Veritas	is	now	part	of	Symantec.

Key	Features
NetBackup	for	Oracle	has	many	features	and	benefits	that	augment	the	functionality	of
RMAN.	A	summary	of	the	key	features	is	listed	in	Table	24-1.

TABLE	24-1.			Key	Features	of	NetBackup	for	Oracle

Some	specialty	add-ons	worth	looking	into	are	NetBackup	Advanced	Client,
NetBackup	Vault,	and	NetBackup	Bare	Metal	Restore.

Necessary	Components
The	following	elements	enable	successful	communication	exchanges	between	RMAN,	the
NetBackup	servers,	and	the	storage	devices:

			NetBackup	Server	software

			NetBackup	for	Oracle	agent	software—includes	a	required	interface	library
file	(libobk.*)

			Oracle	Database	software—includes	the	RMAN	utility	and	the	Oracle	Call
Interface	(OCI)

			NetBackup	licenses—needed	for	all	software,	options,	and	agents	being	used

Storage/Media	Device	Configuration
Setting	up	tape	drives,	host	bus	adapters,	SCSI	IDs,	and	tape	robots	(see	NetBackup	Media
Manager	Device	Configuration	Guide)	is	usually	left	up	to	Unix	or	storage	administrators.
We	will	not	discuss	those	vendor-specific	steps	here,	but	will	instead	provide	a	few
commands	to	verify	proper	configuration	of	tape	media	devices.

NOTE

Hardware	devices	should	be	set	up	and	tested	for	proper	working	order	prior
to	installing	the	NetBackup	for	Oracle	agent	software.

Use	the	following	command	to	query	the	master	server	from	the	client	server	to	verify
communications:

Next,	query	the	master	server	from	the	client	server	to	verify	the	version:

View	which	storage	server	will	be	servicing	the	client	server	by	issuing	the	following:

Finally,	verify	that	the	NetBackup	communication	daemons	are	listening	for	requests:

NetBackup	Installation
Multiple	tiers	make	up	a	networked	backup	environment.	Every	layer	needs	some	amount
of	software	configuration	to	enable	component	interoperability.	The	installations	are
straightforward	and	should	take	less	than	20	minutes	each.	Besides	doing	local
installations,	you	can	run	remote	installs,	installs	from	the	Administration	Console,	and
software	propagation	to	the	clients	from	a	central	master	server.

NOTE

NetBackup	software	should	not	be	installed	on	a	network	file	system–mounted
directory.	Doing	so	could	cause	interference	with	its	file-locking	mechanisms.

NetBackup	Server	software	gets	installed	on	the	following	servers:

			Master	server

			Media	server	(optional)

			Client	(database)	server

The	NetBackup	for	Oracle	agent	software	gets	installed	on	the	client	(database)	server.

The	following	list	defines	the	server	types	just	mentioned:

			Master	server			Orchestrates	the	NetBackup	environment.	It	is	placed	in	a

layer	referred	to	as	Tier	1	(top	server	tier).	Tiers	are	labels	for	each	of	the	different
architectural	layers	or	groupings	of	architectural	components.	The	role	of	the	master
server	is	to	schedule	backups,	track	job	progress,	manage	tape	devices,	and	store
backup	metadata	in	a	repository.	Since	the	master	server	plays	such	a	critical	role,	it
is	a	good	idea	to	cluster	this	server	for	high	availability	(and	greater	peace	of	mind).

			Media	servers			Occupy	Tier	2	(middle	tier)	and	are	used	to	back	up	a	group
of	files	locally	while	other	files	are	being	backed	up	across	the	network.	Media
servers	are	introduced	into	the	environment	to	boost	performance,	but	they	are	not
required.

			Client	servers			Reside	in	Tier	3	(client	tier)	and	are	usually	the	database
servers	that	house	the	databases	to	be	backed	up.

Pre-Installation	Tasks	for	NetBackup	for	Oracle	Agent
Before	you	install	NetBackup	for	Oracle,	you	need	to	complete	the	following	tasks:

1.			Verify	that	the	system	administrator	has	installed	and	properly	configured	the
NetBackup	software	on	the	master	server,	media	servers	(optional),	and	the	client
database	servers.

2.			Ensure	that	the	proper	license	keys	for	all	NetBackup	servers,	clients,	agents,
and	options	have	been	purchased	and	are	registered	on	the	master	server.	You	can
do	this	from	either	the	Administration	Console	or	the	command	line.	From	the
Administration	Console,	launch	the	following	and	then	choose	Help	|	License	Keys:

From	the	command	line,	run

3.			Obtain	the	NetBackup	for	Oracle	agent	software	CD,	or	ask	a	Unix	system
administrator	to	push	the	software	to	the	client	database	machine	from	the	master
server.

NOTE

On	the	database	server,	both	the	NetBackup	Server	software	and	NetBackup
for	Oracle	agent	software	need	to	be	the	same	version.	The	software	on	the
master	server	needs	to	be	the	same	or	a	higher	version	as	that	on	the	database
server.

NetBackup	for	Oracle	Agent	Installation	Steps
To	install	the	NetBackup	for	Oracle	agent,	follow	these	steps:

1.			Insert	and	mount	the	installation	CD.

2.			Log	in	as	root	to	the	client	(database)	server.

3.			Change	to	the	directory	where	the	CD	is	mounted.

4.			Run	the	./install	script.

5.			Choose	NetBackup	Database	Agent.

6.			You	are	asked	whether	you	want	to	do	a	local	installation.	Enter	y.

7.			Choose	NetBackup	for	Oracle.

8.			Enter	q	(Done	Selecting	Agents).

9.			Enter	y	to	verify	your	selection.

10.			Installation	proceeds	as	follows:

A.			A	script	called	/<install_path>/netbackup/dbext/install_dbext	is
generated.

B.			The	file	/<install_path>/netbackup/bp.conf	is	updated	with	server
names.

C.			Entries	are	added	to	/etc/services.

D.			Entries	are	added	to	the	NIS	services	map	if	NIS	is	running	on	the
server.

E.			Entries	are	added	to	the	server	/etc/initd.conf	file	for	bpcd,	vopied,	and
bpjava-msvc.

F.			Startup	and	shutdown	scripts	are	copied	to	the	/etc/init.d	directory.

G.			Installation	output	is	written	to	/<install_path>/netbackup/ext.

NOTE

In	most	cases,	look	for	NetBackup	to	be	installed	in	the	/usr/openv/netbackup
directory.

How	to	Link	Oracle	to	NetBackup	Media	Manager
After	installing	the	NetBackup	for	Oracle	agent,	you	need	to	link	Oracle	Database
software	with	the	NetBackup	Media	Management	Library.	The	link	allows	RMAN	to
write	files	to	the	media	devices	or	to	pull	files	from	them.	The	NetBackup	Media
Management	Library	or	API	often	is	found	in	/<install_path>/netbackup/bin,	whereas	the
Oracle	library	is	located	in	$ORACLE_HOME/lib.	Both	files	are	named	libobk*.

Linking	can	be	done	either	automatically	or	manually,	as	described	next.

Automatic	Link	Method
NetBackup	for	Oracle	includes	a	script	to	automate	the	library	link	process.	Since	all	steps

are	automated,	using	the	script	is	preferred	over	a	manual	method.	The	oracle_link	script
performs	the	following	actions:

			Retrieves	the	database	version

			Retrieves	the	operating	system	version

			Warns	if	the	database	is	not	shut	down

			Checks	environment	variable	settings

			Applies	the	appropriate	library	based	on	its	assessment

The	steps	to	automatically	link	Oracle	9i	Database,	Oracle	Database	10g,	Oracle
Database	11g,	and	Oracle	Database	12c	with	NetBackup	for	Oracle	follow:

1.			Log	into	the	Unix	server	as	the	Oracle	Database	owner	account,	usually
oracle.

2.			Set	the	variables	$ORACLE_SID	and	$ORACLE_HOME.

3.			Shut	down	each	Oracle	database	instance:

4.			Run	the	<install_path>/netbackup/bin/oracle_link	script.

5.			View	the	output	that	is	written	to	/tmp/make_trace.pid	for	errors.

Manual	Link	Method
If	you	prefer	more	control	over	the	link	process,	you	may	opt	for	the	manual	method.	The
following	are	the	steps	to	manually	link	Oracle	9i	Database	and	Oracle	Database	10g	with
NetBackup	for	Oracle:

1.			Log	into	the	Unix	server	as	the	oracle	account.

2.			Set	the	variables	$ORACLE_SID	and	$ORACLE_HOME.

3.			Shut	down	each	Oracle	database	instance:

4.			Perform	the	applicable	linking	steps	in	Table	24-2.

	

TABLE	24-2.			Manual	Link	Process

NOTE

Starting	with	Oracle	9i,	making	a	new	Oracle	executable	is	no	longer	required.

Architecture
Now	that	the	hardware	is	configured,	the	server	and	agent	programs	are	installed,	the
daemons	are	running,	and	the	libraries	are	linked,	we’ve	built	a	solid	foundation	(see
Figure	24-1)	upon	which	to	run	RMAN.

	

FIGURE	24-1.			NetBackup	architecture

Configuring	NetBackup	Policies
You	need	to	give	NetBackup	instructions	on	how	and	when	to	execute	the	backups.	These
instructions	are	organized	into	special	groupings	called	policies.	Here	are	some	points	to
be	aware	of	when	configuring	policies:

			An	RMAN	job	must	be	associated	with	at	least	one	policy	in	order	for	it	to
execute.

			A	default	policy	is	provided	with	the	agent	software.

			Multiple	policies	can	be	created	for	a	single	database	server.

The	NetBackup	Administration	Console	provides	a	nice	and	easy	interface	for

configuring	the	following	policy	information:

			Attributes

			Schedule

			Clients	on	which	the	policy	is	implemented

			Backup	selection

Adding	New	Policies
Here’s	how	to	add	a	new	policy:

1.			Start	the	NetBackup	program	on	the	storage	server	where	the	policy	will	be
created.

2.			Click	the	Policies	tab.	Expand	NetBackup	Management	|	Policies,	as	shown
in	Figure	24-2.

FIGURE	24-2.			Adding	new	policies

3.			In	the	All	Policies	pane,	right-click	Master	Server	and	then	choose	New.

4.			Type	a	unique	name	in	the	Add	a	New	Policy	dialog	box,	shown	in	Figure
24-2.	Once	you	add	the	name	of	the	new	policy	in	the	dialog	box,	the	Change
Policy	dialog	box	will	appear.

As	part	of	the	policy	definition,	choose	the	policy	attributes,	shown	on	the	Attributes
tab	in	Figure	24-3,	as	follows:

FIGURE	24-3.			NetBackup	policy	configuration

			Policy	Type			This	drop-down	list	contains	many	options;	for	Oracle	RMAN
backups,	you	can	choose	the	Oracle	policy	type.	The	following	are	the	various
policy	options	with	the	intended	use	of	each	option:

			Destination			Choose	settings	for	Policy	Storage	Unit	and	Policy	Volume	Pool.

			Limit	Jobs	Per	Policy			Check	this	box	to	restrict	the	number	of	jobs	that	can
be	run	in	parallel.

			Active.	Go	into	Effect	At			Check	this	box	and	specify	a	date	and	time	to	turn
on,	at	a	later	date	and	time,	a	policy	that	you	create	in	advance.

Defining	Schedules
If	you	are	using	the	NetBackup	scheduler,	you	must	define	when	the	jobs	should	run.	A
single	policy	can	contain	more	than	one	job	schedule	and	can	be	shared	by	multiple
database	servers	(clients).

The	Oracle	policy	type	has	options	for	Application	Backup	Schedule	and	Automatic
Backup	Schedule,	as	described	next.	One	or	more	automatic	backup	schedules	will	be
required	depending	on	the	job	frequency.

Configure	an	Application	Backup	Schedule
Whenever	the	policy	type	is	“Oracle,”	NetBackup	creates	an	Application	Backup
schedule.	This	schedule	defines	the	overall	timeframe	when	any	backup	job	can	occur.
Unscheduled	Oracle	backups	will	default	to	using	this	schedule.	Special	processes,	needed
for	the	execution	of	RMAN	jobs,	are	initiated	as	part	of	the	Application	Backup	schedule.

To	configure	an	Application	Backup	schedule,	follow	these	steps:

1.			In	the	Change	Policy	dialog	box,	click	the	Schedules	tab.

2.			Double-click	Default	Application	Backup	Schedule.

3.			Click	the	Attributes	tab,	shown	in	Figure	24-4,	and	make	sure	that	the
Retention	option	is	set.

FIGURE	24-4.			Application	Backup	schedule

4.			Click	the	Start	Window	tab.	The	Start	Window	defines	the	time	limits	during
which	a	backup	job	can	begin.	It	is	a	more	granular	subschedule	within	the	overall
Application	Backup	schedule.	A	backup	job	must	start	within	the	time	limits	of	the
Start	Window,	but	will	continue	to	run	until	it	finishes.

NOTE

Set	the	backup	window	for	the	Application	Backup	schedule	to	24	hours	a	day,
seven	days	a	week,	in	order	to	perform	any	unscheduled	or	scheduled	backup	at
any	time	and	for	any	duration.

Configure	an	Automatic	Backup	Schedule
To	configure	an	Automatic	Backup	schedule,	follow	these	steps:

1.			In	the	Change	Policy	dialog	box,	click	the	Schedules	tab.

2.			Click	the	New	button	to	open	the	Add	Schedule	window.

3.			On	the	Attributes	tab	(refer	to	Figure	24-5),	enter	a	unique	name	for	the
schedule.

FIGURE	24-5.			Automatic	Backup	schedule

4.			Select	from	four	different	backup	types	in	the	Type	of	Backup	drop-down
list:

			Application	Backup			Runs	when	an	Oracle	backup	is	started	manually.
Each	Oracle	policy	must	be	configured	with	one	Application	Backup	schedule.

			Automatic	Full	Backup			Backs	up	all	the	database	blocks	that	have	been
allocated	or	that	are	in	use	by	Oracle.

			Automatic	Differential	Incremental	Backup			Backs	up	database	blocks
that	have	changed	since	the	most	recent	full	or	incremental	backup	at	level	n	or
lower.

			Automatic	Cumulative	Incremental	Backup			Backs	up	database	blocks
that	have	changed	since	the	most	recent	full	or	incremental	backup	at	level	n	–	1
or	lower.

5.			Select	from	two	different	schedule	types:

			Calendar			Specifies	exact	dates,	recurring	days	of	the	week,	or	recurring
days	of	the	month.

			Frequency			Specifies	the	period	that	will	elapse	until	the	next	backup
operation	can	begin	on	this	schedule.	Options	are	hourly,	daily,	and	weekly.

6.			Select	an	appropriate	retention	period	from	the	Retention	drop-down	list,
which	controls	how	long	NetBackup	retains	the	records	for	scheduled	backups.

To	add	other	schedules,	repeat	Steps	1	through	6.

Defining	a	Backup	Selection
When	running	backup	jobs,	NetBackup	will	call	any	custom	scripts	or	templates	that	are
placed	in	the	backup	selection	list.	These	files	will	be	executed	in	the	order	they	are	listed.
In	NetBackup,	two	options	can	be	used	to	define	commands	for	Oracle	RMAN	backup	or
recovery:

			Templates			Stored	in	a	known	location	on	the	central	master	server	so	that
they	do	not	need	to	be	put	on	each	database	server.	The	filename	is	entered	without	a
path.

			Scripts			Located	on	each	database	server	listed	and	must	be	entered	with	a
full	pathname.

To	add	scripts	or	templates	to	the	backup	selections	list,	follow	these	steps:

1.			From	the	Administration	Console,	double-click	the	policy	name	in	the
Policies	list.

2.			In	the	Change	Policy	dialog	box,	click	the	Backup	Selections	tab.

3.			Click	New.

4.			In	the	Add	Backup	Selection	dialog	box,	shown	in	Figure	24-6,	enter	the
shell	script	or	template	name.	Use	the	Add	button	to	add	the	script	or	template	to
the	selection	list.

FIGURE	24-6.			Backup	selection

5.			Click	OK.

Defining	Policy	Clients
To	add	a	database	server	(client)	to	a	policy,	follow	these	steps:

1.			From	the	Administration	Console,	double-click	the	policy	name	in	the
Policies	list.

2.			In	the	Change	Policy	dialog	box,	click	the	Clients	tab.

3.			Click	New	to	open	the	Add	Client	dialog	box,	shown	in	Figure	24-7.

FIGURE	24-7.			Define	policy	clients

4.			In	the	Client	Name	box,	type	the	name	of	the	client	you	are	adding.

5.			Choose	the	hardware	and	operating	system	type	from	the	drop-down	list.

6.			Click	OK	or	click	Add	to	set	up	another	client.

Managing	Expired	Backup	Images
The	NetBackup	Media	Manager	and	RMAN	both	have	the	ability	to	manage	backup
retention	periods.	This	can	be	a	problem	if	their	retention	settings	don’t	match.	Automatic
expiration	of	backup	images	from	both	repositories	is	not	supported.	A	workaround	is	to
use	the	Retention	setting	in	the	Application	Backup	schedule	and	then	to	synchronize	the
NetBackup	and	RMAN	repositories.

Delete	Expired	Backups	Using	NetBackup	Repository
NetBackup	controls	the	expiration	of	the	Oracle	backup	images	from	its	repository	by
using	the	Retention	setting	in	an	Application	Backup	schedule.	The	setting	specifies	the
length	of	time	before	the	backup	image	expires	and	is	deleted.	When	you	use	NetBackup
retention	to	delete	backup	images,	you	must	do	regular	Oracle	repository	maintenance	to
remove	references	to	expired	backup	files.

Delete	Expired	Backups	Using	RMAN

RMAN	has	a	manual	command	to	remove	all	database	and	archive	log	backups	that	have
reached	their	retention	limits.	You	can	use	this	command	to	delete	database	backups	from
both	the	RMAN	catalog	and	the	NetBackup	repository.	When	a	request	is	issued	to	delete
a	backup	file	from	the	RMAN	repository,	RMAN	sends	the	request	to	NetBackup	to	delete
the	corresponding	images	from	its	repository,	regardless	of	the	retention	level.	The	code
for	deleting	expired	backups	is	shown	next:

The	crosscheck	command	should	be	used	only	in	cases	where	files	marked	with	the
status	“Available”	that	no	longer	exist	can	be	expired	and	marked	deleted.	RMAN	should
control	the	retention	using	the	following	command.	If	you	configure	the	channel	with	the
tape	parameters,	there	is	no	need	to	allocate	channels.	This	feature	is	available	in	Oracle	9i
Database	and	newer	versions.

RMAN	Sample	Scripts
Something	particularly	clever	about	the	NetBackup	for	Oracle	agent	installation	is	that	it
includes	RMAN	backup	and	recovery	sample	scripts	that	are	pre-instrumented	(that	is,
they	already	include	code	snippets	or	templates)	with	code	for	using	NetBackup.	Look	for
the	sample	scripts	in	/<install_path>/netbackup/ext/db_ext/oracle/samples/rman.

These	sample	scripts	will	be	included:

New	scripts	can	be	generated	from	the	Administration	Console.	For	anyone	who	has
suffered	through	the	time-consuming	effort	of	trying	to	locate	elusive	punctuation	errors,
these	scripts	come	as	a	pleasant	surprise.

The	following	is	an	RMAN	code	snippet	for	calling	NetBackup:

The	NetBackup	Administrator’s	Guide	recommends	adding	%t	at	the	end	of	the	format
string,	since	NetBackup	uses	a	timestamp	as	part	of	its	search	criteria	for	catalog	images.
You	can	also	do	this	by	using	configure.

The	following	is	an	RMAN	code	snippet	for	calling	NetBackup	that	uses	configure
commands:

Troubleshooting
Inevitably,	something	will	break	in	the	environment.	Knowing	how	to	prioritize	problems
in	advance	helps	to	resolve	them	more	smoothly.	This	section	highlights	steps	to	help
troubleshoot	issues.

The	following	are	general	troubleshooting	steps	to	take:

1.			Verify	Oracle	agent	installation	by	making	sure	that	the	proper	libraries	exist
in	/<install_path>/netbackup/bin.	Refer	to	Table	24-2	earlier	in	the	chapter	to
determine	which	library	(for	example,	libobk.a)	corresponds	to	your	operating
system.

2.			Check	the	database	server	(client)	to	ensure	that	the	bphdb	executable	exists.
This	is	used	by	both	the	NetBackup	scheduler	and	the	GUI	to	start	backups.

3.			Check	that	the	following	executables	exist:

			/<install_path>/netbackup/bin/bpdbsbora

			/<install_path>/netbackup/bin/bpubsora

			/<install_path>/lib/libdbsbrman.so

			/<install_path>/lib/libnbberman.so

4.			Check	that	the	following	/<install_path>/netbackup/logs	directories	exist
with	777	permissions:

			On	the	database	server	(client):	bpdbsbora,	dbclient,	bphdb,	and	bpcd

			On	the	master	server:	bprd	and	bpdbm

			On	the	media	server:	bpbrm	and	bptm

Use	NetBackup	Logs
NetBackup	generates	logs	for	backup	and	restore	operations.	These	logs	can	be	used	to
investigate	media	manager	problems,	but	RMAN	errors	will	be	written	to	the	RMAN	logs.
There	are	two	types	of	NetBackup	logs:

			Progress	logs			Located	in
/<install_path>/netbackup/logs/user_ops/username/logs,	these	logs	are	generated	for
any	backup	or	restore	operations.	These	files	can	sometimes	be	large	and
cumbersome.	They	contain	sizable	amounts	of	data.	The	key	here	is	knowing	how	to
extract	the	data	you	need.	There	are	basically	two	error	types:	numbers	16	and	32,
where	16	is	an	error	failure	and	32	is	a	critical	failure.	The	best	way	to	find	them	is
to	search	the	log	files	for	<16>	and	<32>.

			Debug	logs			Each	debug	log	corresponds	to	a	NetBackup	process	and
executable.	When	debugging	is	turned	on,	the	logs	are	written	to
/<install_path>/netbackup/logs.	These	logs	can	grow	quickly	in	size,	so	use
debugging	only	when	necessary.

To	enable	logging	on	the	database	server	(client),	modify	the
/<install_path>/netbackup/bp.conf	file	with	this	line:

#	is	a	value	of	1	to	5	to	indicate	the	level	of	logging.	Keep	in	mind	that	a	higher	value
generates	a	lot	of	information	and	could	cause	the	directory	to	run	out	of	space.

NOTE

Make	sure	that	the	debug	file	permissions	are	set	to	777.	Verify	that	libobk	is
linked	properly	if	log	files	are	not	being	created.

Determine	Which	Library	Is	in	Use
You	can	find	out	which	NetBackup	library	is	interfacing	with	Oracle,	as	follows:

Security	Best	Practices

Since	the	NetBackup	software	runs	in	a	networked	environment,	it	is	susceptible	to
vulnerabilities	such	as	denial	of	service	attacks.	To	prevent	these	situations	from
happening,	the	following	best	practices	are	recommended	by	Veritas,	which	is	now
Symantec:

			Allow	administrative	access	to	privileged	users	only.

			Allow	remote	access	only	from	trusted	servers.

			Apply	the	latest	patches.

			Install	NetBackup	behind	a	firewall.

			Ensure	virus	protection	is	running	on	the	servers.

			Monitor	network	traffic	for	malicious	activity.

			Block	external	access	to	the	default	ports	used	by	NetBackup.

			NetBackup	server	and	clients	should	face	toward	the	internal	network.

Cost	Justification
It’s	not	always	easy	to	justify	the	costs	of	purchasing	expensive	software	and	licenses	for
an	information	technology	department,	which	is	traditionally	considered	to	be	a	non-
revenue-generating	part	of	an	organization.	This	section	provides	some	ideas	for
demonstrating	to	management	the	value	of	purchasing	Veritas	NetBackup	for	Oracle.

The	NetBackup	for	Oracle	software	extends	the	capabilities	of	RMAN.	Since	the
software	allows	RMAN	to	speak	directly	to	storage	servers,	it	automates	processes	that
would	otherwise	be	done	by	people.	It	shortens	backup	and	recovery	time	by	eliminating
some	steps	altogether	and	by	cutting	out	process	variation.	Essentially,	this	translates	into
better	overall	application	performance	(since	backups	take	less	time),	reduced	business
outages	during	recovery	events,	more	error-free	recoveries,	and	greater	productivity	of
database	and	storage	administrators.

The	NetBackup	software	could	easily	pay	for	itself	during	just	one	significant	business
outage	where	productivity	and	revenue	are	negatively	impacted.

Summary
We	have	explored	how	NetBackup	software	is	used	to	facilitate	a	networked	backup	and
recovery	environment.	We	outlined	the	ways	in	which	it	extends	existing	RMAN
functionality.	We	described	how	to	configure	each	layer	for	direct	component
communication,	which	eliminates	the	need	for	manual	intervention.	We	discovered	that
using	NetBackup	to	enhance	RMAN	results	in	faster	backup	and	recovery,	reduced
process	variation,	and	shorter	business	outages	during	recovery	events.	NetBackup	for
Oracle	software	has	been	thoughtfully	developed	for	those	of	us	who	are	excited	about
easily	deployed	and	feature-rich	backup	and	recovery	solutions.

CHAPTER
25

Configuring	HP	Data	Protector	for	Oracle

I
n	large	environments,	it’s	hard	for	database	administrators	to	schedule,	manage,	monitor,
and	report	all	database	backups	centrally.	Another	challenge	for	DBAs	is	managing
the	backup	media:	setting	the	protection,	monitoring	the	usage,	and	checking	on	the
backup	history.	For	HP	customers,	using	a	backup	user	interface	with	RMAN	such	as
HP	Data	Protector	overcomes	all	these	issues.

This	chapter	begins	with	a	discussion	of	the	integration	between	Oracle	RMAN	12c
and	HP	Data	Protector	9.0.	It	then	describes	the	configuration	of	Oracle	backups	with	Data
Protector.	You	will	learn	how	to	back	up	and	restore	an	Oracle	database	with	Data
Protector.	Finally,	you	will	learn	how	to	set	up	synchronization	between	Oracle	RMAN
Metadata	and	Data	Protector	Media	Management	Database.

Integration	of	Oracle	and	Data	Protector
You	must	properly	integrate	Oracle	and	Data	Protector	in	order	to	run	successful
backup/restore	operations.	To	integrate	them,	therefore,	you’ll	now	learn	about	the	support
matrix	and	the	integration	components,	and	do	a	workshop	on	integration	configuration.

Support	Matrix
At	the	time	of	writing,	HP	Data	Protector	9.0	supports	Oracle	12c	(64-bit)	Recovery
Manager	on	the	following	operating	systems:

			Windows	Server	2008	(64-bit;	x64)

			Windows	Server	2008	R2	(64-bit;	x64)

			Windows	Server	2012	(64-bit;	x64)

			Windows	Server	2012	R2	(64-bit;	x64)

			RHEL	Advanced	Server	6.4	(64-bit;	x64)

			Oracle	Enterprise	Linux	6.4	(64-bit;	x64)

			CentOS	6.4	(64-bit;	x64)

Integration	Components
For	Oracle	and	Data	Protector	integration,	RMAN	and	the	Data	Protector	Oracle
Integration	software	work	together	to	accomplish	backup,	copy,	restore,	recovery,	and
duplication	operations.

The	Data	Protector	Oracle	Integration	agent	uses	the	information	in	the	recovery
catalog	or	in	the	control	file	to	determine	how	to	execute	the	requested	backup	and	restore
operations.	By	using	this	integration,	you	can	perform	Oracle	full	and	incremental
backups.	Oracle	incremental	backups	can	be	differential	or	cumulative.	By	default,	Data
Protector	performs	Oracle	differential	incremental	backups.	By	changing	the	default
RMAN	script	created	by	Data	Protector,	you	can	specify	a	cumulative	backup.

With	Data	Protector,	both	online	and	offline	database	backups	can	be	performed.
However,	successful	backups	require	proper	configurations.	For	an	online	database

backup,	the	database	instance	must	be	in	ARCHIVELOG	mode,	and	for	an	offline
database	backup,	the	database	needs	to	be	prepared	for	backup	with	the	Pre-exec	and	Post-
exec	options	in	the	backup	specification.	You	can	use	these	options	for	shutting	down	the
database	or	taking	a	tablespace	offline	before	backup,	and	then	reverse	operations	after
backup.

Here	are	the	components	of	this	integration,	as	shown	in	Figure	25-1:

FIGURE	25-1.			Integration	architecture	of	Oracle	and	Data	Protector

			SM			The	Data	Protector	Session	Manager,	which	manages	the	backup	and
restore	sessions.

			MA			The	Data	Protector	General	Media	Agent,	which	reads	and	writes	data
from	and	to	media	devices.

			Data	Protector	MML			The	Data	Protector	Oracle	Integration	Media

Management	Library,	which	is	a	set	of	routines	that	enables	data	transfer	between
the	Oracle	server	and	Data	Protector.	The	Data	Protector	MML	links	Data	Protector
and	Oracle	server	software.

			Ob2rman.pl			The	Data	Protector	Oracle	Integration	agent,	which	works	with
RMAN	to	manage	all	aspects	of	the	backup/recovery	operations	on	the	Oracle	target
database.

			Backup	API			The	Oracle-defined	application	programming	interface.

			IDB			The	Internal	Database,	where	all	the	information	about	Data	Protector
sessions,	including	session	messages,	objects,	data,	used	devices,	and	media,	is
written.

			RMAN			The	Oracle	Recovery	Manager.

Integration	Restrictions
There	are	a	number	of	restrictions	with	respect	to	the	use	of	Data	Protector.	These

restrictions	include	the	following:

			You	cannot	use	the	RMAN	MAXPIECESIZE	option	in	Data	Protector	and
Oracle	integrated	backups.

			The	Data	Protector	and	Oracle	integration	does	not	support	the	RMAN	disk
backup	of	a	target	database	to	the	Fast	Recovery	Area.	The	Data	Protector	and
Oracle	integration	supports	only	backups	from	the	Fast	Recovery	Area	to	a	backup
device.	However,	you	can	create	an	RMAN	script	that	backs	up	the	target	database
to	the	Fast	Recovery	Area	before	or	after	the	Data	Protector	backs	up	files	from	the
Fast	Recovery	Area	to	a	backup	device.	The	script	can	be	set	up	using	the	Pre-exec
or	Post-exec	option	when	creating	a	backup	specification.

			It’s	not	possible	to	add	databases	with	the	same	database	identifiers	(DBIDs)
into	a	Data	Protector	Cell.

			In	a	Data	Guard	configuration,	you	cannot	add	only	one	standby	database	to
Data	Protector	Cell	without	configuring	the	primary	database.

			Logical	standby	database	backup	is	not	supported.

			Recovery	Catalog	database	is	required	for	Data	Guard	integrations.

			The	Data	Protector	and	Oracle	integration	does	not	support	non-ASCII
characters	in	backup	specification	names.

RMAN	Workshop:	Integration	Configuration
Workshop	Notes
To	run	a	successful	RMAN	backup	of	an	Oracle	Database	using	Data	Protector
Integration,	you	should	have	the	Oracle	target	database	mounted	or	opened,	the
recovery	catalog	database	configured	and	opened	(if	being	used),	Oracle	Net
Services	properly	configured,	and	Data	Protector	Disk	Agent,	Media	Agent,	and

Oracle	Integration	installed	on	the	server	the	target	database	resides	on.

NOTE

In	RAC	databases	with	Oracle	version	11.2.0.2	and	later,	the	control	file
must	be	created	on	a	shared	disk	and	be	accessible	from	all	RAC	nodes,	and
the	OB2_DPMCTL_SHRLOC	environment	variable	must	point	to	this
location,	from	where	the	control	file	is	backed	up.

In	this	Workshop,	it	is	assumed	that	devices	and	media	are	ready	for	use	and	that
Data	Protector	Cell	Manager	is	installed	and	properly	configured.	HP	Data	Protector
Manager	software,	which	may	reside	in	a	PC,	will	be	used	to	configure	the
integration.	Oracle	Database	is	on	a	Linux	host.

Step	1.			First	you	must	install	the	Data	Protector	agent	to	the	target	database	server.
This	can	be	done	locally	or	remotely	if	an	installation	server	is	ready	for	the
necessary	operating	system.	In	this	Workshop	we’ll	install	the	Data	Protector	agent
locally.

a.			Insert	and	mount	the	Unix	installation	DVD-ROM	or	ISO	image.

b.			Run	omnisetup.sh,	which	is	under	the	LOCAL_INSTALL	directory.

NOTE

You	can	use	the	[-server	name]	syntax	to	import	the	client	to	the	Cell
Manager,	where	name	is	a	full	hostname	of	the	Cell	Manager.	If	you	don’t
use	the	-server	option,	you	can	still	import	the	client	after	the	installation,
as	specified	in	Step	2.

c.			Installer	will	ask	for	the	components	you	want	to	install.	Select	Disk
Agent	(da),	Media	Agent	(ma),	and	Oracle	Integration	(oracle8)	components.

d.			Setup	informs	you	if	the	installation	was	completed.

Step	2.			When	the	agent	is	installed	locally	and	not	imported	to	the	Cell	Manager
using	the	-server	option,	execute	this	step	to	import	the	target	database	server	as	a
client	to	the	Cell	Manager.

a.			Run	HP	OpenView	Storage	Data	Protector	Manager	Software	and
connect	the	Cell	Manager.

b.			In	the	context	list,	select	Clients,	and	in	the	Scoping	pane,	right-click
Clients	and	then	click	Import	Client.

c.			Type	the	IP	or	host	name	(if	it	can	be	resolved)	of	the	target	server	in
the	Name	box	and	click	Finish.

Step	3.			You	must	add	the	Oracle	database	software	owning	account	(typically	with
username	oracle)	to	the	Data	Protector	admin	user	group.

a.			Run	HP	OpenView	Storage	Data	Protector	Manager	Software	and
connect	the	Cell	Manager.

b.			In	the	context	list,	select	Users,	and	in	the	Scoping	pane,	right-click	the
admin	group	and	then	click	Add/Delete	Users.

c.			In	the	Add/Delete	Users	interface,	select	Type	as	UNIX.	Then	type	the
username	and	select	<Any>	as	the	UNIX	Group.

d.			Click	the	right	double	arrows	and	then	click	Finish.

NOTE

You	do	not	need	to	link	Oracle	Server	with	the	Data	Protector	MML
manually,	which	is	required	in	former	releases.	When	you	start	backups	or
restores	using	the	Data	Protector	GUI	or	CLI,	Data	Protector
automatically	links	Oracle	Server	with	the	correct	platform-specific	Data
Protector	MML.

RMAN	Backup	Configuration	on	Data	Protector
To	configure	an	Oracle	RMAN	backup	configuration	on	Data	Protector,	decide	which
devices,	media	pool,	and	media	will	be	used	for	that	backup	operation.	Then	you	can
create	the	Data	Protector	Oracle	backup	specification.

Data	Protector	offers	database	backup	templates	that	can	be	used	when	creating	the
backup	specification.	You	can	also	create	templates	tailored	to	your	needs.

RMAN	Workshop:	Backup	Configuration
Workshop	Notes
Now	that	you	have	added	the	target	host	to	Data	Protector	successfully,	you	can
define	a	backup	specification.	Using	this	specification,	you	will	be	able	to	start	the
backup	immediately	or	to	schedule	it	to	run	within	a	specific	period.

Step	1.			Run	HP	OpenView	Storage	Data	Protector	Manager	and	connect	the	Cell
Manager.

Step	2.			In	the	context	list,	select	Backup;	in	the	Scoping	pane,	expand	Backup
Specifications.	Then,	right-click	Oracle	Server	and	click	Add	Backup.

Step	3.			In	the	Create	New	Backup	window,	you	can	select	one	of	the	predefined
backup	templates,	or	select	Blank	Backup	to	specify	backup	operation	details	later.
Select	Blank	Oracle	Backup	and	click	OK.

Step	4.			In	the	next	window,	Data	Protector	asks	for	client,	application	database,
username,	and	group	name	information.	Specify	the	client	on	which	the	target
database	resides,	the	SID	of	the	target	database,	the	username,	and	the	name	of	the
group	that	owns	the	Oracle	instance,	as	shown	here.	Click	Next.

Step	5.			In	the	Configure	Oracle	window,	specify	information	about	the	target
database.	On	the	General	tab,	specify	the	Oracle	Server	home	directory,	as	shown
here.

On	the	Primary	tab,	specify	username,	password,	and	service	information.	Don’t
forget	that	this	user	must	have	been	granted	Oracle	SYSDBA	privilege.	Service	is
the	name	used	to	identify	a	SQL*Net	server	process	for	the	target	database.	The
Catalog	tab	requires	the	username,	password,	and	service	information	for	the
Catalog	database	if	it’s	being	used.	The	last	tab,	Standby,	is	necessary	to	fill	if	the
Oracle	Data	Guard	environment	is	in	use	and	will	be	backed	up.	Click	OK.

Step	6.			This	step	asks	you	to	specify	which	components	of	the	database	you	want
to	back	up.	Because	you	selected	Blank	Backup	in	Step	3,	you	will	see	all
components	unchecked.	Select	the	components	you	want	to	back	up	and	then	click
Next.

Step	7.			Now,	Data	Protector	asks	you	which	hardware	will	be	used	for	this	backup.
Select	the	drive	you	want	to	use,	as	shown	here.	If	you	defined	it	earlier,	you	can
also	specify	the	media	pool	that	will	be	used	for	the	backup.	Select	the	drive	and
click	Properties.	You’ll	see	a	drop-down	menu	to	select	a	media	pool.	Make	your
choice	and	click	Next.

Step	8.			This	step	allows	you	to	specify	detailed	configuration.	As	you	can	see	in
the	following	illustration,	the	three	categories	each	have	an	Advanced	button.	You
can	define	pre-	and	post-execution	scripts	under	Backup	Specification	Options.	You
can	define	backup	objects’	protection	and	report	level	under	Common	Application
Options.	Lastly,	you	can	see	an	overview	of	the	prepared	RMAN	script	and
disable/enable	Data	Protector–managed	control	file	backup	under	Application
Specific	Options.	Make	your	selections	and	click	Next.

Step	9.			You	can	schedule	the	configured	backup	in	this	step.	Specify	the	dates	and
times	that	you	want	backups	performed.	You	can	also	configure	the	incremental
level	of	backups	in	this	stage.	For	example,	create	two	schedule	tasks	by	clicking
Add:

			Level	0	backup	on	Sundays

			Level	1	incremental	backup	on	the	other	days

The	schedule	will	look	like	what’s	shown	here.

Select	the	Holiday	box	if	you	want	to	indicate	that	you	do	not	want	scheduled
backups	to	run	on	holidays.	When	you	want	to	disable	the	whole	schedule	for	a
backup,	you	can	use	the	Disable	Schedule	checkbox.

Step	10.			This	last	step	gives	you	three	options:

			Save	As			Save	the	newly	created	backup/template.

			Start	Backup			Begin	an	interactive	backup	with	the	current	backup
specification.

			Start	Preview			Begin	an	interactive	preview	(test)	of	the	backup	with
the	current	backup	specification.

If	you	choose	to	save	the	backup	specification,	you	can	also	preview	or	start	the
backup	later.

Editing	the	RMAN	Script
You	can	edit	the	RMAN	script	section	only	after	the	Data	Protector	Oracle	backup
specification	has	been	saved.

To	manually	edit	the	RMAN	script,	in	the	context	list,	select	Backup;	in	the	Scoping
pane,	expand	Backup	Specifications.	Then	expand	Oracle	Server	and	click	the	backup
specification	you	will	edit.	On	the	Options	tab,	click	Advanced	in	the	Application	Specific
Options	box.	The	RMAN	script	appears	with	an	Edit	button.

Click	Edit	and	manually	configure	the	script.	You	can	save	the	configuration	by
clicking	OK,	OK,	and	Apply.

By	default,	RMAN	scripts	automatically	created	by	Data	Protector	contain	instructions
for	backing	up	one	or	more	of	the	following	objects:

			Databases,	tablespaces,	or	datafiles

			Archive	logs

			Fast	Recovery	Area

			Control	files

When	you	edit	manually,	the	RMAN	scripts	with	all	combinations	of	the
aforementioned	backup	objects	are	recognized	by	Data	Protector	as	its	own	scripts,	and	it
is	still	possible	to	modify	the	selection	of	objects	that	will	be	backed	up	in	the	Source	tab
by	clicking	the	appropriate	button.

If	the	RMAN	script	contains	additional	manually	entered	backup	commands	(for
example,	a	second	backup	command	for	backing	up	a	database	that	is	already	listed	in	the
first	backup	command),	the	object	selection	is	disabled,	and	it	is	only	possible	to	browse
the	Source	tab.

NOTE

Single	quotes	should	be	used	when	editing	the	RMAN	script.	Double	quotes	(“)
must	not	be	used.

Example	of	the	RMAN	Script
The	following	is	an	example	of	the	RMAN	script	created	by	Data	Protector	based	on	the
Blank	Oracle	Backup	template,	after	the	whole	database	selection:

Running	an	RMAN	Backup
Now	that	you’ve	integrated	Oracle	with	Data	Protector	and	configured	an	RMAN	backup
on	Data	Protector,	you’ll	learn	how	to	run	an	RMAN	backup	of	a	Data	Protector
integrated	Oracle	database.

Backup	Methods
To	start	an	RMAN	backup	of	a	Data	Protector	integrated	Oracle	database,	you	can	choose
from	these	three	methods:

			Use	either	the	Data	Protector	GUI	or	the	Data	Protector	CLI	to	start	an
interactive	backup	of	a	predefined	Oracle	backup	specification.

			Use	the	Data	Protector	Scheduler	to	schedule	a	backup	of	a	predefined	Oracle
backup	specification.

			Use	either	Oracle	Recovery	Manager	or	Oracle	Enterprise	Manager	to	start	a
backup	on	the	Oracle	server.

Running	an	Interactive	Backup
To	start	an	interactive	backup	of	an	Oracle	database	using	the	Data	Protector	GUI,	follow
these	steps:

1.			In	the	HP	OpenView	Storage	Data	Protector	Manager	(Data	Protector	GUI),
select	Backup	in	the	drop-down	menu.

2.			In	the	left	pane,	choose	Backup	|	Backup	Specifications	|	Oracle	Server.

3.			Right-click	the	backup	specification	you	want	to	start	and	select	Start
Backup.

Scheduling	a	Backup

To	schedule	an	Oracle	backup	specification,	follow	these	steps:

1.			In	the	HP	OpenView	Storage	Data	Protector	Manager,	select	Backup	in	the
drop-down	menu.

2.			In	the	left	pane,	choose	Backup	|	Backup	Specifications	|	Oracle	Server.

3.			Double-click	the	backup	specification	you	want	to	schedule	and	click	the
Schedule	tab.

4.			In	the	Schedule	page,	select	a	date	in	the	calendar	and	then	click	Add	to	open
the	Schedule	Backup	dialog	box.

5.			Specify	the	necessary	scheduling	options.

Starting	Oracle	Database	Backup	Using	RMAN	or	Enterprise	Manager
You	can	also	use	the	RMAN	CLI	or	Enterprise	Manager	to	perform	backups	of	Data
Protector	integrated	databases.	To	use	Data	Protector	backup	media	in	Oracle	database
backups,	you	must	set	the	channel	type	as	SBT_TAPE	and	specify	the	OB2BARTYPE,
OB2APPNAME,	and	OB2BARLIST	variables:

Backup	Procedure
When	a	backup	is	started	with	Data	Protector,	the	following	happens	in	the	background:

1.			Data	Protector	executes	ob2rman.pl,	which	starts	RMAN	on	the	client	and
sends	the	preconfigured	RMAN	script.

2.			RMAN	contacts	the	Oracle	server,	which	contacts	Data	Protector	via	the
MML	interface	and	initiates	the	backup.

3.			During	the	backup	session,	the	Oracle	server	reads	data	from	the	disk	and
sends	it	to	Data	Protector	for	writing	to	the	backup	device.

At	these	stages,	messages	from	the	Data	Protector	backup	session	and	messages	generated
by	Oracle	are	logged	to	the	Data	Protector	database.

Restoring	Oracle	Using	the	Data	Protector	GUI
You	can	restore	the	following	database	objects	by	using	both	the	Data	Protector	GUI	and
RMAN:

			Control	files

			Datafiles

			Tablespaces

			Databases

			Recovery	catalog	databases

You	can	also	duplicate	a	database	by	using	the	Data	Protector	GUI.	You	need	to	create
an	Oracle	instance	in	order	to	restore	or	duplicate	a	database.

Before	you	restore	any	database	item	or	you	duplicate	a	database,	ensure	that	the
database	is	in	the	correct	state:

NOTE

When	you	are	restoring	only	a	few	tablespaces	or	datafiles,	the	database	can
be	open	with	the	tablespaces	or	datafiles	to	be	restored	offline.

For	a	restore,	RMAN	scripts	are	generated	and	executed,	depending	on	selections	made
in	the	GUI.	If	you	want	to	perform	additional	actions,	you	cannot	edit	the	RMAN	restore
script,	but	you	can	perform	the	actions	manually	from	RMAN	itself.

Restoring	the	Control	File
To	restore	the	control	file,	follow	these	steps:

1.			Open	the	SQL*Plus	window	and	put	the	database	in	the	nomount	state.

2.			In	the	Data	Protector	GUI,	switch	to	the	Restore	context.

3.			Under	Restore	Objects,	expand	Oracle	Server,	expand	the	system	on	which
the	database	for	which	you	want	to	restore	the	control	file	resides,	and	then	click
the	database.

4.			In	the	Restore	Action	drop-down	list,	select	Perform	RMAN	Repository
Restore.	In	the	Results	area,	select	the	preferred	control	file	restore	option,	as
shown	in	Figure	25-2.

FIGURE	25-2.			Control	file	restore	options

Depending	on	the	type	of	the	control	file	backup,	the	types	of	restore	described	in	the
following	sections	are	possible	when	you	are	restoring	the	control	file.

Restoring	from	Data	Protector	Managed	Control	File	Backup
When	you	restore	a	control	file	that	was	backed	up	with	Data	Protector,	you	should	know
a	few	things.	First,	a	recovery	catalog	is	not	required.	Also,	the	control	file	will	be	restored
to	the	default	Data	Protector	temporary	files	directory.	Then,	you	will	need	to	execute	the
following	RMAN	script	to	complete	the	restore:

Here,	TMP_FILENAME	is	the	location	to	which	the	file	was	restored.

Restoring	from	RMAN	Autobackup
			The	control	file	must	be	automatically	backed	up	by	RMAN.

			The	recovery	catalog	is	not	required.

Restoring	from	RMAN	Backup	Set
			The	recovery	catalog	is	required.

Restoring	Standby	Control	File	from	RMAN	Backup	Set
If	you	restore	a	standby	database	(not	using	duplication),	you	must	restore	this	type	of
control	file.	A	backup	session	can	contain	more	than	one	type	of	the	control	file	backup.
Here	are	the	steps	to	follow:

1.			In	the	Options	page,	from	the	Client	drop-down	list,	select	the	system	on
which	the	Data	Protector	Oracle	Integration	agent	(ob2rman.pl)	will	be	started.	To
restore	the	control	file	to	a	different	database	than	is	selected,	click	Settings	and
specify	the	login	information	for	the	target	database.

2.			Set	the	other	restore	options.

3.			Click	Restore.

4.			Proceed	with	restoring	the	Oracle	database	objects.

Restoring	Oracle	Database	Objects
To	restore	Oracle	database	objects,	follow	these	steps:

1.			Put	the	database	in	the	mount	state.

2.			In	the	Data	Protector	GUI,	switch	to	the	Restore	context.

3.			Under	Restore	Objects,	expand	Oracle	Server,	expand	the	client	on	which	the
database	for	which	you	restore	the	database	objects	resides,	and	then	click	the
database.

4.			In	the	Restore	Action	drop-down	list,	select	the	type	of	restore	you	want	to
perform.

5.			In	the	Results	area,	select	objects	for	restore.	If	you	are	restoring	datafiles,
you	can	restore	the	files	to	a	new	location.	Right-click	the	database	object,	click
Restore	As,	and	in	the	Restore	As	dialog	box	specify	the	new	datafile	location.

NOTE

When	you	are	restoring	to	a	new	location,	current	datafiles	will	be	switched	to
the	restored	datafile	copies	only	if	you	have	selected	Perform	Restore	and
Recovery	from	the	Restore	Action	drop-down	list.

6.			In	the	Options	page,	from	the	Client	drop-down	list,	select	the	client	on
which	the	Data	Protector	Oracle	Integration	agent	will	be	started.	To	restore	the
database	objects	to	a	different	database	than	is	selected,	click	Settings	and	specify
the	login	information	for	the	target	database.

7.			In	the	Devices	page,	select	the	devices	to	be	used	for	the	restore.

8.			Click	Restore.

Oracle	RMAN	Metadata	and	Data	Protector	Media
Management	Database	Synchronization
The	RMAN	metadata,	which	can	be	stored	either	in	the	recovery	catalog	database	or	in	the
control	files,	contains	information	about	the	target	database.	RMAN	uses	this	information
for	all	backup,	restore,	and	maintenance	operations.

Data	Protector	has	its	own	data	protection	policy	that	is	not	automatically	synchronized
with	Oracle	RMAN	metadata.	To	have	both	catalogs	synchronized,	run	the	following
command	using	RMAN:

RMAN	will	check	all	backup	information	in	its	repository	and	query	the	Data	Protector
Internal	Database	for	the	availability	of	the	backup	pieces.	RMAN	then	marks	the	backup
piece	as	expired	or	available,	depending	on	media	availability.	RMAN	will	not	delete	the
backup	information	in	its	repository	if	it	is	expired	in	the	Data	Protector	Internal	Database,
but	instead	marks	it	as	expired	in	the	RMAN	repository	as	well.

In	order	to	delete	expired	backup	objects	from	the	recovery	catalog	database,	run	the
following	command	using	RMAN:

Summary

This	chapter	has	given	you	an	overview	of	using	HP	Data	Protector	software	for	Oracle
RMAN	operations.	After	configuring	the	integration	properly,	as	well	as	preparing	and
scheduling	backup	configurations	that	meet	your	backup	needs,	you	will	find	it	easy	to
manage	the	backup/restore	operations.

CHAPTER
26

RMAN	and	Tivoli	Storage	Manager

I
f	you	already	use	Tivoli	Storage	Manager	(TSM)	for	backing	up	files	in	your	enterprise,
taking	the	next	step	and	using	TSM	to	back	up	your	Oracle	database	makes	a	lot	of
sense:	you	not	only	can	leverage	an	existing	data	protection	asset,	but	also	get	a
seamless	connection	from	Oracle’s	RMAN	utility	to	TSM.	With	only	a	few	minor
modifications	to	your	RMAN	scripts	and	a	straightforward	one-time	TSM	client

installation,	you	won’t	even	know	that	the	tape	or	disk	drive	you’re	using	for	backup	is	on
a	different	server.	In	your	DBA	role,	you	may	never	even	have	to	run	a	TSM	console
command.

In	this	chapter	we’ll	cover	a	number	of	topics	related	to	TSM,	the	TSM	client	in
general,	and	the	add-on	module	known	as	Tivoli	Data	Protection	for	Oracle	(TDPO).
First,	we’ll	give	you	a	brief	overview	of	the	TSM	architecture	and	how	an	Oracle	client
connects	to	it.	Your	in-depth	involvement	with	TSM	begins	when	you	must	test	and
configure	TDPO	on	the	server	where	you	will	perform	the	RMAN	backup	commands.

Throughout	this	chapter,	we’ll	briefly	cover	a	couple	of	TSM	and	Oracle	client	utilities
that	you	will	use	to	perform	initial	and	routine	configuration	and	monitoring	tasks.	We’ll
next	perform	a	couple	of	backups	using	RMAN	and	see	the	effect	of	these	backups	in	the
storage	pool	assigned	to	your	TSM	Oracle	client.	At	the	end	of	the	chapter,	we	will	cover
a	couple	common	problems	you	might	encounter	in	backing	up	Oracle	databases	with
TSM	and	TDPO	and	how	to	resolve	them.

Overview	of	Tivoli	Storage	Manager
TSM	is	a	multitiered	architecture:	when	you	use	it	to	back	up	an	Oracle	database,	you	may
have	as	many	as	four	tiers.	In	contrast,	you	could	host	all	tiers	on	a	single	server,	but	this
is	not	recommended	in	a	distributed	environment	where	you	want	to	keep	your	backup
server	separate	from	the	server	whose	data	you	want	to	back	up.

Figure	26-1	is	a	diagram	of	a	typical	TSM	environment.	In	the	next	few	sections	we’ll
drill	down	into	a	few	of	the	components	shown	in	Figure	26-1	and	explain	some	TSM
concepts	along	the	way.

FIGURE	26-1.			TSM	architecture

Table	26-1	outlines	the	nodes	shown	in	Figure	26-1.	These	nodes	are	used	in	the
examples	throughout	this	chapter	to	show	you	how	you	can	distribute	the	TSM
components	across	your	network.

TABLE	26-1.			TSM	Node	Names	and	Roles

TSM	Server	System	Objects
The	multilevel	structure	of	system	objects	in	a	TSM	server	makes	it	easy	to	optimally
configure	your	backups	for	each	of	the	various	data	sources	in	your	environment.	For	the
same	reason,	this	flexible	hierarchy	also	makes	it	easy	to	assign	a	specific	configuration	to

unrelated	data	sources!	Figure	26-2	shows	the	relationship	between	TSM	system	objects
as	well	as	the	types	and	number	of	objects	that	a	client	uses	on	any	given	TSM	server.

FIGURE	26-2.			Client/TSM	relationship	and	TSM	system	objects

At	the	highest	level	is	the	policy	domain:	a	policy	domain	consists	of	one	or	more
policy	sets,	and	each	policy	set	consists	of	one	or	more	management	classes.	Each
management	class	can	have	one	archive	copy	group	and	one	backup	copy	group.	We’ll	tell
you	more	about	each	of	these	objects	in	the	following	sections.

Policy	Domain
A	policy	domain	is	a	group	of	clients	with	similar	requirements	for	backing	up	and
archiving	data.	You	might	use	a	policy	domain	for	everyone	in	a	particular	department,	a
particular	building	or	floor,	or	all	users	of	a	specific	file	server.

A	default	TSM	installation	includes	one	default	policy	domain	called	standard.	For	the
examples	later	in	this	chapter,	we	will	use	the	standard	policy	domain.	You	assign	backup
clients	to	a	policy	domain.

Policy	Set
A	policy	set	is	a	group	of	management	classes.	Each	policy	domain	can	contain	one	or
more	policy	sets,	but	only	one	policy	set	in	a	policy	domain	can	be	active	at	any	given
time.	You	use	policy	sets	to	easily	switch	between	available	management	classes.

Management	Class
A	management	class	is	a	collection	of	zero,	one,	or	two	copy	groups.	You	designate	one

management	class	within	a	policy	set	as	the	default	management	class.	You	typically	use
management	classes	to	partition	client	data	based	on	its	criticality	to	the	business,	how
frequently	it	changes,	or	whether	the	data	must	be	retained	indefinitely.	A	management
class	can	have	at	most	one	backup	copy	group	and	at	most	one	archive	copy	group.

Backup	Copy	Groups	and	Archive	Copy	Groups
A	copy	group	specifies	the	common	attributes	that	control	these	characteristics	of	a
backup	or	archive	file:

			Generation			How	many	copies	of	each	file	are	retained

			Destination			Which	storage	pool	will	contain	the	backup

			Expiration			When	a	file	will	be	deleted	because	the	expiration	date	or
retention	period	has	passed

A	backup	copy	group	contains	attributes	that	control	whether	a	file	that	has	changed
since	the	last	backup	is	backed	up	again,	how	many	days	must	elapse	before	a	file	is
backed	up	again,	and	how	a	file	is	processed	if	it	is	in	use	during	a	backup.	In	contrast,	an
archive	copy	group	contains	attributes	that	control	whether	a	file	is	archived	if	it	is	in	use,
where	the	server	stores	archived	copies	of	the	files,	and	how	long	the	server	keeps
archived	copies	of	the	files.	TDPO	only	uses	backup	copy	groups	for	Oracle	backups.

TSM	Client
You	install	the	client	piece	of	TSM,	which	includes	the	TSM	API,	on	any	server	that	needs
to	use	a	TSM	server	for	backup	or	recovery.	Also	included	in	an	installation	on	an	Oracle
server	is	the	RMAN	library	interface	to	TSM:	Tivoli	Data	Protection	for	Oracle	(TDPO).

Using	TDPO,	RMAN	can	back	up	these	database	objects	to	TSM:

			Databases

			Tablespaces

			Datafiles

			Archived	log	files

			Control	files

			Spfiles

Plus,	you	can	perform	a	full	database	restoration	while	the	database	is	offline;	you	can
perform	tablespace	or	datafile	restores	while	the	database	is	either	online	or	offline.

The	server	oc1	is	a	client	node	in	an	Oracle	Real	Application	Clusters	(RAC)	database
in	Figure	26-1	and	is	a	client	of	TSM	on	server	tsm01.

RMAN	Workshop:	Configuring	TDPO	for	Oracle
For	this	Workshop	you	will	need	an	operational	TSM	server	and	client	environment
and	Oracle	database	home	installed.	The	latest	and	greatest	version	available	is	the

IBM	Tivoli	Storage	Manager	for	Databases:	Data	Protection	for	Oracle	Version	7.1.

Step	1.			To	install	TDPO	on	your	Oracle	server,	you	need	to	install	the	following
RPM	packages:

			Data	Protection	for	Oracle	Linux	x86_64	base	code,	license,	utilities:
TDP-Oracle.x86_64.bin			This	contains	the	libraries	and	link	definitions	that
Oracle	RMAN	will	use	to	connect	to	TSM.

			Tivoli	Storage	Manager	API	Linux	x86_64:	TIVsm-
API64.i386.rpm			This	installs	the	application	program	interface	(API)
libraries	to	support	TDPO	or	any	other	application	that	will	programmatically
access	TSM.

Step	2.			The	next	step	is	to	register	the	client	oc1	on	the	TSM	server	using	the	TSM
console:

Note	that	we’re	setting	maxnummp=2,	which	specifies	the	maximum	number	of
parallel	sessions	that	the	client	can	use	when	backing	up	to	tape.	Even	though	we’re
using	disk	drives	for	backup	in	these	examples,	it’s	a	good	idea	to	define	the
parallelism	you	need	on	those	occasions	when	you	do	back	up	to	tape.	Note	that
orabakpw	is	the	password	for	this	node.

Registering	a	client	node	also	creates	an	administrative	account	that	you	can	use
to	connect	to	the	TSM	server;	however,	creating	individual	server	accounts	for	each
administrator	gives	you	more	control	over	privileges	assigned	to	each	administrator,
as	well	as	more	precise	auditing	information	when	an	administrator	changes	the
TSM	server’s	configuration.

Step	3.			Define	TDPO	options.	On	the	Oracle	client	node	oc1,	change	to	the
directory	/opt/tivoli/tsm/client/oracle/bin64	and	then	copy	tdpo.opt.smp	(the	sample
file)	to	tdpo.opt.	The	file	tdpo.opt,	as	you	might	expect,	defines	the	TDPO-specific
options,	such	as	how	TDPO	will	connect	to	the	TSM	server.	Uncomment	the	line
beginning	with	TDPO_NODE	and	replace	<hostname>	with	the	name	of	the	TSM
client	node.	In	this	example,	we	will	use	oc1_oracle.	In	addition,	uncomment	the
lines	beginning	with	DSMI_ORC_CONFIG	and	DSMI_LOG	if	you	installed	TDPO
in	a	directory	different	from	the	default	location.	Your	tdpo.opt	file	should	now	look
like	this:

Step	4.			Create	dsm.sys.	The	file	dsm.sys	defines	how	to	connect	to	each	TSM
server,	specifying	the	port	number,	TCP/IP	address,	and	so	forth.	Copy	the	file
/opt/tivoli/tsm/client/api/bin64/dsm.sys.smp	to
/opt/tivoli/tsm/client/oracle/bin64/dsm.sys	and	change	the	values	as	follows:

The	IP	address	192.168.2.69	is	the	address	of	the	server	tsm01.	To	avoid
manually	entering	a	password	for	every	backup,	you	will	use	the	tdpoconf	utility
later	in	this	chapter	to	create	a	password	file	that	TDPO	will	use	to	authenticate	with
the	TSM	server.

Step	5.			Create	dsm.opt.	The	file	dsm.opt	defines	the	TSM	server	name	you	will	use
for	backups	on	this	node.	In	the	directory	/opt/tivoli/tsm/client/oracle/bin64,	create	a
file	with	one	line,	as	follows:

Step	6.			To	enable	the	RMAN	catalog’s	archiving	and	expiration	settings	to	control
backup	retention	on	the	TSM	server,	update	the	configuration	for	node	oc1_oracle
on	the	TSM	node	by	using	this	console	command:

Step	7.			Configure	TSM	copy	group	options.	Since	RMAN	creates	different	backup
filenames	for	each	backup	file	it	creates,	all	backup	objects	saved	to	the	TSM
backup	storage	pool	have	unique	filenames,	and	therefore	they	will	never	expire.	As
a	result,	you	must	set	the	copy	group	attribute	verdeleted	to	0	so	that	TDPO	can
remove	unwanted	backup	objects	from	the	TSM	backup	storage	pool	when	an
RMAN	command	or	policy	sets	the	backup	object	to	an	inactive	or	expired	state.
The	parameter	verdeleted	specifies	the	maximum	number	of	backup	versions	to
retain	for	files	that	have	been	deleted	from	the	client;	therefore,	setting	this	value	to

0	ensures	that	the	expired	backup	files	on	the	TSM	server	are	deleted	the	next	time
expiration	processing	occurs.

In	this	example,	you	are	using	the	default	copy	group	for	your	TDPO	backups,	so
you	set	the	option	verdeleted	as	follows	using	TSM	console:

Step	8.			Generate	the	tdpo	password	file.	To	ensure	that	you	do	not	have	to
interactively	specify	a	password	for	every	RMAN	backup	to	the	TSM	server,	use	the
tdpoconf	utility	as	follows:

The	tdpoconf	utility	creates	or	updates	an	encrypted	password	file	called
/opt/tivoli/tsm/client/oracle/bin64/TDPO.oc1_oracle.

Step	9.			You	need	to	create	a	symbolic	link	to	the	TSM	library	functions	in	Oracle’s
default	library	directory,	as	follows:

The	RPM	utility	has	no	way	of	knowing	where	your	Oracle	executables	and
libraries	are	stored,	so	you	must	define	this	link	manually.	If	you	have	multiple
Oracle	homes,	you	need	to	create	the	link	in	each	home	that	you	want	to	be	able	to
use	TDPO	in.

Libobk	is	the	generic	name	for	the	library	file.	Each	backup	vendor	that	wants	to
interface	with	RMAN	will	provide	a	library	file	that	is	linked	to	the	libobk	file.

Step	10.			Test	TDPO	connectivity.	To	ensure	that	you	can	establish	a	connection	to
the	TSM	server,	use	the	sbttest	utility.	You	can	find	sbttest	in	the	directory
$ORACLE_HOME/bin.	Here,	tdpo_check	is	the	backup_file_name	created	by	this

program:

Performing	an	RMAN	Backup	Using	TDPO
Now	that	the	TDPO	setup	is	complete,	you’re	ready	to	perform	your	first	RMAN	backup.
You’ll	use	the	allocate	channel	command	in	an	RMAN	session	to	define	the	backup
location;	even	though	your	channel	type	is	always	sbt_tape,	the	actual	backup	device	on
the	TSM	server	could	be	a	disk,	a	writable	DVD,	or	a	physical	tape	drive;	RMAN	doesn’t
know	and	you	don’t	care	what	physical	device	will	contain	the	backup,	as	long	as	you	can
recover	the	database	when	disaster	strikes!

In	this	first	example,	you	back	up	just	the	USERS	tablespace	to	TSM:

The	only	bit	of	extra	work	you	need	to	do	to	back	up	to	TSM	is	to	specify	the	location
of	the	TDPO	options	file	in	the	RMAN	env	parameter.	In	this	second	example,	you	back
up	the	entire	database:

Note	that	you	do	not	have	to	specify	where	the	backup	goes	or	what	disk	device	to	use.
TSM	automatically	puts	the	backup	files	into	one	or	more	of	the	storage	pool’s	volumes.

By	querying	the	RMAN	catalog,	you	can	see	both	of	the	backups	you	just	created:

And	finally,	you	can	see	how	much	disk	space	the	backups	are	using	in	the	storage	pool
by	looking	at	the	properties	of	the	storage	pool	volumes,	as	shown	in	Figure	26-3.	You
access	this	page	by	clicking	the	ORACLEPOOL	storage	pool	link	in	Figure	26-4	and	then
clicking	the	Volumes	link	in	Figure	26-5.

FIGURE	26-3.			Querying	storage	pool	volumes

FIGURE	26-4.			Displaying	storage	pools	and	capacity

FIGURE	26-5.			Client	displaying	storage	pool	volumes

What’s	in	a	Name?
TDPO_NODE	can	be	called	almost	anything.	In	environments	with	many	Oracle
databases	that	are	using	TSM	and	TDPO	for	backups,	TDPO_NAME	could	be	the
root	of	why	backups	and	restores	aren’t	working.	If	backups	were	done	with	a
TDPO_NODE	of	oc1_oracle	and	then	a	new	TDPO_NODE	(oc2_oracle)	is	created,
and	if	the	tdpo	file	is	changed	to	use	the	new	TDPO_NAME,	RMAN	would	be
unable	to	access	any	backups	taken	under	oc1_oracle	until	the	TDPO_NODE	is
changed	in	the	tdpo	file	to	oc1_oracle.	Another	common	problem	is	that	the
password	file	for	the	TDPO_NODE	that	is	being	used	isn’t	on	the	database	server.
This	will	cause	both	backups	and	restore	operations	to	fail.

Default	Channels
Although	every	DBA	should	know	how	to	manually	allocate	channels,	it	can	involve	a	lot
of	error-prone	typing,	and	if	you	have	many	databases,	you	may	not	know	which	tdpo	file
to	use.	By	setting	one	parameter,	you	can	back	up	a	database	with	a	simple	backup

database	command	with	no	manual	channel	allocation.	Running	a	show	all	command
from	the	RMAN>	prompt	will	show	the	various	RMAN	options	that	are	configured.	To
back	up	to	TSM	with	automatic	channel	allocation,	we	are	interested	in	only	two	options:
CONFIGURE	DEFAULT	DEVICE	TYPE	TO	'SBT_TAPE'	and	CONFIGURE
CHANNEL	DEVICE	TYPE	'SBT_TAPE'	PARMS.

By	running	the	following	commands	from	the	RMAN	prompt,	we	can	set	default
channels:

After	the	configuration	commands	have	been	run,	backups	are	even	easier:

Deleting	Database	Backups
One	of	the	main	advantages	of	using	RMAN	is	a	common	interface	in	deleting	backups.	It
doesn’t	matter	if	the	backups	are	on	disk	or	tape;	the	same	commands	are	used	to	delete
expired	backups.	Even	though	the	commands	to	delete	backups	are	the	same	when	using
TSM	and	TDPO,	there	are	times	when	additional	cleanup	may	be	needed.	When	you
delete	backups,	you	will	notice	they	are	deleted	very	quickly	regardless	of	their	size.
When	RMAN	tells	TSM	to	delete	backup	files,	TSM	does	not	immediately	delete	the	files
because	the	tape	may	not	be	available	at	the	moment,	or	all	the	tape	drives	could	be	busy.
Therefore,	TSM	marks	the	files	to	be	deleted	and	returns	a	success	code	to	RMAN.	The
TSM	administrator	will	run	a	purge	process	that	actually	deletes	the	files.	If	you	are	using
a	catalog	with	the	tdposync	tool	provided	by	TSM,	it	is	possible	to	compare	what	the
RMAN	catalog	shows	as	deleted	and	what	TSM	has	actually	deleted.

To	launch	tdposync	from	the	default	location	using	the	sample	tdpo	file,	run	the
following:

You	must	have	the	tdpo	file	that	was	used	to	take	the	backups	for	the	comparison	to
work.	After	launching,	tdposync	will	ask	for	a	username,	password,	and	a	connection
string	to	the	RMAN	catalog.	If	more	than	one	RMAN	catalog	holds	backup	records,	add
the	following	parameter:

If	any	discrepancies	are	found	after	the	comparison,	tdposync	will	provide	a	list	and
ask	for	confirmation	before	deleting	the	files	from	TSM.

Troubleshooting	Common	Backup	Scenarios
Backing	up	an	Oracle	database	using	TSM	involves	four	parts:	RMAN,	Oracle,	O/S,	and

TSM—each	of	which	can	fail	and	report	errors.	When	you	use	the	RMAN	console	at	first,
it	can	be	difficult	to	know	which	of	the	four	parts	is	reporting	the	error	because	errors
from	all	sources	are	returned	to	the	RMAN	console.	In	the	next	example,	O/S,	Oracle,	and
RMAN	errors	are	returned	after	a	simple	backup	database	was	issued:

It	is	usually	best	to	take	a	bottom-up	approach	when	reading	the	error	messages:

6.			RMAN-03002:	failure	of	backup	command

5.			RMAN-03014:	implicit	resync	of	recovery	catalog	failed

4.			RMAN-06403:	could	not	obtain	a	fully	authorized	session

3.			ORA-01034:	ORACLE	not	available

2.			ORA-27101:	shared	memory	realm	does	not	exist

1.			Linux-x86_64	Error:	2:	No	such	file	or	directory

Line	1	is	an	O/S	error	that	was	returned	to	Oracle.	In	this	case,	it	doesn’t	prove	too
helpful	in	resolving	the	problem.	Lines	2	and	3	provide	the	answer	and	should	be
recognizable	to	Oracle	DBAs.	“ORA-27101:	shared	memory	realm	does	not	exist”	means
the	database	instance	was	not	running,	and	therefore	RMAN	could	not	connect	to	the
database.

The	first	example	could	happen	whether	or	not	you	are	using	TSM.	The	next	scenario
will	introduce	an	error	only	if	you	are	using	TSM.	We	begin	with	an	RMAN	run	block	that
allocates	a	channel,	backs	up	the	archive	logs,	deletes	them,	and	then	releases	the	channel.

Again,	starting	with	the	bottom-up	approach,	we	read	the	error	messages	starting	with
1:

4.			ORA-19506:	failed	to	create	sequential	file,	name=“a400_9ikk7ac3_1_1”,
parms=””

3.			ORA-27028:	skgfqcre:	sbtbackup	returned	error

2.			ORA-19511:	Error	received	from	media	manager	layer,	error	text:

1.			ANS1353E	(RC53)	Session	rejected:	Unknown	or	incorrect	ID	entered

ANS	and	ANU	are	errors	returned	by	the	TDPO	library.	Line	3	indicates	RMAN
received	an	error	from	the	media	management	layer	(TDPO	library).	Lines	2	and	1	are
again	RMAN	saying	that	it	failed	to	create	the	backup	file	of	the	archive	logs.	ANU	and
ANS	errors	can	be	time	consuming	to	troubleshoot	because	many	configuration	and
parameter	files	and	settings	have	to	be	checked,	as	well	as	many	different	TSM	errors	that
can	be	returned.	From	the	error	message	returned	in	Step	1,	“Session	rejected,”	we	can
assume	a	connection	was	made	from	RMAN	to	TSM	and	TSM	rejected	the	session.	Many
different	causes	may	result	in	a	session	being	rejected;	in	this	case,	it	is	a	lack	of	a
password	file	for	the	tdpo	node.	As	mentioned	earlier	in	the	chapter,	to	back	up	or	restore
an	RMAN	backup,	a	tdpo	node	name	and	password	are	supplied	to	TSM.	To	quickly
troubleshoot	this	error,	check	the	tdpo	options	file	for	the	tdpo	name	that	RMAN	is	using,
and	then	also	check	to	ensure	RMAN	can	access	the	password	file	for	the	tdpo	name.	Also
look	in	the	dsm.sys	file	for	the	parameter	ERRORLOGNAME.	This	will	tell	you	the	path
to	the	file	where	TDPO	will	save	error	information	and	may	provide	more	details.	Your
storage	administrator	may	also	be	able	to	see	if	the	session	rejection	message	in	the	TSM
logs	fails	and	may	be	able	to	provide	additional	details.

Additional	Troubleshooting
To	turn	on	or	off	debug	involves	a	simple	debug	on;	or	debug	off;	command.	Once	debug
is	on,	we	need	to	inform	RMAN	what	additional	debug	information	is	to	be	collected.	On
the	allocate	channel	command,	trace=1	is	used	to	create	trace	files	in	the
user_dump_destination	directory.	Also	on	the	allocate	channel	command,	the	debug=2
instructs	RMAN	to	send	additional	information	to	the	sbtio.log	file.

Summary
Once	you	perform	the	initial	installation	and	setup	of	TSM	and	TDPO	in	a	few	easy	steps,
it’s	a	case	mostly	of	“set	it	and	forget	it,”	allowing	you,	the	DBA,	to	focus	more	on	the
RMAN	scripts	themselves	than	on	managing	where	and	how	TSM	stores	the	backups.
When	problems	do	arise,	by	properly	reading	out	an	error,	you	will	quickly	be	able	to
diagnose	backup	failures	and	whether	the	problem	lies	with	the	database	or	with	TSM.

TSM	and	TDPO	not	only	make	it	easy	to	back	up	your	Oracle	database	using	the
familiar	RMAN	interface,	but	they	also	reduce	your	enterprise’s	storage	management
administrative	costs	because	you	can	use	a	single	storage	manager—Tivoli	Storage
Manager—for	all	of	your	backup,	recovery,	and	archival	needs.

CHAPTER
27

RMAN	and	CommVault	Simpana

C
ommVault’s	Simpana	software	is	an	enterprise-wide	data	management	and	backup
solution.	Multiple	options	are	available	for	solving	your	company’s	backup,
storage,	and	archiving	requirements	for	critical	Oracle	database	applications	as
well	as	other	types	of	data,	such	as	e-mail,	SharePoint,	virtual	servers,	and	file
systems.

The	Simpana	interface	was	designed	to	provide	some	of	the	most	robust	support	for	the
widest	range	of	backup	situations	in	most	datacenters.	The	GUI	interface	is	a	complete
management	system	that	allows	total	backup	and	restore	management	of	all	the	protected
data.	The	entire	Oracle	database	environment	can	be	protected	with	this	same	interface	in
a	consistent,	familiar	method.	There	are	many	tightly	integrated	features	supporting	the
most	important	RMAN	functionality.

Configuration	is	simple	and	flexible	and	provides	easy	access	to	complete	data	backup
and	protection	needs.	Whether	the	requirement	is	for	simple	backup	and	restore	to	an
original	source	server	instance	or	as	complex	as	out-of-place	restore,	Duplicate	Database,
RAC	backup	and	restore,	snapshot	protection,	or	Data	Guard	backup,	Simpana	has	many
tightly	integrated	functions	to	provide	support	to	complete	these	actions.

Many	corporate	IT	environments	have	invested	a	large	amount	of	resources	developing
RMAN	scripts	specific	to	their	operations.	These	existing	scripts	can	still	be	utilized	with
minimal	modification	upon	implementation	of	the	Simpana	software.	Other	organizations
may	choose	to	utilize	the	Oracle	Enterprise	Manager	to	execute	backup	and	recovery.	This
does	not	pose	a	problem	utilizing	Simpana	software	for	ongoing	maintenance	should
continuing	use	of	this	already-established	method	to	protect	the	database	be	desired.
Simpana	completely	supports	these	non-Simpana	GUI	methods	of	backup	protection.

Backups	can	be	scheduled	for	regular	protection	at	specific	intervals	through	the	GUI.
The	choice	for	ad-hoc	backup	on	as-needed	basis	can	also	be	utilized	through	the	GUI
interface	provided	by	Simpana.

CommVault	storage	and	data	retention	management	provides	flexible	options	for	the
most	complex	retention	needs.	Backups	can	be	generated	through	different	options	and
utilize	different	retention	criteria.	Different	requirements	within	the	enterprise	are	all
supported	as	a	part	of	the	core	design	of	the	Simpana	software.

If	complex	business	processes	should	be	involved	with	variable	business	rules	for
backup	and	restore,	CommVault	Simpana	provides	an	interface	such	as	Workflow
management.	Workflow	is	an	activity	task	process	interface	with	multiple	predefined
activities.	These	activities	utilize	a	graphic	interface	for	designing	groups	of	functions
together.	These	workflows	are	available	to	complete	business	operation	support	for	many
tasks	that	require	some	logic	before	an	action	is	taken.

Snapshot	technology	is	supported	through	the	GUI	to	allow	complete	control	of
snapshots	from	a	wide	range	of	storage	vendors	through	the	same	interface.	This	allows
you	to	use	the	GUI	as	a	“single	pane	of	glass,”	standardizing	the	management	of	different
backup	technologies	and	making	them	easier	to	use.

Although	CommVault	itself	is	designed	for	a	wide	range	of	functionality	and	protection
of	various	data	types,	this	chapter	will	focus	specifically	on	how	to	use	Simpana	in

protecting	the	Oracle	database	applications	in	a	day-to-day	support	and	protection	process.
Some	advanced	protection	options	will	be	reviewed,	but	a	comprehensive	review	of	all
supported	options	would	require	a	complete	book	dedicated	to	the	functionality	built	into
the	Simpana	Oracle	interface	itself.	For	the	purposes	of	this	focused	discussion,
installation,	configuration,	backup	and	restore,	plus	some	advanced	topics	that	are
typically	encountered	in	regular	protection	of	Oracle	data	will	be	covered.

Simpana	Overview
In	its	most	basic	form,	the	structure	of	a	Simpana	CommCell	consists	of	three
components.	There	is	one	CommServe,	which	acts	to	manage	the	various	services	in	the
cell.	There	are	also	one	or	more	media	agents	to	manage	the	total	data	to	be	protected,
and,	finally,	all	the	clients	(that	is,	the	database	servers)	with	the	organization’s	key	data	to
be	protected.

Software	installations	can	be	performed	and	controlled	from	the	CommServe.	Software
can	also	be	installed	from	local	software	packages,	including	silent	install	packages.	This
single	server	is	capable	of	managing	thousands	of	clients	from	a	console	interface	that	can
be	used	by	multiple	administrators	through	a	common	web	interface.	Data	generated	by
backups	of	clients	are	stored	on	media	agent	servers.

Together,	these	three	components—CommServe,	the	media	agent,	and	the	client—
make	up	what	is	referred	to	as	a	CommCell.

Installation
When	installing	the	CommVault	software,	you	must	have	a	couple	of	key	items	of
information	available	that	will	be	utilized	for	proper	configuration.	The	installation	of	the
agent	is	well	diagramed	and	explained	in	the	CommVault	documentation	and	will	only	be
referred	to	here.	Use	the	web	address
http://documentation.commvault.com/commvault/v10/article	for	the	Simpana	10
documentation,	and	navigate	to	the	specific	instructions	for	the	deployment	steps	of	the
agent	itself.	As	outlined	earlier,	there	are	multiple	possible	installation	methods.

Specific	items	of	note	for	the	installation	on	each	platform	are	discussed	here.	For	a
Windows	platform,	installation	must	be	performed	on	a	server	where	the	database	has
been	shut	down	and	the	database	instance	services	have	been	stopped.	With	Unix
installations,	there	is	no	equivalent	requirement	of	shutdown	necessary	for	deployment.

For	both	platforms,	the	appropriate	user	accounts	must	be	installed	correctly.	With
Windows,	the	user	account	must	be	a	domain	user	with	local	administrator	access	rights.
This	will	configure	the	service	to	run	with	the	appropriate	rights	after	installation.	For
Unix	deployments,	the	installation	must	be	completed	as	a	root	user	and	will	require	the
primary	group	of	the	Unix	user	profile	to	be	identified.	This	identification	allows
association	of	the	CommVault	Simpana	binaries	to	the	same	group.	This	association	is
necessary	to	allow	the	execution	of	the	RMAN	executables	from	CommVault	processes.

With	the	core	CommServe	installation	and	configuration	complete	and	the	appropriate
CommVault	Oracle	software	installed	on	the	client,	the	application	interface	will	appear

http://documentation.commvault.com/commvault/v10/article

similar	to	what’s	shown	in	Figure	27-1.

FIGURE	27-1.			CommServe	GUI	with	a	client,	agent,	and	subclient

The	GUI	layout,	by	default,	uses	a	navigational	browser	on	the	left	with	context-
specific	detail	of	the	items	selected	in	the	browser	on	the	right.	The	hierarchy	displayed
will	allow	a	user	to	modify	functionality	by	using	right-click	context	menus.	These	menus
are	used	to	configure	the	various	object	properties	that	define	a	complete	client	application
structure	and	thus	define	the	actions	taken	during	backups.

All	CommVault	software	that	is	installed	to	clients	for	data	protection	is	referred	to	as
an	iDA.	This	iDA	(or	Intelligent	Data	Agent)	will	contain	a	hierarchy	of	objects	relevant
to	the	type	of	data	being	protected.

All	agents	have	a	similar	look	and	feel	to	the	others.	The	subclient	is	an	object	structure
that	exists	across	all	iDA	installations.	This	is	one	of	the	most	important	objects	to
understand	functionally.	The	subclient	contains	an	association	with	other	key	CommVault
objects	and	allows	options	to	be	set	that	are	to	be	used	during	a	backup	of	the	data	being
protected.	This	subclient	is	associated	with	a	schedule	policy	that’s	used	to	initiate	a
backup	job,	using	the	definitions	set	in	the	properties	of	the	subclient.	It	is	also	associated
with	a	storage	policy	that	identifies	retention	for	the	data	backed	up	and	the	location	of	its

storage.

As	applicable	to	the	Oracle	iDA,	each	of	the	important	objects,	including	the	subclient
configuration,	will	be	identified	and	discussed	here.

Data	Retention
Data	retention	is	probably	one	of	the	stronger,	more	flexible	attributes	of	the	Simpana
software	package.	Retention	logic	is	provided	through	the	object	known	as	a	storage
policy.	These	storage	policies	can	be	shared	among	subclients	for	use	in	backups	of	many
different	data	types,	or	they	can	be	more	specifically	defined	for	intricately	complex
business	rules.

This	flexibility	is	one	of	the	most	robust	and	useful	functions	within	the	CommVault
environment.	A	storage	policy	is	utilized	within	a	subclient	by	being	identified	as	an
associated	attribute.	A	storage	policy	may	be	utilized	by	as	many	subclients	as	makes
sense	given	the	storage	requirements	for	the	backups	generated.	From	this	perspective,
they	are	reusable.	A	storage	policy	provides	significant	flexibility	for	managing	multiple
data	sets	generated	from	different	data-protection	operations.

Data	retention	definitions	in	the	storage	policy	are	managed	through	an	object	referred
to	as	a	copy.	Within	a	storage	policy	definition	there	will	always	be	at	least	one	copy	of
type	“primary.”	There	can	only	be	one	primary	copy	in	each	storage	policy	definition.
This	primary	copy	manages	data	that	is	created	from	a	backup	job	run	on	the	client.
Multiple	copies	may	be	defined.	These	other	copies	identify	how	all	data	generated	from
backup	jobs	is	managed.	All	copies,	whether	primary	or	secondary,	have	attributes	for
what	CommVault	refers	to	as	basic	retention	and	extended	retention.

Each	copy	also	identifies	the	location	of	the	data	storage.	Secondary	copies	or	auxiliary
copies	are	used	to	manage	an	exact	copy	of	the	data	managed	by	the	primary	copy.	This
allows	a	disaster	recovery	copy	of	the	primary	backup	data	to	be	stored	in	a	different
location	for	a	different	retention.	This	also	allows	many	copies	of	the	data	to	be	managed
without	multiple	primary	backup	jobs	being	run	against	the	client.	The	destination	location
of	auxiliary	copies	can	be	any	media	agent	and	data	library	defined	within	the	CommCell,
thus	allowing	the	backup	storage	administrator	to	spread	the	backup	data	across	various
datacenters.

Within	each	copy,	retention	definitions	exist	for	basic	and	extended	retention.	The	basic
retention	is	defined	with	a	combination	of	days	and	cycles.	Cycles	are	the	amount	of	time
between	full	backups.	A	typical	retention	definition	of	two	cycles,	15	days,	can	be
interpreted	as	identifying	two	full	backups	and	all	subsequent	incremental	backups	leading
to	the	next	full	backup	and	at	least	15	days	of	age.	This	retention	definition	identifies	how
long	data	must	be	retained	to	maintain	the	minimum	required	backup	data	to	properly
support	the	desired	business	rules.	Extended	retention	defines	the	number	of	days	all	full
backups	must	be	retained	and	can	be	used	to	extend	the	retention	of	full	backups	for	a
longer	period	of	time	than	the	basic	retention.

Through	the	combination	of	basic	and	extended	retention	and	utilizing	primary	and
auxiliary	copies,	the	business	requirements	for	backup	data	storage	can	be	matched	with
extremely	precise	accuracy.

Schedule	Policies
Schedule	policies	are	definitions	of	when	individual	backup	jobs	will	run.	They	are
independent	objects	that	define	the	time	and	type	of	backup	to	be	utilized.	Schedule
policies	are	also	objects	that	are	associated	with	a	subclient,	and	they	can	be	associated
with	as	many	subclients	as	necessary.	When	specific	data	types	are	being	backed	up,	the
schedule	policies	contain	advanced	configuration	attributes	for	the	backup	of	that	data.

In	the	case	of	Oracle	backups,	an	example	of	these	advanced	attributes	may	identify
how	to	manage	archived	redo	log	backups	on	the	primary	Oracle	log	destination.	Multiple
advanced	attributes	can	be	utilized	to	completely	define	the	backup	desired.

CommVault	Oracle	iDA:	What	Is	It?
The	software	that	is	installed	on	an	Oracle	server	is	called	an	Intelligent	Data	Agent,	or
iDA.	This	software	installation	provides	access	to	the	data	on	the	Oracle	database	and	is
identified	in	the	CommServe	GUI	as	a	client	of	the	CommCell.

Once	the	iDA	is	installed,	a	number	of	tasks	may	be	performed,	depending	on	the
protection	desired.	Within	the	GUI	construct	of	an	iDA	or	Oracle	client,	there	will	be	a
representation	of	the	client	server,	the	Oracle	iDA	object,	an	instance,	and	one	or	more
subclients.	Each	of	these	objects	has	properties	that	can	be	set	to	help	configure	the
backup	desired.

CommVault	Oracle	instances	must	be	identified	to	the	GUI	interface.	This	can	be	done
manually	through	an	entry	wizard,	or	automatic	instance	discovery	can	be	turned	on	with
the	properties	of	the	Oracle	iDA,	depending	on	environmental	requirements.

An	instance	will	identify	the	Oracle	SID,	Oracle	owner,	Oracle	Home,	and	connection
properties	for	the	database	being	protected.	Subclients	are	the	objects	whose	properties	are
modified	to	identify	what	objects	are	to	be	backed	up	and	various	other	settings	that
correspond	to	RMAN	commands	during	a	regular	backup.	See	Figure	27-2	for	a	view	of
the	CommCell	GUI,	an	Oracle	client,	and	the	object	properties	for	the	contents	of	an
Oracle	subclient.

FIGURE	27-2.			Default	subclient	content	properties

As	can	be	seen	in	Figure	27-2,	the	object	hierarchy	starts	with	a	CommVault	group
(Client	Computer	Groups),	followed	by	a	group	name	(DB-Oracle),	the	host	client	name
(lx64Ora2),	the	iDA	used	(Oracle),	the	Oracle	instance	(orclnew),	and,	finally,	the
subclient	(Default).

To	this	point	in	the	chapter,	our	discussion	has	given	you	an	overview	of	CommVault
and	its	structures	so	that	you	understand	the	real	point	of	why	we	are	here—to	configure	a
backup	of	an	Oracle	database	using	the	CommVault	software.	With	this	basic
understanding	of	the	CommVault	interface	and	functionality,	we	will	outline	the	definition
in	CommVault	of	an	Oracle	instance	and	subsequent	GUI	definitions	that	govern	a	backup
job.

Configure	an	Oracle	Instance
After	the	agent	is	installed,	you	must	configure	an	instance.	This	step	is	necessary	to	allow

CommVault	to	communicate	with	the	Oracle	instance	you	are	to	protect.	Begin	by
selecting	either	New	Instance	or	Discover	Instance	from	the	context	menu	on	the	Oracle
iDA	object	within	the	context	of	the	host	server	you	are	working	with.

The	option	chosen	should	match	the	desired	effort.	With	the	New	Instance	selection,	an
open	entry	screen	is	used	to	manually	enter	all	important	connection	information	for	the
instance.	The	Discover	Instance	option	uses	the	/etc/oratab	file	to	determine	the	Oracle
instances	running	on	a	given	host	server	(see	Figure	27-3).

FIGURE	27-3.			The	CommServe	GUI	option	Discover	Instance

If	the	Discover	Instance	option	is	selected,	information	will	be	prepopulated	in	each
field	based	on	an	automatic	discovery	by	CommVault	of	the	Oracle	instance.	You	must

validate	the	information	that	has	been	discovered	by	the	CommVault	process	in	order	to
ensure	the	correct	information	for	the	various	fields.

Next,	you	enter	the	correct	connection	information	on	the	Details	tab	of	the	instance
screen.	Note	that	it	is	preferred	that	you	connect	to	the	Oracle	instance	through	the
network	and	the	complete	service	name	using	a	user	account	that	has	SYSDBA	privileges.

It	is	also	possible	to	connect	using	the	OS	authentication	method	(/)	in	the	first	field	of
the	connection	string	and	leave	the	password	and	service	name	blank.	This	method	will
allow	connections	to	utilize	privileged	user	status	as	if	connecting	to	the	PL/SQL	interface
using	the	following	syntax:

This	method	allows	CommVault	to	connect	to	the	instance	and	utilize	standard	backup	and
restore	options.

NOTE

Some	advanced	features	such	as	Duplicate	Database	require	connections	to	be
configured	with	a	named	user	that	has	the	sysdba	privilege	assigned,	the
password,	and	the	service	name.	Determine	the	method	accordingly	for	your
application	and	process.	You	can	find	a	full	discussion	on	advanced	user	and
password	management	related	to	Commvault	at	the	following	link:
http://docs.commvault.com/commvault/v10/article?
p=features/user_account_password/user_account_password_how_to.htm.

Closely	associated	with	this	topic	of	Oracle	privileges	is	the	fact	that	under	Oracle	12c,
the	new	privilege	SYSBACKUP	will	be	available.	In	the	past,	backups	could	only	be
performed	with	an	Oracle	user	profile	that	had	been	associated	with	the	sysdba	privilege.
Using	this	new	role,	SYSBACKUP,	will	allow	a	DBA	to	perform	RMAN	backup
commands	without	additional	access	to	the	sysdba	role.	Effectively,	Oracle	has	separated
these	two	functions,	Administration	and	Backup,	with	this	new	Oracle	12c	role.

As	of	this	writing,	the	SYSBACKUP	privilege	is	not	yet	supported	through	the
CommVault	GUI.	It	is	scheduled	to	be	applicable	in	the	GUI	in	a	very	short	time	and	may
be	supported	after	this	volume	goes	to	print.	Check	with	Books	Online	for	the	latest
support	information.

If	a	recovery	catalog	is	to	be	used,	enter	the	connect	string	information	next.	Be	sure	to
use	name,	password,	and	service	name.	A	recovery	catalog	stores	RMAN	metadata,	and
we	discuss	the	recovery	catalog	in	several	places	in	this	book	in	great	detail.

Enter	the	TNS_ADMIN	folder	location	only	if	you	have	changed	the	default	location.
Set	the	Block	Size	to	1048576	to	allocate	more	memory	to	each	backup	RMAN	channel.
This	extra	memory	could	help	improve	backup	performance	in	larger	databases.

http://docs.commvault.com/commvault/v10/article?p=features/user_account_password/user_account_password_how_to.htm

NOTE

Clearly,	memory	is	an	important	factor	in	overall	database	performance,	as
well	as	performance	of	database	backups.	We	discuss	a	number	of	performance-
related	features	and	tuning	options	throughout	this	book.	Additionally,
CommVault	provides	a	page	on	performance	tuning	backups	with	CommVault	at
the	following	URL:	http://docs.commvault.com/commvault/v10/article?
p=features/agents/ora_perf_tuning.htm.

After	completing	the	information	entry	on	the	Details	tab,	choose	the	Storage	Device
tab	and	select	the	desired	storage	policy.	The	Command	Line	Backup	storage	policy
selection	is	specific	to	data	generated	from	RMAN	command-line	backups	outside	of	the
CommVault	GUI.	The	Log	Backup	storage	policy	selection	determines	the	destination	for
archived	redo	log	backup	data	sets.	Storage	policies	can	be	chosen	independently	for	each
type	of	data	to	be	protected.	Later	in	this	chapter	we	discuss	backups	utilizing	a	direct
connection	through	the	terminal	session	and	the	RMAN	interface.

Click	the	OK	button,	and	the	instance	will	be	saved.

Configure	the	Subclient
After	the	instance	is	configured	and	the	connection	to	the	database	has	been	successful,
configure	the	subclient	for	the	type	of	backup	you	wish	to	complete.	The	minimum	of
suggested	subclients	would	be	two.	The	first,	the	subclient	named	default,	should	be
configured	to	back	up	the	database	and	the	archived	redo	logs.	The	second	subclient
should	be	configured	to	protect	archived	redo	logs	only.	This	subclient	would	be
scheduled	as	required	such	that	the	archived	redo	logs	will	be	backed	up	to	meet	any
service-level	agreements.

The	default	subclient	is	suggested	to	be	used	as	the	main	subclient	for	backing	up	the
database.	The	option	to	back	up	the	database	is	achieved	by	clicking	the	Data	checkbox
and	then	selecting	the	desired	backup	method.	To	provide	Oracle	best	practice	protection,
the	option	for	Online	Database	should	be	selected	for	databases	in	archived	redo	log
mode.	Databases	running	in	NOARCHIVE	mode	can	only	be	backed	up	offline	and	must
use	the	option	Offline	Database	when	backups	are	performed.	Databases	in	NOARCHIVE
mode	limit	the	options	available	for	database	protection.

Continuing	with	our	setup	of	the	backup,	next	you	enable	the	option	to	back	up	the
control	file.	The	SP	file	protection	option	should	also	be	set	if	there	is	an	SPFILE
initialization	file	used	by	the	Oracle	instance.	Otherwise,	clear	this	option	because	RMAN
will	report	an	inability	to	find	an	SPFILE	and	the	backup	will	not	succeed.	In	the	event	the
older	PFILE	initialization	file	is	utilized,	the	file	system	agent	will	protect	the	file.	Verify
the	file	system	agent	is	active	and	the	contents	of	the	$ORACLE_HOME/dbs	(the	default
location)	are	included	in	any	protection	jobs.

Continuing	with	the	configuration,	you	will	configure	the	options	available	in	the

http://docs.commvault.com/commvault/v10/article?p=features/agents/ora_perf_tuning.htm

subtab	Backup	Arguments	under	the	main	tab	Backup	Arguments	for	performance
improvements.	Then	under	the	Storage	Device	tab	you	will	set	the	storage	policy	and
choose	the	number	of	channels	involved	in	the	backup.	Finally,	set	the	options	for
managing	archived	redo	logs	on	the	Logs	Backup	tab.

It	is	important	to	note	that	the	logs	can	be	managed	from	this	location	as	well	as	the
advanced	options	under	the	schedule	policy	option	of	the	schedule	task	screen.	If	set	on
this	tab,	the	archived	redo	logs	will	be	set	to	be	backed	up.	They	can	be	identified	for
deletion	from	the	operating	system	at	the	same	time	by	clicking	the	Archive	Delete	option.
However,	this	option	will	take	precedence	if	the	options	in	the	schedule	policy	are	also
used.	Checking	the	backup	and	delete	boxes	on	the	subclient’s	Logs	Backup	tab	will	issue
the	RMAN	command	BACKUP	ARCHIVELOG	ALL	DELETE	ALL	INPUT;	when	the
backup	job	is	executed.

Options	in	the	Advanced	Schedule	screen	allow	conditions	to	be	met	before	RMAN
deletes	archived	redo	logs	from	the	operating	system,	such	as	number	of	times	backed	up
and	age	of	the	logs.	These	extra	options	will	be	ignored	if	the	option	to	delete	is	set	on	the
subclient.	Figure	27-4	provides	one	illustration	of	how	CommVault	allows	you	to	modify
RMAN-related	backup	settings.	In	this	case,	this	screen	allows	you	to	configure	settings
related	to	the	deletion	of	the	archived	redo	logs.

FIGURE	27-4.			The	Delete	Archive	Logs	tab

Initiate	a	Backup
You	have	two	ways	to	initiate	a	backup	from	the	CommVault	GUI	for	Oracle.	First,	right-
click	a	subclient	to	select	the	context-sensitive	menu	option	Backup	to	execute	a	backup
from	the	subclient,	as	previously	defined.	This	option	allows	you	to	run	a	backup
immediately	(see	Figure	27-5).

FIGURE	27-5.			Immediate	backup	from	subclient

After	you	select	Backup,	a	dialog	appears	in	which	you	can	set	the	type	of	backup	to
occur	and	even	preview	the	RMAN	code	being	generated	(see	Figure	27-6).

FIGURE	27-6.			Immediate	backup	options	with	RMAN	Preview

This	RMAN	script	has	some	code	inserted	into	it	that	is	used	by	Simpana	to
communicate	through	the	SBT	interface,	but	otherwise	the	code	in	the	script	is	exactly
what	any	DBA	may	have	configured	into	an	RMAN	run	block	to	execute	a	backup.	Click
OK	on	the	dialog,	and	a	backup	will	run	using	the	options	set	in	the	subclient.

You	can	also	initiate	backups	from	the	Simpana	GUI	by	creating	a	schedule	policy.	A
schedule	policy	allows	for	the	creation	of	properties	such	as	the	dates	and	times	backups
should	execute,	as	well	as	the	type	of	backup	to	create,	such	as	a	full	or	incremental
backup.

A	schedule	can	be	created	and	associated	with	the	subclient	that	executes	the	backup	on
the	days	and	at	the	times	indicated	in	the	schedule	policy.	This	also	creates	the	desired
backup,	but	on	a	specific	schedule	instead	of	immediately,	as	displayed	earlier.

Schedule	policies	should	always	be	associated	with	individual	subclients	when	you	are
scheduling	backups	for	Oracle.	During	the	configuration	for	best	practices,	multiple
subclients	are	created.	Selecting	any	context	higher	than	a	subclient	will	automatically
include	all	subclients	in	the	schedule	created,	possibly	resulting	in	multiple	backups	being
generated	at	once.	You	will	find	various	options	available	to	you	when	scheduling	a
backup.

The	CommCell	browser	also	provides	a	way	to	scan	a	current	list	of	saved	schedules.
When	the	list	of	schedules	is	displayed,	you	can	execute	a	schedule	for	an	immediate
backup	of	all	associated	subclients	by	right-clicking	the	schedule	and	selecting	the	Run
Immediately	option	(see	Figure	27-7).	Note	that	selecting	this	option	will	execute	a

backup	for	all	associated	subclients	that	have	been	added	to	that	schedule	policy.

FIGURE	27-7.			Executing	the	schedule	policy

Restore
To	begin	restoring	a	database,	you	must	have	created	backups	with	relevant	data.	There
are	two	methods	for	beginning	the	restore	process.	The	first	is	to	drill	down	on	the
CommCell	browser	where	the	host	is	listed	and	right-click	the	instance	name	to	select	the
Browse	and	Restore	menu	option.	This	option	allows	you	to	select	various	restore	criteria.

You	can	also	start	your	restore	by	using	the	selection	Backup	History	from	the
subclient	where	backups	are	defined	and	scheduled.	When	you	start	a	restore	with	this
option,	the	process	will	display	a	similar	search	criteria	dialog,	as	well	as	a	list	of	backups
in	which	the	desired	backup	should	be	selected.	When	the	desired	backup	is	selected,	the
database/tablespace	view	will	appear	after	you	choose	Browse	and	Restore	from	a	context
menu	on	the	display	of	the	backup	record.	This	will	open	a	dialog	in	which	the	desired
database/tablespaces	may	be	selected,	as	in	the	previous	restore	method.

When	this	browse	and	restore	view	is	available,	you	can	select	the	entire	database	by
checking	the	box	next	to	the	database.	You	can	also	restore	individual	datafiles	or
tablespaces	using	this	method.	Once	you	have	selected	what	you	want	to	restore,	click	the
button	labeled	Restore	All	Selected.	The	Restore	dialog	will	open	with	the	restore	options
selected.

Some	restrictions	are	enforced	from	these	checkboxes.	The	duplicate	DB	option	is	a
separate	function.	Selecting	the	Duplicate	DB	checkbox	will	clear	all	other	options
because	they	are	mutually	exclusive	to	the	operation	of	duplicating	a	database.

The	options	Restore	Archive	Log	and	Recover	are	mutually	exclusive.	In	both	of	these
cases,	RMAN	will	retrieve	backup	pieces	containing	archived	redo	logs,	but	in	the	first
case	the	logs	will	be	restored	to	a	specific	host	server	mount	location,	whereas	in	the	case
of	the	Recover	option,	the	archived	redo	logs	will	be	read	and	applied	during	the	recovery
but	the	logs	will	not	be	restored	to	any	file	location	on	the	host	server.

Select	the	desired	number	of	streams	from	the	option	in	the	upper-right	corner	of	the
screen.	Streams	and	channels	are	the	same.	This	Stream	setting	is	restricted	by	the	number
of	streams	used	during	backup.	RMAN	will	allocate	channels	with	this	setting.	During
backup,	these	channels	are	used	to	create	backup	pieces	and	they	dictate	how	many
channels	could	be	used	for	restore.	If	restore	is	desired	with	a	larger	number	of
channels/streams,	then	the	backup	should	use	that	same	desired	number.

When	using	the	recovery	catalog,	enter	the	appropriate	connection	information	in	the
upper	area	of	the	dialog	to	connect	to	the	recovery	catalog.

With	the	desired	options	selected,	click	the	Advanced	button	at	the	bottom	of	this
screen.	The	Oracle	Advanced	Restore	dialog	will	open.	On	this	dialog	are	several	options
that	must	be	considered	before	allowing	the	restore	to	complete.	The	Options	tab	contains
several	important	settings	that	could	have	great	effect	on	any	restore	operation.	The	option
in	the	middle	of	the	page,	Switch	Database	Mode	for	Restore,	must	be	selected	if	you
want	to	allow	CommVault	to	perform	actions	such	as	shutting	down	or	starting	up	the

database,	as	appropriate	for	the	action	to	be	completed.	Without	this	option	set,	you	must
place	the	database	into	the	correct	mode	before	continuing.	These	options	provide	great
flexibility	for	the	process	to	complete	as	desired.

After	you	have	completed	your	restore	and	recovery,	you	can	use	the	Open	DB	option
to	open	the	database.	If	you	have	performed	an	incomplete	recovery,	the	option	Reset
Logs	must	be	set	to	Yes	in	the	drop-down	list.	This	will	cause	the	command	alter
database	open	resetlogs	to	be	issued	during	the	opening	of	the	database.	You	can	choose
to	open	the	database	manually	if	required.

The	Restore	tab	also	provides	options	to	validate	or	modify	the	backup	used	to	restore
the	database.

Advanced	Configurations
CommVault	supports	some	advanced	Oracle	configurations.	The	RAC	database	is	a
powerful	configuration	that	can	provide	improved	utilization	balance,	as	well	as	failover
protection.	RAC	database	backups	are	supported	through	the	CommVault	interface	in
addition	to	the	single-instance	configurations	already	discussed.

Installation	and	configuration	of	the	RAC	database	are	extremely	similar	as	well.
Installation	requires	an	individual	CommVault	iDA	to	be	installed	on	each	physical	node
of	the	RAC	database	instance.	Upon	completion	of	the	installation,	the	configuration	to
identify	the	instance	is	different.	CommVault	is	RAC	aware	through	the	use	of	a
CommVault	RAC	pseudo-client.	The	pseudo-client	is	created	through	the	context	menu	in
the	CommCell	browser	under	the	Computers	group.	Right-click	the	Computers	group,	and
a	new	menu	option	will	appear,	as	shown	in	Figure	27-8.

FIGURE	27-8.			Selecting	the	Oracle	RAC	pseudo-client

Upon	selection	of	the	Oracle	RAC	option	from	the	New	Client	menu	option,	a	wizard
opens	in	which	the	same	options	are	available	as	if	you	were	using	a	single	database
instance.	The	difference	is	that	you	will	now	see	each	of	the	RAC	nodes.	This	provides	the
ability	to	configure	operations	using	one	or	more	of	the	nodes	of	the	cluster.	You	can	see
that	each	RAC	node	is	listed	individually	in	the	GUI	in	Figure	27-9.

FIGURE	27-9.			RAC	pseudo-client	detail

Figure	27-10	shows	an	example	where	each	RAC	node	is	being	used	to	perform	a
backup	and	that	the	nodes	are	sharing	the	load	of	the	backup	equally.	With	CommVault,	a
stream	is	an	equivalent	object	to	an	RMAN	channel.	It	is	the	defined	object	that	is
responsible	for	moving	the	stream	of	data	to	and	from	the	CommVault	storage	devices.

FIGURE	27-10.			RAC	data	storage	policy	definition

CommVault	supports	other	important	Oracle	constructs	natively.	Backups	can	be
performed	on	standby	databases	for	use	in	restoring	a	primary	database.	The	standby
database	is	essentially	a	clone	of	production.	Backups	of	the	primary	control	file	are
completed	along	with	backups	of	the	standby	database	itself.	In	this	way,	RMAN	has
complete	copies	of	the	data	it	requires	to	restore	a	database.	The	load	of	the	backup	can
continue	on	the	standby	database,	leaving	the	primary	database	to	fulfill	its	primary
function.

CommVault	Intellisnap	can	provide	RMAN-supported	snapshot	backup	of	Oracle

databases.	Various	storage	array	vendors	have	specific	methods	of	interaction	with	the
CommVault	application	and	Oracle	database.	CommVault	is	aware	of	and	tightly
integrated	with	most	major	array	vendors.

These	arrays	are	managed	from	within	configuration	in	the	CommServe	and	allow	the
snapshot	to	be	created	natively	through	the	control	function	of	the	array.	CommVault
manages	these	snaps	with	its	retention	and	also	provides	a	mechanism	for	reading	the	data
from	the	snapshot	through	a	proxy	server	and	into	storage	media.

A	combination	of	snapshots	and	archived	redo	log	backups	can	protect	a	database.	This
is	especially	well	suited	for	large	databases	that	would	otherwise	take	too	long	to	create	a
backup	and	pose	an	unreasonable	load	on	the	primary	database.

Intellisnap	will	quiesce	the	database	using	hot	backup	mode,	perform	the	snapshot,	un-
quiesce	the	database	by	taking	the	database	out	of	hot	backup	mode	and	allow	it	to
continue	its	primary	function,	and	then	mount	the	snapshot	to	a	proxy	server	where	the
data	is	read	from	the	snapshot	into	CommVault	media—all	while	the	primary	function	of
the	database	continues	to	function	as	normal.	Everything	would	be	offloaded	to	the	proxy
server.

CommVault	supports	other	advanced	configurations	as	well.	Oracle’s	incrementally
merged	backup	is	supported	through	the	CommVault	GUI.	Another	function	available
through	the	GUI	is	the	option	where	individual	user	tables	can	be	restored	independently
of	the	entire	database	utilizing	the	backups	created	during	ongoing	protection.

Finally,	an	open	interface	allows	you	to	create	custom	scripts	that	will	be	executed	and
monitored	through	CommVault.

RMAN	Interface
CommVault	fully	supports	the	RMAN	SBT	interface.	Because	of	this	support,	backups
can	be	made	in	multiple	ways.	A	DBA	who	is	fluent	with	the	syntax	of	the	SBT	interface
can	write	his	or	her	own	RMAN	scripts	and	execute	them	against	the	databases	while
CommVault	ingests	and	becomes	responsible	for	the	backup	data	generated.	A	sample
script	illustrating	the	SBT	interface	and	its	required	composition	follows:

This	script	demonstrates	the	typical	RMAN	backup	syntax.	For	Unix	platforms,	the	key
is	in	the	allocate	channel	statement,	which	identifies	the	type	of	channel	as	sbt_tape,
indicating	we	are	using	the	MML	layer,	as	opposed	to	backing	to	disk.	Additional
parameters	and	options	specifically	related	to	the	CommVault	SBT	library	are	included	in
the	parms	portion	of	the	statement.

In	the	Windows	interface,	the	statement	identifying	the	libobk	interface	is	not
necessary.	Simply	identifying	the	channel	with	the	sbt_tape	keyword	will	indicate	that	the
data	being	generated	from	the	backup	goes	through	the	MML	layer	(and	in	our	case,	to
CommVault).	During	the	installation,	DLL	software	initiated	in	the	operating	system	will
handle	the	routing	of	data	to	the	CommVault	media	agent	and	its	storage	accordingly.	This
serves	the	same	function	as	the	libobk	library	in	Unix.

Troubleshooting
When	it	comes	to	troubleshooting	backup	problems	within	the	CommVault	interface,	you
have	multiple	logs	available	to	review	for	clues.	CommVault	logs	can	be	reviewed	either
by	selecting	View	Logs	From	an	Active	Backup	or	by	selecting	View	Logs	from	a	backup
history	listing	generated	from	all	the	backup	jobs	that	have	run	against	a	specific	subclient.

The	logs	generated	by	CommVault	are	separated	by	function	and	are	unique	to	each
individual	machine	where	a	backup	has	been	run.	The	default	names	for	the	principle
CommVault	logs	are	CLOraAgent.log	and	ORASBT.log.

Utilizing	these	logs	can	be	difficult	at	first	because	there	are	messages	and	logs	relayed
to	CommVault	directly	from	RMAN,	as	well	as	messages	and	logs	generated	by
CommVault	as	it	operates	its	backup.	When	you	are	troubleshooting	backups	through
CommVault,	it	is	likely	best	(or	easiest)	to	simply	view	the	RMAN	log.	This	log	is
generated	by	RMAN,	but	captured	by	CommVault	during	a	backup.	It	can	be	seen
generating	in	real	time	from	a	running	backup.	In	Figure	27-11,	the	option	to	select	the
RMAN	log	from	a	backup	history	is	shown,	and	the	actual	log	itself	is	shown	in	Figure
27-12.

FIGURE	27-11.			Selecting	the	RMAN	log	from	backup	history

FIGURE	27-12.			Sample	RMAN	log

This	RMAN	log	is	maintained	within	the	CommVault	job	history	for	seven	days	by
default,	but	it	can	be	stored	for	extended	periods	of	time	depending	on	the	requirements	of
the	DBA.

Summary
CommVault	and	RMAN	are	woven	tightly	together	to	provide	a	friendly	GUI	interface
along	with	a	robust	feature	set.	RMAN	is	the	key	focus	of	CommVault,	and	CommVault
fully	supports	the	RMAN	interface.	CommVault	storage	and	retention	management	are
designed	to	enhance	the	ability	of	the	administrator	to	support	the	backup	and	storage
requirements	of	the	organization.

This	chapter	provided	a	quick	overview	of	many	CommVault	Oracle	features.	The	most

widely	used	features	along	with	basic	configuration	were	covered,	but	there	are	many
more	features	supported	by	CommVault	through	the	SBT	interface	in	Oracle.

The	CommVault	Oracle	archiving	feature	allows	you	to	identify	data	for	archiving	and
move	it	out	of	the	primary	database,	but	later	you	can	retrieve	it	back	into	the	database	as
necessary.	The	ability	to	restore	individual	tables	that	have	been	dropped	is	a	useful
function.	This	functionality	is	outside	of	the	features	found	within	the	Flashback	functions
native	to	Oracle.	Multiple	methods	of	the	Duplicate	Database	function	are	supported.
These	Duplicate	Database	methods	support	a	scheduled	refresh	of	test	and	dev	databases
utilizing	the	backups	from	production.	Strong	reporting	functionality	helps	you	to
determine	what’s	working	successfully	and	to	identify	problem	areas	in	protecting	the
database	environment.	You	can	find	many	more	features	by	reviewing	the	CommVault
Books	Online	documentation	website	at	www.documentation.commvault.com.

http://www.documentation.commvault.com

PART
VI

Appendixes

APPENDIX
A

RMAN	Scripting	Examples

W
e	have	gotten	a	number	of	requests	for	scripts	related	to	RMAN.	The	nice	thing	about
RMAN	is	that	scripting	it	is	a	pretty	straightforward	process.	In	this
chapter,	we	provide	you	with	some	basic	scripts	for	both	Windows	and
Linux	to	get	you	started.

These	scripts	assume	that	you	are	using	the	Oracle	Fast	Recovery	Area	(FRA),	which
will	manage	disk	space	and	backup	retention	for	you.	If	you	are	not	using	the	FRA,
perhaps	you	might	want	to	customize	these	scripts	for	your	own	needs.	We	will	leave	that
to	your	ingenuity	and	skill!

RMAN	Scripts	for	Windows
These	scripts	were	written	and	tested	using	Windows	XP.	First,	we	give	you	a	sample
batch	script	that	calls	RMAN	for	a	backup	of	the	database	and	the	archived	redo	logs.	We
then	show	you	a	method	of	scheduling	these	scripts	from	the	operating	system.	Note	that
this	is	just	one	method	of	scheduling	automated	backups.	You	might	also	choose	to	use
Oracle	Enterprise	Manager	(OEM)	to	schedule	and	manage	your	backups.	We	suggest	that
you	use	OEM’s	scheduling	facilities	to	schedule	your	backups	rather	than	the	OEM
Backup	Wizard.

Creating	a	Windows	Script	to	Schedule	Backups
This	is	a	pretty	basic	script;	you	might	want	to	augment	it	for	incremental	backups,
backup	validation,	or	other	operations.	Note	that	the	script	will	return	an	error	message	if
the	backup	fails.	To	create	this	script,	you	might	use	Notepad,	or	some	other	text	editor,
and	call	this	script	something	like	backup.bat.

Note	that	this	script	calls	two	command	files,	backup.scr	and	arch.scr,	which	in	this

case	are	located	in	the	c:\oracle\scripts	directory.

Here	is	the	backup.scr	script:

This	is	the	arch.scr	script:

Again,	each	of	these	scripts	would	be	created	using	a	text	editor	and	placed	in	the
c:\oracle\scripts	directory.	If	you	put	them	somewhere	else,	you	will	need	to	edit	the
backup.bat	script	to	point	to	the	correct	location	of	these	scripts.

Scheduling	the	Backup
Now,	we	want	to	schedule	the	backup.	We	will	use	the	Windows	schtasks	utility	to
perform	this	operation.	In	our	experience,	schtasks	is	a	rarely	used	but	powerful
scheduling	utility.	In	this	example,	we	are	scheduling	a	daily	database	backup	using	the
backup.bat	file.	We	also	have	an	example	of	scheduling	the	archived	redo	log	backup	and
an	example	of	how	to	remove	a	scheduled	task:

You	have	a	number	of	scheduling	options	when	using	the	schtasks	scheduler.	The
schtasks	scheduler	will	request	the	login	ID	of	the	user	running	the	job.

RMAN	Scripts	for	Unix
These	scripts	were	written	and	tested	on	Red	Hat	Linux	Version	5.	In	this	section,	we	have
a	backup	script	(backup.ksh)	and	the	related	command-line	files	that	will	be	used	to
execute	the	actual	backup.	You	can	use	cron	or	at	to	schedule	this	script	in	Unix.	First,
here	is	our	sample	shell	script	for	our	Unix	backup:

The	backup.scr	script	is	the	same	as	you	saw	earlier:

As	is	the	arch.scr	script:

APPENDIX
B

Setting	Up	an	RMAN	Test	Environment

A
s	the	complexity	of	production	enterprise	environments	grows	with	each	passing	year,	we
DBAs	are	finding	the	same	complexity	creeping	into	our	test	environments.
For	example,	in	Oracle9i	RMAN	Backup	&	Recovery,	the	test	environment	was
seemingly	complex	for	us:	a	Windows	laptop	for	minor	tweaks	and
screenshots,	another	Windows	server	for	more	robust	testing,	and	a	Sun	Blade

150	for	multi-OS	interaction	and	Unix	commands.	Among	these	three	machines,	we	were
able	to	do	all	technical	reviews	(combined	with	years	of	actual	experience	in	the
workplace,	of	course).

For	the	10g	RMAN	book,	the	test	environment	included	two	Linux	boxes	with	a	shared
FireWire	disk	drive	(running	RAC,	of	course),	Matthew’s	trusty	Windows	laptop,	that	old
Sun	Blade,	and	a	stand-alone	Linux	box.	And	Matthew	still	went	hunting	with	his
colleagues	looking	for	other	RAC	clusters,	tape	storage	jukeboxes,	and	Oracle	Enterprise
Manager	repositories.

That	being	said,	things	have	taken	an	interesting	turn	since	the	last	book.	We	authors
had	to	travel	significantly	during	the	production	of	this	book,	so	the	needs	changed
dramatically	from	a	tactical	standpoint.	Because	of	the	up	and	down,	thrashed	and	trashed
nature	of	B&R	testing,	testing	from	a	remote	location	can	be	difficult.	In	addition,	this	was
the	first	time	we	wrote	against	beta	code	(long	story),	so	there	are	plenty	of	hiccups	that
simply	prevented	traditional	solutions.

So,	what	did	our	test	environment	look	like	this	time?	One	recent	Dell	laptop,	running
Oracle	Virtual	Machine,	and	lots	of	disk	space.	This	time	also	involved	quite	a	bit	of	time
on	various	Oracle	Exadata	Database	Machines…or	a	dozen.	We	also	used	various	virtual
machines	that	Oracle	provides	for	your	use.

Of	course,	there	are	a	ton	of	platforms	you	might	be	using.	The	nice	thing	is	that
RMAN	tends	to	work	the	same	regardless	of	which	platform	you	are	running	on.
Whatever	lab	environment	you	construct,	it’s	probably	not	going	to	run	as	fast	as	the	one
you	have	at	work,	but	if	you	are	going	to	become	an	expert	at	RMAN	backup	and
recovery,	you	need	a	test	environment.	Not	just	to	learn	in,	but	to	practice	in,	time	and
time	again.	With	backup	and	recovery,	practice	truly	does	make	perfect.

We	suggest	you	try	to	make	your	test	environment	mimic	your	actual	environment	as
much	as	possible.	So,	if	you	are	running	Linux	where	you	work,	your	test	environment
would	best	be	served	running	Linux.	If	your	shop	is	running	additional	database	products,
such	as	GoldenGate,	you	will	want	to	consider	setting	those	environments	up	on	your	test
environment	too.	That’s	because	these	products	can	have	impacts	on	your	databases	and
how	you	back	them	up.	It’s	also	possible	that	your	backups	might	impact	those	products	in
some	way.	You	will	want	to	know	about	these	things	sooner	rather	than	later.

A	test	environment	for	backup	and	recovery	is	different	from	other	testing
environments.	First	of	all,	you	have	to	be	able	to	remove	datafiles,	or	even	the	entire
database,	on	a	whim,	without	having	to	clear	it	with	other	users.	In	other	words,	you	need
your	own	database…or	two.	If	you	begin	testing	RMAN	functionality	on	a	shared
database,	pretty	soon	you’ll	either	start	getting	angry	phone	calls	from	other	users	or	find
yourself	locked	out	of	the	machine	by	the	SA.

A	backup	and	recovery	test	environment	is	simply	too	volatile	to	share.	Think	about	it

from	the	other	end:	you’re	busy	testing	a	backup	yourself	when	suddenly	the	backup
aborts	because	someone	started	removing	datafiles	in	order	to	test	their	own	restore	and
recovery.

On	the	other	hand,	you	need	to	test	your	strategies	in	an	environment	that	most	closely
matches	that	of	your	production	databases.	Therefore,	you	can’t	always	run	in	isolation
because	you	might	need	to	tune	your	backup	on	a	large,	production-grade	server	that	has
the	same	kind	of	load	as	production.

What	we	suggest,	then,	is	that	you	approach	RMAN	backup	and	recovery	testing	as	a
two-tiered	investigation:	First,	get	comfortable	with	functionality	and	behavior	in	the
isolation	of	a	small	test	server.	Second,	take	the	lessons	you’ve	learned,	and	schedule	time
to	test	on	a	larger,	production-grade	database	server.	That	way,	you	can	schedule	time	on	a
test	box	for	a	backup/recovery	test	outage,	and	avoid	spending	that	valuable	time	trying	to
learn	lessons	that	you	could	have	figured	out	on	your	workstation.

So,	what	does	this	approach	look	like	more	specifically?	The	answer	is	provided	in	this
appendix.

The	Test	Box
The	first-level	test	machine	for	RMAN	functionality	doesn’t	need	to	be	a	supercomputer.
In	fact,	you	should	think	of	the	first	level	of	testing	as	just	a	rehearsal—you’re	reading
through	your	lines,	getting	the	placement	right,	and	talking	through	the	steps	with	the
other	actors	and	the	director.

Match	Your	Production	Environment
If	possible,	your	RMAN	testing	should	take	place	on	the	same	operating	system	that	you
run	in	production.	This	is	a	rather	humorous	thing	to	say,	we	know:	who	has	a	single	OS
in	their	environment	anymore?	Anyway,	if	you	will	be	backing	up	only	Solaris	servers,	it
makes	sense	to	invest	a	little	money	in	a	Sun	workstation.	That	way,	you	can	begin
production	environment	matching	as	soon	as	possible.

Go	Cheap—At	a	Price
Everyone	is	concerned	about	price.	The	problem	is	that	the	Oracle	database	can	be	very
resource	intensive.	Although	you	can	run	Oracle	on	a	slower	system,	with	less	memory,
slow	I/O	throughput,	and	slow	networking,	the	speed	of	backups	and	restores	can	be
frustratingly	slow.	It’s	hard	to	really	get	quality	time	with	the	database	when	the	backup	or
restore	takes	30	minutes	to	complete.	It’s	also	hard	to	stand	up	a	duplicate	database	when
you	have	limited	disk	space,	memory,	or	I/O	throughput.

There	are	a	number	of	websites	that	can	provide	a	great	deal	of	help	with	respect	to
setting	up	the	environment	you	might	want	to	create.	Web	sites	such	as	www.oracle-
base.com	have	many	pages	that	offer	various	ways	you	can	configure	Oracle	databases
using	different	versions	and	different	configurations	such	as	Real	Application	Clusters
(RAC)	technology	and	other	Oracle	options.

http://www.oracle-base.com

The	nice	thing	is	that	RMAN	acts	the	same	on	all	platforms,	and	the	exercises	in	this
book	work	on	all	platforms.	So,	if	you	can’t	afford	the	Cadillac,	then	certainly	you	can
practice	on	a	smaller	scale.	Practice	is	the	important	thing	here!

That	being	said,	what	kind	of	hardware	do	you	need	for	a	decent	test	platform?	At	a
minimum	we’d	suggest	the	following	advice:

			Processor	speed			You	will	need	enough	processors	that	are	fast	enough	to
support	at	least	three	databases	and	the	connections	required	to	support	RMAN
operations.	RMAN	will	run	better	if	you	have	more	CPUs	to	parallelize	across	when
you	are	performing	tasks	such	as	creating	duplicate	databases.	Also,	if	you	are	going
to	be	using	compression	or	encryption,	CPU	power	will	make	a	difference.

			Memory			This	really	depends	on	how	many	databases	you	will	be	running.
You	will	want	sufficient	memory	to	run	at	least	three	Oracle	instances	at	the	same
time:	one	each	for	the	target	database,	the	recovery	catalog,	and	an	auxiliary
database.	You	need	enough	memory	to	run	three	Oracle	instances	simultaneously,
along	with	your	media	management	software.	At	a	minimum	we’d	recommend	that
you	allocate	8GB,	and	it’s	likely	that	will	be	rather	slow.	Of	course,	if	you	add
requirements,	such	as	using	Cloud	Control,	you	will	need	even	more	memory.	Don’t
cut	corners	on	memory,	or	you	will	get	sucked	down	into	time-consuming	swap	rat
holes	from	which	there	is	no	escape.

			Disk	space			You’ve	probably	heard	that	disks	are	cheap.	Well,	this	might	be
true,	but	that	does	not	ensure	that	they	are	fast.	Although	at	first	blush	it	might	seem
that	speed	isn’t	important,	disk	I/O	speeds	and	memory	are	likely	to	be	the	chief
limiting	factors	on	how	long	your	backups	or	restores	take.	While	you	don’t	need
blazing	fast	backup	and	restore	times,	sitting	for	an	hour	waiting	to	see	if	your	test
restore	worked	can	be	more	than	frustrating.	Find	yourself	a	fast	disk	and	sacrifice
storage	for	speed.	You	will	want	at	least	250GB	to	start	with,	though	if	you	run	lots
of	tests	you	can	eat	up	that	amount	of	space	pretty	easily.

The	Oracle	Configuration
After	you	get	your	test	box	up	and	running,	you	need	to	think	about	your	Oracle
installation	and	configuration.	This	step	depends	on	what	you	need	to	test:	Will	you	be
backing	up	multiple	versions	of	Oracle?	Will	you	be	using	OEM?

Multiple	Homes
If	you	will	be	installing	multiple	versions	of	Oracle,	remember	to	install	them	starting	with
the	oldest	version	first.	Also,	Oracle	will	make	you	install	each	in	its	own
ORACLE_HOME	location,	so	you	will	need	more	disk	space	for	each	install	image.	You
will	also	want	to	make	sure	you	are	running	on	the	most	current	patch	set.

Creating	Databases
Obviously,	you	need	at	least	one	database	created	in	each	ORACLE_HOME	that	you	have
installed.	These	databases	may	be	default	databases	created	during	Oracle	installation,	but

an	even	better	scenario	would	be	to	use	databases	that	are	configured	somewhat	like
production	databases.	From	a	size	perspective,	that	may	not	be	possible,	but	you	can	scale
datafile	sizes	down	while	keeping	the	same	number	of	datafiles	and	tablespaces.

In	addition,	you	might	be	able	to	scale	down	the	memory	utilization	of	these	test	boxes,
but	this	can	have	negative	consequences.	Adjust	your	SGA	allocations	based	on	the
recommendations	of	the	various	memory	advisors.	It’s	likely	that	you	won’t	need	a	great
deal	of	memory	unless	you	plan	on	using	your	test	environment	for	something	beyond
backup	and	recovery.

If	you	are	going	to	create	a	recovery	catalog	database,	make	sure	that	it’s	using	the
more	current	version	of	Oracle	that	you	will	be	putting	on	your	test	system.	Although	you
can	share	the	recovery	catalog	schema	with	a	database	doing	other	kinds	of	work,	we
recommend	that	you	keep	the	recovery	catalog	database	separate—this	is	a	best	practice
and	the	configuration	you	are	most	likely	to	come	across.	You	might	also	want	to	put	it	on
a	different	server	(virtual	or	otherwise)	to	protect	it	from	loss	of	the	server	where	other
databases	live.

The	RMAN	Configuration
Now	that	you	have	your	system	set	up	with	Oracle	installed	and	databases	built,	we	have	a
few	hints	on	the	testing	process:

			Have	a	cold	backup	that	remains	untouched.	Before	you	do	any	RMAN
testing,	shut	down	your	database,	take	a	cold	OS	copy	backup,	and	place	it	in	a
folder	that	doesn’t	get	touched.	This	is	your	last	line	of	defense	if	you	completely
mess	everything	up	during	your	RMAN	testing.

			Switch	your	redo	logs	a	lot.	One	of	the	biggest	mistakes	that	happens	with
RMAN	testing	is	that	the	timeframe	between	the	backup	and	restore	is
unrealistically	short.	Confusion	sets	in	because	there	is	no	space	between	the
completion	time	of	the	backup	and	the	“until	time”	of	the	restore	operation.
Therefore,	after	any	backup,	make	sure	you	switch	the	log	file	three	or	four	times,
just	to	put	a	little	“distance”	between	operations.

			Set	the	NLS_DATE_FORMAT	environment	variable.	This	is	good	advice	for
RMAN	in	general,	but	particularly	in	a	test	situation,	where	the	timeframe	between	a
backup	and	a	restore	will	be	unrealistically	short	and	you	will	want	to	know	the
timeframe	of	a	backup	to	the	second.	Therefore,	before	starting	RMAN,	be	sure	to
run	the	following:

Then,	when	you	start	RMAN	and	issue	a	list	backup	command,	the	time	will
always	show	details	to	the	minute	and	second.

			Leave	your	catalog	database	alone.	You	will	be	tempted	to	use	the	database
that	houses	your	catalog	as	a	target	and	to	perform	some	tests	with	it.	That	is	fine—
that’s	why	it’s	called	a	test	environment.	But	you	can	seriously	undermine	your
testing	if	you	foul	up	your	catalog.	Do	yourself	a	favor	and	leave	the	catalog

database	alone.	Also,	export	your	catalog	schema	with	a	user-level	export	before
any	new	test	session	begins.

			Keep	up	with	catalog	maintenance.	This	may	be	your	test	environment,	but
you	will	be	creating	a	lot	of	backups	over	time,	and	you	have	a	limited	amount	of
space	on	your	little	test	box.	Take	the	opportunity	to	test	using	retention	policies	to
get	rid	of	old	backups.

			Remove	clones	as	soon	as	possible.	Attack	of	the	clones!	If	you	use	the
duplicate	command,	you	can	end	up	with	numerous	different	instances	running	and
taking	up	precious	memory	and	disk	space.	Hey,	it’s	a	clone,	and	you’re	in	a	test
environment—get	rid	of	it	as	soon	as	you	make	it.

			Leave	a	clone	file	system	in	place.	You	don’t	need	to	go	through	the	steps	of
building	the	file	system	and	the	init.ora	file	for	your	duplicate	database	every	time
you	want	to	test	the	duplicate	or	duplicate	for	standby	command.	Leave	the	file
system	and	supporting	files	in	place,	and	use	the	same	DB_NAME	and	SID.	On
Windows,	be	sure	to	leave	the	Oracleservice<sid>	in	place	in	the	Services	control
panel.

			Don’t	get	attached	to	your	test	environment.	Sometimes	you	need	to	just	blow
everything	away	and	start	over	from	scratch,	particularly	if	you	don’t	have	good
maintenance	habits.	Eventually,	your	database	will	get	to	the	point	that	it	has	had
tablespaces	dropped;	has	had	re-created,	dropped,	and	forgotten	files	placed	in	the
wrong	directory;	has	had	archive	logs	stored	all	over	the	place—basically	it’s	a
rambling	mess.	Don’t	worry.	That’s	why	they	call	it	testing.	Don’t	get	too	wrapped
up	in	the	environment	you	have;	just	whack	everything	and	start	over	from	the	cold
backup	you	took	prior	to	testing.

			Have	FUN!	Where	else	can	you	get	a	job	where	you	are	paid	to	have	fun.
Disneyland,	perhaps?	Have	fun	becoming	a	backup	and	recovery	expert!

You’ll	surely	find	some	of	your	own	valuable	lessons	after	you’ve	done	a	bit	of	testing.
After	you	go	through	the	conceptual	learning,	take	the	scripts	you’ve	built	and	the
knowledge	you’ve	gained,	and	schedule	some	time	on	a	production-grade	system	to	make
sure	that	everything	is	going	to	scale	up	to	your	enterprise.	You’ll	be	glad	you	took	the
time	to	learn	it	before	you	went	live.

Index

Please	note	that	index	links	point	to	page	beginnings	from	the	print	edition.	Locations	are
approximate	in	e-readers,	and	you	may	need	to	page	down	one	or	more	times	after
clicking	a	link	to	get	to	the	indexed	material.

&	(ampersan),	184,	375

()	parentheses,	314

=	sign,	138

A

ACO	(Advanced	Compression	Option),	63,	203,	565

Active	Data	Guard,	461

Active	Session	History	(ASH),	24,	412–413

Add	Host	Target	Wizard,	423–424

admin	class,	571

administration.	See	also	DBAs;	maintenance

CDBs,	84–87,	99

PDBs,	99–105

roles,	173,	174

Zero	Data	Loss	Recovery	Appliance,	522–523

administrative	data,	569

administrative	domain,	566–570

administrative	groups,	425

administrative	server	directories,	569

administrative	servers,	566,	567–570,	575

administrator	accounts,	646

ADR	(Automatic	Diagnostic	Repository),	130–131,	133,	134,	288

ADR	base	structure,	135–136

adrcli	command-line	interface,	131

Advanced	Compression	Option	(ACO),	63,	203,	565

Advanced	Security	Option	(ASO),	565

advise	failure	command,	288,	291

agentDeploy	script,	424

agentPull	script,	424

agents,	421,	423–424

Alert	directory,	135

alert	logs,	17,	130

alter	database	add	logfile	command,	125

alter	database	add	standby	logfile	command,	125

alter	database	command,	33–34,	284,	286

alter	database	drop	logfile	command,	125

alter	database	open	command,	7

alter	database	rename	file	command,	125

alter	session	command,	174

alter	session	set	container	command,	138

alter	system	checkpoint	command,	285,	286,	287

alter	system	command,	104,	111,	146

Amazon	Cloud,	593–594

Amazon	S3	(Simple	Storage	Service),	566

Amazon	Web	Services	(AWS),	591–601

ampersand	(&),	184,	375

Application	Backup	schedule,	614–615,	617

applied	option,	365–366

ARCH	process,	28,	32,	34,	112

architecture.	See	RMAN	architecture

archival	backups,	208–210

archive	copy	groups,	644–645

archive	log	backups

EM12c	environment,	434

listing,	387–388

RAC	environment,	500–503

from	standby	database,	496

archive	logs.	See	also	log	files

access	during	database	duplication,	334

deletion	policies,	162–163,	364–366

retention	policies,	364–368

archived	redo	logs.	See	also	redo	log	files

ARCHIVELOG	full	recovery,	44–45

ARCHIVELOG	physical	backups,	43–44

backups,	161,	233–234

CommVault	Simpana,	665–667,	670

considerations,	17,	34

corrupted,	233

crosschecking,	360

deletion,	163–164

described,	17,	28

destination	directories,	111–126,	214

encryption,	161

listing	copies	of,	391–392

log	sequence	number,	32

making	copies	of,	238

online	backups	and,	228–229

removal	of,	212

restoring,	32–33,	313,	362

retention	policies,	365–366,	367

viewing,	192

ARCHIVELOG	image	copies,	238

ARCHIVELOG	mode

configuring,	110–129,	427

considerations,	34,	460

destination	directories,	111–112

FRA,	113–126

vs.	NOARCHIVELOG	mode,	34

offline	backups,	216

online	backups,	228–229

overview,	34

physical	backups,	42–44

putting	database	into,	6,	112,	127–128

recoveries,	44–46,	274–284

recovering	from	complete	data	loss,	535–537

setup	for,	110–129

standby	databases,	480–481

switching	between	modes,	126–127

taking	database	out	of,	126–127,	129

turning	on,	427

ARCHn	processes,	23–24

ASH	(Active	Session	History),	24,	412–413

ASM	(Automatic	Storage	Management)

archive	log	backup	issues	and,	503

backup	validation,	520

considerations,	24

described,	30

FRA	and,	113,	125–126

input	buffers	and,	65

OCFS	and,	113

overview,	30

RAC	and,	498

ASM	disk	groups,	125–126

ASM	disks,	30

ASMM	(Automatic	Shared	Memory	Management),	403

ASO	(Advanced	Security	Option),	565

asynchronous	devices,	402

asynchronous	I/O,	403

authentication,	144–145,	664.	See	also	privileges

autolocate	feature,	501

automated	backups	(autobackups)

across	nodes,	500

control	files,	155–156,	213,	226,	262–263

NetBackup,	615–616

schedule	for,	615–616

SPFILEs,	155–156,	226,	255–261

automated	TSPITR,	325–326

Automatic	Backup	schedule,	615–616

Automatic	Diagnostic	Repository.	See	ADR

Automatic	Shared	Memory	Management	(ASMM),	403

Automatic	Storage	Management.	See	ASM

autonomous	tape	archival,	518–520

auxiliary	channels,	331–332,	340–341

auxiliary	databases

log	file	creation,	335–336

overview,	68–69

password	file,	483

versions,	70

auxiliary	instance,	307,	331–332,	482,	484,	486

AVAILABLE	status,	358–361,	368,	371

AWS	(Amazon	Web	Services),	591–601

B

backup	archivelog	command,	152,	233–234

backup	as	copy	command,	237,	238

backup	as	copy	current	controlfile	command,	213

backup	backupset	command,	152,	234–235,	340

backup	command,	198–213

channels	and,	199

datafile,	232

image	copies,	237

options,	199–213

overview,	198–199

performance	and,	199

tablespaces,	231–232

types	of	backups,	198–199

backup	control	file,	18

backup	controlfile	command,	237–238

backup	controlfilecopy	command,	234

backup	copy	groups,	642,	644–645

backup	database	command,	152,	234–235

backup	jobs,	567,	581,	583–586

backup	media	hardware,	402–403

backup	optimization,	152

backup	pluggable	database	command,	216–217,	220

backup	policies,	17

backup	recovery	area	command,	235,	236

backup	redundancy	backup	retention	policy,	364

backup	reports,	439–440.	See	also	reports

backup	retention	policies,	364,	366–368

backup	set	key,	368

backup	set	pieces,	201

backup	sets

attributes,	201

backing	up,	234–235

cataloging,	373–374

changes	to,	368–371

compressed,	148,	150,	162,	202–206,	600

deleting,	369,	372

expired,	386,	388,	389

how	long	to	keep,	146–147

incremental,	284

limiting	size	of,	207–208

location	of,	461

multiple	copies	of,	213

obsolete,	367

recovering	control	file	from,	265

recovering	SPFILE	from,	257–260

registering,	372

settings,	151–152

staging	for	restores,	253–265

backup	spfile	command,	234

Backup	Storage	Selectors,	577–580

backup	validate	database	command,	314

backup/recovery	architecture	tour,	9–47

backup/recovery	primer,	42–46

backups,	197–248.	See	also	NetBackup	for	Oracle

archival,	208–210

archive	logs,	161,	387–388

archived	redo	logs,	161,	233–234

assigning	tags	to,	206–207

automated.	See	automated	backups

available,	381–382

to	AWS	S3,	593–597

backup	sets.	See	backup	sets

backup/recovery	architecture	tour,	9–47

backup/recovery	primer,	42–46

base,	240

based	on	last	backup	time,	211–212

basic	steps	overview,	6–7

basics,	14–17

best	practices,	27,	247–248,	449–551

block	change	tracking	file,	239–240

cataloging,	373–374

changing	status	of,	368–371

checking	status	of,	358–361

cold,	687–688

CommVault	Simpana,	667–669

compression.	See	compression

configuring	RMAN	for.	See	configuration

considerations,	10–12,	27,	47,	449–451

consistent,	14–15

control	file.	See	control	file	backups

conventional,	592

corrupted.	See	corruption

cross-checking,	358–361

cumulative,	240,	241–242

data	block,	60–63

data	loss	and,	15–16

with	Data	Protector.	See	HP	Data	Protector	for	Oracle

datafiles.	See	datafile	backups

deleting,	654

Delta	Push,	515,	516–517

Delta	Store,	515,	516,	517–518,	520

deploying	to	Amazon	S3,	595–597

detailed	information	about,	383–385

differential,	240–241

disk.	See	disk	backups

dual	mode,	160

duration	of,	207–208

eligible	for	recovery,	385–386

with	EM12c.	See	EM12c	entries

encrypted,	159–162,	434,	565

entire	database,	199,	215,	229–231

essentials,	13–17

example	of,	70–73

excluding	datafiles	from,	210

expired,	617–618

Flash	Recovery	Area,	235

full,	433,	515,	517–518

general	concepts,	42–47

growth/scale	considerations,	16

high	availability	and,	13–14

hot,	63

how	long	to	keep,	146–147

inconsistent,	14–15

incremental.	See	incremental	backups

limitations,	592

limiting	impact	of,	207–208

listing,	381–389

location	of,	367,	461

logical,	42

manual,	42–46,	367

monitoring,	454

multiple	copies	of,	213

multisection,	63,	65–66,	201–202,	405–406

Multitenant.	See	OM	entries

network	topology,	53–56

obsolete,	156–159,	364–368,	372,	395–396

OEM.	See	OEM

offline,	14,	214–228,	434

online,	14,	43,	228–236,	434

Oracle	Secure	Backup.	See	OSB	entries

other	Oracle	components,	46–47

overriding	backup	optimization,	211

paralleling,	402,	406–407

parameter	files,	234

passwords.	See	password	files;	passwords

PDBs,	223–225

performance.	See	performance

physical,	42–46

planning	for,	17

procedure	for,	244–247

protection	policy,	520–521,	522

RAC,	498–503

recovery	catalog,	178,	189,	358–359

recovery	window	for,	157–159,	364,	394

redundancy,	364,	394

removing	obsolete,	372–373

replicated,	518

retention	period	for,	146

retention	policies,	156–159,	364–368

running	with	Data	Protector,	636–637

scaling	issues	and,	450–451

seed	containers,	225–226

space	requirements,	15–16

to	specific	device	types,	201

SPFILE.	See	SPFILEs

standards	and	processes,	459–460

from	standby	database,	494

stored	scripts,	374–377

summarizing,	381–382

system	outages	during,	16

tablespace-level,	43,	231–232,	359,	386–387

tags,	206–207

tape.	See	tape	backups

with	TDPO,	649–654

terminology,	17–19

test	environment	for,	683–688

time	required	for,	207–208,	403,	405,	408,	412

tuning	strategies	for,	403–406

types	of,	198–199

undos	and,	206

user	requirements	for,	15–16

validation,	520

verifying,	361–362

BACKUP_TAPE_IO_SLAVES	parameter,	402,	403

base	incremental	backup,	240

base	table	views,	189–195

base	tables,	68,	189,	190–195

BCTF	(block	change	tracking	file),	239–240

best	practices,	447–461

backups,	247–248,	449–551

considerations,	27

data	governance,	453

data	protection,	448–454

disaster	recovery,	452

high	availability,	551–552

monitoring,	454

overview,	448

recovery,	449–551

RMAN,	247–248,	460–461

scheduling,	454

security,	453

service-level	agreements,	454–459

standards	and	processes,	459–460

BIGFILE	tablespaces,	353

binary	compression,	62–63

blank	error,	560

block	change	tracking	file	(BCTF),	239–240

block	fragmentation,	206

block	headers,	61–62

block	media	recovery	(BMR),	314–315

block	size,	402

block-level	backups,	60–63

blockrecover	command,	314–315

blocks

backing	up,	60–63

compression,	202,	205–206

considerations,	21

corrupted,	63,	194,	314–315

dirty,	18,	21

null,	202,	205

reading,	411

recovering,	314–315

repair	actions,	212

run,	227–229

skipping	unused,	62

unused,	62,	202

BMR	(block	media	recovery),	314–315

bottlenecks,	460

buffers.	See	memory	buffers

C

cache,	26

case	studies,	recovery,	525–547

complete	data	loss	(ARCHIVELOG),	535–537

complete	data	loss	(NOARCHIVELOG),	529–535

completing	failed	duplication,	542–543

considerations,	526–538

listed,	528–529

loss	of	online	redo	log,	539–541

loss	of	SYSTEM	tablespace,	538

loss	of	tablespaces,	538–539

lost	datafiles	with	FRA	image	copy,	544–545

opening	database	with	resetlogs,	541–542,	546–547

preparing	for	recovery,	526–528

recovering	with	resetlogs	command,	541–542

restoring	datafiles	to	original	location,	545–546

target	database	historical	subset,	543–544

catalog	command,	373–374

catalog	database,	70,	686,	687

catalog	parameter,	170,	226

catalog	schema,	70,	76

catalog	start	with	command,	178

catproc.sql	script,	60

CDB	root	container,	81–82,	221–223

CDB	users,	85–87

CDB_OBJECTS	view,	99

CDB_PDB_HISTORY	view,	105

CDB_PDBS	view,	105

CDB$ROOT	container,	78,	81–82,	94

CDBs	(container	databases),	77–87.	See	also	OM	entries

administration,	84–87,	99

architecture,	77–80,	83

common	users,	85–87

components,	77–80

considerations,	80,	81,	220–221

control	files,	79,	84

creating,	81

data	dictionary,	97–99,	100

described,	78

dropping,	105

examples,	79,	80

instances,	77

naming,	80–81

offline	backups,	216–219

online	redo	log	groups,	79

overview,	77

PDBs	and.	See	PDBs

root	container.	See	root	container

starting/stopping,	84–85

CDOs	(container	data	objects),	99

cdump	directory,	135

change	command,	368–371

change	failure	command,	288,	293

change	vectors,	28

change-based	recoveries,	305,	312

channel	processes,	59

channels

allocated,	199,	597–598

backup	command	and,	199

configuring,	199

default,	653–654

degree	of	parallelism,	199

described,	59

disk,	59

multiple,	406–407,	600

parallel	operations,	406–407

SBT,	597

settings,	148,	149–151

tape,	59,	555–556

check	logical	parameter,	212

check	readonly	parameter,	313

checkpoint	operation,	36

checkpoints,	18,	39,	472

checksyntax	parameter,	139–140

circular	reuse	records,	57

CKPT	process,	23

classes,	OSB,	570–571

CLI	(command	line	interface),	566–567

client	servers,	606

clients

media	management,	553,	555

OSB,	567–568

policy,	616–617

RMAN.	See	RMAN	client

TSM,	642,	644,	645–648

cloning.	See	database	cloning

cloud	computing

Amazon	Cloud,	593–594

Cloud	Control.	See	EM12c	entries

Elastic	Compute	Cloud,	593

OSB	Cloud	Module,	566,	591–601,	600–601

overview,	593

Cloud	Control.	See	EM12c	entries

cold	backups,	214,	687–688.	See	also	offline	backups

command	line	interface	(CLI),	566–567

CommCell,	659,	661,	662,	668

comment	parameter,	184

commit	command,	37,	38–39

commit	vector,	21,	22,	39

common	users,	85–87,	175–176

CommVault	iDA	(Intelligent	Data	Agent),	659,	661–667,	671

CommVault	Intellisnap,	672–673

CommVault	interface,	663,	671,	674–676

CommVault	logs,	674–675

CommVault	Simpana,	657–676

advanced	configurations,	671–674

archived	redo	logs,	665–667,	670

CommCell,	659,	661,	662,	668

data	retention,	660–661

initiating	backup,	667–669

installing,	659–660

instance	configuration,	663–665,	671

Intelligent	Data	Agent,	661–667,	671

overview,	658

RAC	support,	671–673

SBT	interface,	674

schedule	policies,	661,	665–666,	668–669

storage	policies,	660–661,	665,	673

subclient	configuration,	665–667

troubleshooting,	674–676

compression

Advanced	Compression	Option,	63,	203,	565

backup	sets,	148,	150,	162,	202–206,	600

backups,	203–205,	565

binary,	62–63

cloning	and,	352–353

considerations,	150

data	blocks,	202,	205–206

described,	605

empty	block,	61–62

null,	61–62,	202,	205

null	block,	202

options,	203–205

Oracle	Advanced	Compression,	63,	203,	565

performance	and,	605

precompression	block	processing,	205–206

RMAN	backup,	203–205

unused	blocks,	62,	202

whitespace,	62,	71

compression	algorithm,	204,	206

configuration,	109–165

for	ARCHIVELOG	mode,	110–129,	427

automated	backups,	155–156

backup	set	settings,	151–152

Backup	Storage	Selector,	577–580

basic	steps	overview,	5–6

channels,	149–151,	199

considerations,	110,	165

database	security,	144–146

database	user	setup,	142–144

EM12c	settings,	426–431

encryption	levels,	159–162

Fault	Diagnosability	Infrastructure,	129–136

Flashback	Database,	473–475

instances,	663–665,	671

OSB	administrative	server,	566

OSB	backups,	572–581

retention	policies,	156–159

RMAN	command	line,	136–142

RMAN	settings,	147–163,	195,	406–409

Shared	Servers,	163

snapshot	control	file	settings,	153

standby	database,	481–483,	484

subclient,	665–667

task	summary,	163–165

configure	command,	147–163,	199,	214–215,	333

configure	exclude	command,	195,	210

configure	retention	policy	clear	command,	159

configure	retention	policy	command,	156

connect	command,	141

connect	target	command,	141

connection	privileges,	138–139

consistency,	18,	302,	303

consistent	backup,	14–15

consolidation,	126

container	data	objects	(CDOs),	99

container	databases.	See	CDBs

containers,	83.	See	also	CDBs;	PDBs

control	file	backups

autobackups,	155–156,	213,	226,	262–263

commands	for,	213

crosschecking,	358–359

described,	18

listing,	389

overview,	234

recovering	from	autobackups,	262–263

recovering	from	backup	sets,	265

snapshots	of,	213

CONTROL	FILE_RECORD_KEEP_TIME	parameter,	57

control	files,	56–58

backups.	See	control	file	backups

CDB/PDB,	79,	84

consistent	view	of,	57

creating,	252

creating	copies	of,	213,	237–238

creating	for	auxiliary	instance,	334

described,	18,	28–29

filling	up,	57

importance	of,	57

issues,	410

listing	copies	of,	392

overview,	28–29,	56

rebuilding,	58

record	reuse	in,	56–57

vs.	recovery	catalog,	168

re-creating,	58

restoring,	262–265

restoring	records	to,	263–264

restoring	with	Data	Protector,	638–639

retention	policies	and,	146–147

size	of,	56,	146

snapshot,	57–58,	153,	499

standby,	494

controlfilecopy	parameter,	234

CONTROL_FILE_RECORD_KEEP_TIME	parameter,	146–147

copies,	236–238

copies	parameter,	213

copy	command,	238

copy	groups,	642,	644–645,	647

corruption.	See	also	troubleshooting

archived	redo	logs,	233

backup	media,	361–363

considerations,	250,	361

data	blocks,	63,	194,	314–315

datafile	backups,	214

logical,	212–213

physical,	479,	516,	520

restore	preview	command,	363

restore…validate	check	logical	command	set,	362–363

crash	recovery,	38

create	catalog	command,	176–177

create	control	file	command,	252

create	database	command,	81,	88

create	pluggable	database	command,	88,	173

create	restore	point	command,	207,	306

create	script	command,	184,	185,	247,	375

create	session	privilege,	87

create	user	command

CDBs/PDBs,	86–87

RMAN	backup	account,	143

RMAN	recovery	catalog	account,	171–172,	175

CRON	utility,	454

crosscheck	command,	188,	358–361

cumulative	backups,	240,	241–242

current	controlfile	parameter,	234

D

daemons,	OSB,	567

data.	See	also	datafiles

administrative,	569

backups,	361–363

changes	to,	37

committing	change,	38–39

corruption,	361–363

growth	of,	54

metadata,	54,	56,	187,	640

ownership	of,	453

protecting,	448–454,	453

record	reuse,	56–57

data	blocks.	See	blocks

data	dictionary

CDBs,	97–99,	100

Multitenant,	97–99,	100

data	dictionary	views

considerations,	131–134,	225

Data	Recovery	Advisor,	293–294

Fault	Diagnosability	Infrastructure,	131–134

listed,	190–192

Multitenant	database,	97–100

purpose	of,	189–190

for	reporting,	396–398

data	governance,	453

Data	Guard,	212,	477–496

data	loss,	15–16,	513–524

Data	Manipulation	Language	(DML),	37

data	protection	best	practices,	448–454

Data	Protector.	See	HP	Data	Protector	for	Oracle

Data	Pump,	42,	317,	319

Data	Recovery	Advisor	(DRA),	288–294

data	retention.	See	also	retention	policies

CommVault	Simpana,	660–661

Fast	Recovery	Area	and,	113,	366–368

Flashback	retention	target,	473–474

tape	backups,	159

data	warehouse,	248

database	administrators.	See	DBAs

database	blocks.	See	blocks

database	cloning.	See	also	duplication

basics,	328–336

compression	and,	352–353

described,	328

new	features,	352–353

PDBs,	105–106

reasons	for,	329

test	environment,	687

Database	Configuration	Assistant	(DBCA),	134,	423,	424–425

Database	Control.	See	Database	Express

database	control	files.	See	control	files

database	creation

CDBs,	81

PDBs,	78,	88,	172–174

test	environment,	686

Database	Express,	56

database	files

renaming,	213–214

database	ID.	See	DBID

database	incarnations.	See	incarnations

Database	Protection	as	a	Service,	521

database	recovery.	See	also	recovery	entries;	restore	operations

advanced	topics,	295–326

after	restoring	control	file,	262–263

archived	redo	logs,	32–33,	313,	362

ARCHIVELOG	mode,	44–46,	274–284,	535–537

Automatic	Diagnostic	Repository,	288

backup	strategies	and,	406

backup/recovery	architecture	tour,	9–47

backup/recovery	primer,	42–46

backups	eligible	for,	385–386

basics,	14–17,	250–251

best	practices,	27

case	studies.	See	case	studies

change-based	recoveries,	305,	312

complete	data	loss	(ARCHIVELOG),	535–537

complete	data	loss	(NOARCHIVELOG),	529–535

completing	failed	duplication,	542–543

configuring	RMAN	for.	See	configuration

considerations,	10–12,	27,	47,	449–451,	526–528

control	file,	262–265

corrupted	data	blocks,	314–315

cost	of,	16

crashes,	38

with	Data	Protector,	637–640

Data	Recovery	Advisor,	288–294

datafiles,	45–46,	283–284,	538–539

EM12c.	See	EM12c	recovery

entire	CDBs,	302–306

essentials,	13–17

exact	nature	of	failure,	527

Flashback.	See	Flashback	Database

full,	44–45,	251,	274–281

general	concepts,	42–47

high	availability	and,	13–14

incomplete.	See	point-in-time	recovery

instance,	36

logical,	42

loss	of	online	redo	log,	539–541

lost	datafiles	with	FRA	image	copy,	544–545

manual,	42–46

media.	See	media	recovery

Multitenant	and,	84

NOARCHIVELOG	mode,	44,	266–273,	529–535

non-CDB,	302–306

online	redo	log	groups,	285–288

online	redo	log	loss,	284–288

optimizing,	599–600

options	for,	527–528

Oracle	support	for,	528

partitions,	317–322

PDBs,	296–302,	306–312

performance.	See	performance

physical,	42–46

planning	for,	17

planning/preparing	for,	252,	266–270

point-in-time.	See	point-in-time	recovery

point-of-backup,	251

point-of-failure,	251,	274–281

preparing	for,	526–528

to	previous	incarnation,	315–317

RAC,	503–505

recover	command,	250–251,	280,	284

resetlogs	command,	541–542,	546–547

restore	command.	See	restore	command

restore	point–based,	306,	312

vs.	restores,	250

restoring	datafiles	to	original	location,	545–546

restoring	to	different	locations,	270–272

root	container,	296–297

scaling	issues	and,	450–451

SCN-based,	45,	46,	305,	310–312

seed	container,	297–299

server-managed,	50

SPFILE,	253–261

staging	backup	sets	for,	253–265

tables,	317–322

tablespaces.	See	tablespace	recovery

target	database	historical	subset,	543–544

terminology,	17–19

test	environment	for,	683–688

time	required	for,	16,	403,	405

time-based,	309

tuning	strategies	for,	403–406

types	of,	251

user	requirements	for,	15–16

Zero	Data	Loss	Recovery	Appliance,	513–524

Database	Recovery	Advisor,	134

Database	Resource	Manager,	96,	97

database	schema,	395

database	software.	See	SQL*Plus

Database	Support	Workbench,	131

databases.	See	also	Oracle	Database

architecture	of,	27–30

auxiliary.	See	auxiliary	databases

backing	up.	See	backups

catalog,	70,	686,	687

CDB.	See	CDBs

changing	data	in,	37

checkpoints,	39

cloning.	See	database	cloning

committing	changes	to,	38–39

components,	37,	38

configuring	for	RMAN	operations,	142–147

configuring	to	use	FRA,	5–6

connecting	to,	136–141

connection	privileges,	138–139

consistency	of,	18,	302,	303

container.	See	CDBs

creating.	See	database	creation

described,	18

dropping,	377

encryption,	161

flashback.	See	Flashback	Database

identifying	tuning	issues,	410–416

illustrated,	38

image	copies,	237

incarnation	of.	See	incarnations

logging	in	to,	5

logical	structures	within,	34–35

migration/upgrade	issues,	187

mounting,	35–36,	40,	41

multinode,	511–512

Multitenant.	See	OM	entries

naming,	271–272

nonmultitenant,	215–216

OLTP,	247

OM.	See	OM	databases

opening,	36

opening	after	control	file	recovery,	262–263

PDB.	See	PDBs

physical	components,	27–29

pluggable.	See	PDBs

primary,	482–483

privileges,	52–53,	138–139,	141–144

production	environment,	127,	328,	363,	556,	685

promoting	with	DBCA,	134,	423,	424–425

promoting	with	EM12c,	425–426

putting	in	ARCHIVELOG	mode,	6,	112,	127–128

quick-start	guide,	3–8

registering,	177–178

relationships,	37,	38

removing,	377

repository,	56

restoring.	See	restore	operations

security,	144–146

shutting	down,	36–37,	41,	286

single-node,	505–511

size	of,	552–553

standby.	See	standby	database

starting,	35–36,	40–41

stub,	317

synchronization,	640

taking	out	of	ARCHIVELOG	mode,	126–127,	129

target.	See	target	database

test	environments,	683–688

tuning,	403–406

unregistering,	179,	186–187

versions,	51

viewing	registered,	193

Virtual	Private	Database,	181

datafile	backups

backup	command,	232

based	on	last	backup	time,	211–212

corruption,	214

crosschecking,	359

image	copies,	237

listing	backups	by	datafile,	382–383

listing	backups	by	datafile	number,	386–387

multisection,	201–202,	405–406

newly	added,	211

not	recently	backed	up,	393–394

RAC	environment,	499–500

specific	datafiles,	232

datafile	copy	restores,	313–314

datafile	header,	28

datafile	parameter,	232

datafile	recovery

ARCHIVELOG	mode,	45–46

overview,	283–284

PDBs,	300–302

recovering	online,	538–539

recovering	with	FRA	image	copy,	544–545

datafile	restore	process,	406

datafiles.	See	also	files

backing	up.	See	datafile	backups

considerations,	281

database,	18,	28

described,	18,	28

dropping,	28

excluding	from	backups,	210

image	copies,	236

inaccessible,	210–211

listing	backups	by,	382–383,	386–387

listing	copies	of,	390–391

missing,	210–211

naming,	270–271,	273,	333–334

not	recently	backed	up,	393–394

offline,	210–211,	291

PDBs,	300–302

read-only,	210–211

recovery	of.	See	datafile	recovery

restoring,	495

restoring	to	different	location,	333–334

restoring	to	original	location,	545–546

skipping,	210–211

standby	databases,	483

status,	28

synchronization,	285

unrecoverable	operations	on,	394–395

DBA_OBJECT	view,	99

DBA_OUTSTANDING_ALERTS	view,	114,	123,	132

DBA_PDBS	view,	105

DBAs	(database	administrators),	450,	527.	See	also	administration

DBCA	(Database	Configuration	Assistant),	134,	423,	424–425

DB_CREATE_FILE_DEST	parameter,	482

DB_FILE_NAME_CONVERT	parameter,	333–334,	337,	509,	511

DBID	(database	ID)

changing,	334–335

considerations,	168

determining,	156

duplication	and,	328–329

recovery	operations	and,	156

restoring	control	file,	263

restoring	SPFILE,	257–259

specifying,	213

DBMS_BACKUP_RESTORE	package,	52,	60,	68

DBMS_RCVCAT	package,	52,	68

DBMS_RCVMAN	package,	60,	68,	71

DB_NAME	parameter,	336,	482

DBNEWID	utility,	25–26,	335,	351–352

DB_RECOVERY_FILE_DEST	parameter,	73

DB_RECOVERY_FILE_DEST_SIZE	parameter,	73

DBSNMP	accounts,	426

DB_UNIQUE_NAME,	393

DBWn	(database	writer)	processes,	21–22

DBWR_IO_SLAVES	parameter,	66,	403

DDL	logs,	130

debug	file	permissions,	620

debug	logs,	131,	620

debug	option,	73

degree	of	parallelism	(DOP),	199

delete	archivelog	configure	command,	163

delete	command,	37,	372–373

delete	input	option,	234

delete	input	parameter,	212,	233,	234

delete	obsolete	command,	157–159,	163,	188

delete	script	command,	185

DELETE	status,	359

DELETED	status,	370–371,	372,	373

Delta	Push,	515,	516–517

Delta	Store,	515,	516,	517–518,	520

destination	directories,	111–126,	214

desupported	technologies,	459

device	agent,	554

device	type	parameter,	201

device	types,	147

devices.	See	also	hardware

asynchronous,	402

disk.	See	disks

SBT,	405

specifying	for	backups,	201

synchronous,	402

unavailable,	368

DIAGNOSTIC_DEST	parameter,	134

differential	backups,	240–241

directories

administrative	server,	569

alert,	135

cdump,	135

destination,	111–126,	214

incident,	135

LOG_ARCHIVE_DEST,	111–112,	122,	126,	128

ORACLE_HOME.	See	ORACLE_HOME	directory

trace,	135

disaster	planning,	17

disaster	recovery	(DR),	13,	14,	452

disk	backups

duplicating	to	remote	server,	337–340

EM12c	environment,	428–429,	434

output	buffers	and,	65

vs.	tape	backups,	552–553

disk	channels,	59

disk	devices,	404–405,	650

disk	I/O	slaves,	59,	66

disk	space,	686

diskratio	parameter,	201

disks

allocating	memory	buffers,	404–405

ASM,	30,	125–126

duplication	from,	331,	332,	338–340,	345–347

parallelism	and,	150

physical,	120,	126,	367

testing,	400

tuning	I/O,	404,	650

DML	(Data	Manipulation	Language),	37

DOP	(degree	of	parallelism),	199

dorecover	option,	487

DR	(disaster	recovery),	13,	14,	452

DRA	(Data	Recovery	Advisor),	288–294

drop	database	command,	377

drop	user	command,	87

dropping	items

databases,	105,	377

datafiles,	27

Flashback	Drop,	470–472

recovery	catalog,	178

Recycle	Bin	and,	470–472

tables,	315

dsm.opt	file,	647

dsm.sys	file,	647,	648

dual	mode	backups,	160

duplicate	command

log	file	creation	and,	335

overview,	328

standby	database	creation,	508

syntax,	331

duplicate	database	command,	487

duplication,	327–353.	See	also	database	cloning

architecture	of,	330–336

basics,	328–336

from	disk,	331,	332,	338–340,	345–347

incomplete,	351–352

large	tablespaces,	353

location	of,	336–337

memory	and,	336,	337–338

naming	considerations,	336

network	and,	341–344

process	for,	331

reasons	for,	329

to	remote	server,	337–341,	347–350

to	same	server,	336–337,	344–347

from	tape,	331,	332,	340–341,	347

types	of,	330

without	a	target,	350–352

duration	parameter,	207–208,	409

dynamic	groups,	425

E

EBS	(Elastic	Block	Store),	593

EC2	(Elastic	Compute	Cloud),	593

Elastic	Block	Store	(EBS),	593

Elastic	Compute	Cloud	(EC2),	593

EM	CLI,	424

EM	Express,	424

EM12c	(Enterprise	Manager	Cloud	Control),	419–444

agents,	421,	423–424

architecture,	420–422

backups.	See	EM12c	backups

Cloud	Control	console,	421–422

considerations,	55,	56

database	promotion	with,	425–426

discovering	targets,	424–426

EM	CLI,	424

licensing,	420

managing,	438–439

Oracle	Management	Repository,	420–421

Oracle	Management	Service,	421

plug-ins,	422

procedures,	440–444

recoveries.	See	EM12c	recovery

settings,	426–431

EM12c	backups

backing	up	multiple	databases	at	once,	436–438

database	backup	procedures,	431–438

incremental,	433–434,	436,	437

managing,	438–439

reports,	439–440

scheduling	customized	backups,	432–436

scheduling	Oracle-suggested	backups,	431–432

EM12c	recovery,	440–444

configuring	settings,	426–431

operation	type,	443

performing,	441–444

point-in-time	recovery,	427,	443–444

recovery	procedures,	440–444

recovery	scope,	443

restore	points,	440–441,	442

emerging	technologies,	458–459

ENABLE_PLUGGABLE_DATABASE	parameter,	482

encryption

archived	redo	logs,	161

backups,	159–162,	434,	565

databases,	161

Oracle	Encryption	Wallet,	160

passwords,	160

tablespaces,	161–162,	461

enterprise	architecture,	449

Enterprise	Manager.	See	OEM	and	EM	entries

Enterprise	Manager	Cloud	Control.	See	EM12c	entries

enterprise	solutions,	449

entropy,	358

error	messages,	140

errors.	See	also	troubleshooting

blank,	560

during	clone	registration,	329

data	block	corruption,	63

hardware,	464

insufficient	privileges,	53

logical,	464

media	management,	560–561

NetBackup	logs,	620

ORA-01157,	301

ORA-01190,	335

ORA-19511,	560

ORA-27206,	560

rman-20002,	329

rman-20011,	329

snapshot	control	file,	58

user,	464

Exadata,	26

executable	file,	52,	70

execute	script	command,	185

expired	backup	sets,	386,	388,	389

EXPIRED	status,	358–361,	359

F

Fast	Recovery	Area	(FRA)

additional	features,	125

archival	backups	and,	208

archive	log	backup	issues	and,	503

ARCHIVELOG	mode,	113–126

ASM	and,	113,	125–126

backing	up,	235–236

configuring,	426–427

configuring	databases	to	use,	5–6

considerations,	121,	126,	253,	254

control	file	recovery,	262

creating,	5

described,	29

determining	location	for,	5

file	types	found	in,	113

flashback	logs,	29,	472–473

format	string	specification	and,	153

insufficient	storage	space,	120–121

items	stored	in,	29–30

lost	datafiles,	544–545

monitoring	of,	113–115

OCFS	and,	113

overview,	18,	29–30,	73,	113

recovering	datafiles,	545–546

recovering	SPFILE,	255–257

removing	files	from,	125

restore	points	and,	207

restoring	datafiles	to	original	location,	545–546

retention	of	files	in,	113

retention	policies	and,	366–368

scripts	and,	680

setting	up,	121–123

sizing,	115–121

space	available,	113–115

standby	databases	and,	480

structures	stored	in,	29–30

views,	123–125

Fault	Diagnosability	Infrastructure,	129–136

file	headers,	61–62,	334–335

file	locations,	336–337,	338

files.	See	also	datafiles

control.	See	control	files

debug,	620

executable,	52,	70

log.	See	log	files

MML,	555–556

Oracle	Net,	341–344

parameter,	18,	47

password,	342,	648

recovery,	73

removing	from	FRA,	124

RPM,	424

snapshot,	57–58,	499

SPFILEs.	See	SPFILEs

temporary,	29,	79,	271,	639

trace,	19,	131,	416,	417

filesperset	parameter,	201,	404–405,	408

Flash	Recovery	Area.	See	Fast	Recovery	Area

Flashback	Data	Archive,	475

Flashback	Database,	472–475

configuration,	473–475

considerations,	46

EM12c	environment,	441,	443

flashback	logs,	29,	472–473

opening	database,	546–547

resetlogs	command,	541–542,	546–547

Flashback	Drop/Recycle	Bin,	470–472

flashback	functionality,	46

flashback	logs,	29,	472–473

Flashback	Query,	465–468

Flashback	Table,	465,	468–469

Flashback	technologies,	463–476

Flashback	Data	Archive,	475

Flashback	Drop,	470–472

flashback	logs,	29,	472–473

Flashback	Query,	465–468

Flashback	retention	target,	473–474

Flashback	Table,	465,	468–469

overview,	464–465

Recycle	Bin,	470–472

undo	segments	and,	465–466

Flashback	Transaction	Query,	470

Flashback	Versions	Query,	467–468

flashback	window,	466

force	parameter,	201,	281,	313

forced	logging	mode,	480–481

forever	option,	209

format	clause,	236

format	parameter,	153,	201,	227

format	string	specification,	153–155

FRA.	See	Fast	Recovery	Area

fragmentation,	206

from	option,	233

full	backups,	433,	515,	517–518

full	database	recovery.	See	point-of-failure	database	recovery

Fusion	Applications	plug-in,	422

Fusion	Middleware	plug-ins,	422

G

global	scripts,	183,	184

globally	unique	identifier	(GUID),	94,	225

granules,	18

Grid	Control,	329,	470,	566

GUID	(globally	unique	identifier),	94,	225

H

HA	(high	availability),	13–14,	551–552

handle,	554

hardware.	See	also	devices

backup	media,	402–403

considerations,	458

damaged,	16

disks.	See	disks

errors,	464

failures,	16

scale-out,	524

help	feature,	139–140

high	availability	(HA),	13–14,	551–552

host	access	modes,	569

host	names,	486

hot	backups,	63.	See	also	online	backups

HP	Data	Protector	for	Oracle,	623–640

backup	configuration,	629–635

database/metadata	synchronization,	640

integration	components,	624–625

integration	configuration,	626–628

integration	restrictions,	626

restore	operations,	637–640

running	RMAN	backups,	636–637

support	matrix,	624

I

iDA	(Intelligent	Data	Agent),	659,	661–667,	671

image	copies

backup	command,	237

listing,	390–392

overview,	236

recovering	lost	datafiles	with,	544–545

import	catalog	command,	182–183

inaccessible	parameter,	211

incarnations

described,	187

listing,	380–381

recovering	to	previous,	315–317

resetting,	187–188

status	of,	380–381

viewing,	193–194

Incident	directory,	135

Incident	Packaging	Service	(IPS),	131

include	current	controlfile	option,	213

incomplete	database	recovery.	See	point-in-time	recovery

inconsistent	backup,	14–15

incremental	backups,	238–244

base	backups,	240

block	change	tracking	file,	239–240

block-level	backups,	61,	62

considerations,	284,	405,	436

Delta	Store,	517–518

differential	vs.	cumulative,	240–242

EM12c	backups,	433–434,	436,	437

merged,	242–244

options,	242,	433–434

overview,	238–239

performing,	244

reports,	385

restore	command,	284

input	memory	buffers,	63–65,	66,	71

insert	command,	37

instances

auxiliary,	307,	331–332,	482,	484,	486

CDBs,	77

CommVault,	662,	663–665,	671

configuring,	663–665

described,	18

Multitenant	and,	77

Oracle	Database,	78

PDBs,	77

recovery,	36

startup,	20,	35,	40

Intelligent	Data	Agent	(iDA),	659,	661–667,	671

Intellisnap,	672–673

I/O	distribution,	404

I/O	options,	404

IO	Resource	Manager	(IORM),	97

I/O	slaves,	59,	66,	402

I/O	throughput,	460

I/O	tuning,	405

IORM	(IO	Resource	Manager),	97

IP	addresses,	486

IPS	(Incident	Packaging	Service),	131

J

“Jamaican	processes,”	20

K

keep	parameter,	207,	208–210

kernel,	50,	60

keystores,	162

L

large	pool	memory,	66,	403

LARGE_POOL_SIZE	parameter,	66,	403

LGWR	(log	writer)	process,	22–23,	28,	31,	32

libobk.so	file,	555

libraries

Media	Management	Library,	409,	555–557

NetBackup,	620

OSB	SBT,	565

tape,	594

licensing	considerations

Enterprise	Manager	Cloud	Control,	420

Oracle	Cloud	Module	and,	600–601

Oracle	Multitenant,	84

Linux	host,	567,	568

Linux	systems,	145,	570

list	command,	7,	380–393

list	failure	command,	288–291

list	incarnation	command,	315,	380–381

loadsbt.exe	utility,	559–560

local	scripts,	183,	187

local	users,	174–175

log	files.	See	also	archive	logs

alert	logs,	17,	130

auxiliary	site,	335–336

CommVault	logs,	674–675

DDL	logs,	130

debug	logs,	131,	620

flashback	logs,	29,	472–473

NetBackup	logs,	620

online	redo	logs.	See	online	redo	logs

progress	logs,	620

redo.	See	redo	log	files

suppressing	RMAN	output,	227

trace	files,	131

log	parameter,	227

log	sequence	number,	19,	32–33

log	switch,	19,	28,	229,	233

log	writer	(LGWR)	process,	22–23,	28,	31,	32

LOG_ARCHIVE_DEST	directory,	111–112,	122,	126,	128

LOG_ARCHIVE_DEST	parameter,	32,	73,	483

LOG_ARCHIVE_DUPLEX_DEST	parameter,	73

LOG_ARCHIVE_FORMAT	parameter,	112

LOG_ARCHIVE_MAX_PROCESSES	parameter,	112

LOG_ARCHIVE_START	parameter,	112

LOG_ARCHIVE_STATE	parameter,	112

logging,	152,	227,	480–481

logical	backup/recovery,	42

logical	corruption,	212–213

logical	errors,	464

logical	standby	database,	478–479

logical	structures,	34–35

logon	triggers,	141–143

LREG	(listener	registration)	process,	20–21

M

maintenance,	357–377.	See	also	administration

archive	log	retention	policies,	364–368

backup	retention	policies,	364–368

cataloging	backups,	373–374

changing	backup	status,	368–371

considerations,	358

cross-checking	RMAN	backups,	358–361

migration/upgrade	issues,	187

recovery	catalogs,	186–189,	358,	370,	375–377

removing	database,	377

removing	obsolete	backups,	372–373

removing	records,	372

resynchronizing	recovery	catalog,	188

retention	policies,	364–368

stored	scripts,	374–377

test	environment,	687

validating	backups,	363

Manageability	Monitor	Lite	(MMNL)	process,	23

manageability	monitor	(MMON)	process,	23

management	classes,	642,	644

master	server,	606

maxcorrupt	parameter,	212

maxopenfiles	parameter,	408

maxpiecesize	parameter,	150,	151,	407

maxsetsize	parameter,	151,	201,	407–408

media	management,	551–561

clients,	553,	555

errors,	560–561

NetBackup.	See	NetBackup	Media	Manager

restore	considerations,	504–505

restore	operations,	503–504

troubleshooting,	560–561

media	management	client,	553,	555

Media	Management	Library.	See	MML

media	management	servers,	553–557,	567–568

media	manager,	553–557

media	manager	catalog,	553–554

media	recovery

block	media	recovery,	314–315

described,	36,	250–251

resetlogs	command,	541–542

media	servers,	606

memory,	63–66.	See	also	memory	buffers

allocations,	26,	404–405

ASMM,	403

duplication	and,	336,	337–338

large	pool,	66,	403

multisection	backups	and,	65–66

other	types	of,	26

PDBs,	77,	95,	96

performance	and,	404–405

PGA,	24,	26,	61,	63,	66

restore	operations	and,	65

RMAN	and,	25–27

SGA.	See	SGA	entries

standby	databases,	482

test	environments,	685–686

TSM	storage	pools,	651–653

tuning,	404–405

memory	buffers

allocating	for	disk	devices,	404–405

allocating	for	SBT	devices,	405

basics,	61

data	blocks	and,	61

hardware	issues,	402–403

input,	63–65,	66,	71,	558,	559

issues,	410

Oracle	System	Global	area,	26

output,	61,	63–66,	72,	558,	559

during	restores,	65

tape	systems,	407

memory	models,	25,	26

memory	utilization,	66

merged	incremental	backups,	242–244

metadata,	54,	56,	187,	640.	See	also	data

Metalink	Oracle	Support	(MOS),	51

migration/upgrade	issues,	187

minimize	load	parameter,	409

minimize	time	parameter,	208

MML	(Media	Management	Library),	409,	555–557

MML	files,	555,	556

MML	layer,	409,	461

MMNL	(Manageability	Monitor	Lite)	process,	23

MMON	(manageability	monitor)	process,	23

monitor	class,	571

monitoring	features,	379–398.	See	also	reporting;	reports

best	practices,	454

data	dictionary	views,	396–398

list	command,	380–393

manageability	monitor,	23

monitoring	backups,	454

monitoring	FRA,	113–115

Zero	Data	Loss	Recovery	Appliance,	522–523

MOS	(Metalink	Oracle	Support),	51

mounting	database,	35–36,	40,	41

MTS	(Multi-Threaded	Server),	54–55,	163

multinode	RAC	database,	511–512

multiplexed	online	redo	logs,	32

multiplexing,	19,	64,	405,	407–409

multisection	backups,	63,	65–66,	201–202,	405–406

Multitenant.	See	OM	entries

multithreaded	processes,	24–25

Multi-Threaded	Server	(MTS),	54–55,	163

multithreading,	24–25

N

NDMP	(Network	Data	Management	Protocol),	569,	570

NDMP	hosts,	569,	570

NET	aliases,	501

Net	Manager	utility,	343–344

Net	Service	Name	Wizard,	343–344

NetBackup	for	Oracle,	603–621.	See	also	backups

architecture,	610

backup	schedules/selections,	614–616

components,	605

configuring	policies,	611–617

cost	justification,	621

defining	policy	clients,	616–617

described,	604

device	configuration,	605–606

installing,	606–608

key	features,	604–605

linking	database	software	to,	608–610

managing	expired	backups,	617–618

Oracle	Agent,	606,	607–608

RMAN	sample	scripts,	618–619

security	best	practices,	620–621

troubleshooting,	619–620

NetBackup	library,	620

NetBackup	logs,	620

NetBackup	Media	Manager.	See	also	media	management

linking	Oracle	to,	608–610

managing	expired	backup	images,	617–618

NetBackup	Repository,	617

NetBackup	scheduler,	614–616

Network	Data	Management	Protocol	(NDMP),	569,	570

network	parameter	files,	47

networks

duplication	and,	341–344

OTN,	572

SANs,	552

topology,	53–56

NLS_DATE_FORMAT	environment	variable,	687

NOARCHIVELOG	mode

vs.	ARCHIVELOG	mode,	34

considerations,	34,	460

database	recovery,	266–273

offline	backups,	216–219

overview,	34

physical	backups,	42

putting	database	into,	126–127

recoveries,	44

recovering	from	complete	data	loss,	529–535

restore	operations	in,	266–273

switching	between	modes,	126–127

node	affinity,	500

nodes

archive	log	backups	and,	500,	501,	503

auto	backup	distribution,	500

considerations,	500

number	of,	500

noexclude	parameter,	210

noncircular	reuse	records,	57

not	backed	up	parameter,	233,	234

null	blocks,	202,	205

null	compression,	61–62,	202,	205

O

objects

dropping,	470–472

restoring	with	Data	Protector,	639–640

restoring	with	TSPITR,	323–324

undropping,	470

OBSOLETE	status,	367,	372

obtool,	566

OCFS	(Oracle	Cluster	File	System),	113

ODBCA	(Oracle	Database	Configuration	Assistant),	127

OEM	(Oracle	Enterprise	Manager).	See	also	EM	entries

backup	settings,	572–581

catalog	views	for,	195–196

configuring	Backup	Storage	Selectors	with,	577–580

configuring	OSB	administrative	server	from,	566

Database	Control,	566

Flashback	Table	operation,	469

Grid	Control,	566

OSB	and,	565,	578–581

OEM	views,	195–196

offline	backups,	14,	214–228,	434.	See	also	cold	backups

offline	datafiles,	210–211

offline	parameter,	211,	227–228

OLTP	databases,	247

OM	(Oracle	Multitenant),	75–106.	See	also	CDBs;	PDBs

backup/recovery	and,	84

considerations,	11–12,	40,	76

creating	recovery	catalog	schema	objects,	172–176

data	dictionary,	97–99,	100

instances	and,	77

licensing	considerations,	84

overview,	76–77

restoring,	251–252

OM	databases,	162,	215,	216–217

OMAs	(Oracle	Management	agents),	421,	423–424

OMF	(Oracle	Managed	Files),	73

OMR	(Oracle	Management	Repository),	420–421

OMS	(Oracle	Management	Service),	421

online	backups,	14,	43,	228–236,	434.	See	also	hot	backups

online	redo	log	groups,	31,	32,	79,	285–288

online	redo	logs

commit	command	and,	39

considerations,	19

LGWR	process	and,	22

log	switch,	31

loss	of,	539–541

managing,	33–34

multiplexing,	32

overview,	19,	28,	31

recovering	from	loss	of,	284–288

size,	31

status,	31

unarchived,	539–541

opening	database,	36

operating	system	accounts,	570

operator	class,	571

optimization,	152,	211,	599–600

ORA-01157	error,	301

ORA-01190	error,	335

ORA-19511	error,	560

ORA-27206	error,	560

Oracle	Active	Data	Guard,	212,	477–496

Oracle	Agent,	605,	606,	607–608

Oracle	ASM.	See	ASM

oracle	class,	571

Oracle	Cluster	File	System	(OCFS),	113

Oracle	Clusterware,	451,	452

Oracle	Data	Pump,	42,	317,	319

Oracle	Database.	See	also	databases

architecture,	19–34

backup/recovery	primer,	42–47

controlling	software,	40–41

internals,	37–40

logical	structures,	34–35

plug-ins,	422

startup/shutdown,	35–37

Oracle	Database	Configuration	Assistant	(ODBCA),	127

Oracle	Database	Fault	Diagnosability	Infrastructure,	129–136

Oracle	database	plug-in,	422

Oracle	Encryption	Wallet,	160

Oracle	Enterprise	Edition,	51

Oracle	Enterprise	Manager.	See	OEM	and	EM	entries

Oracle	Exadata,	26

Oracle	instances.	See	instances

Oracle	Managed	Files	(OMF),	73

Oracle	Management	agents	(OMAs),	421,	423–424

Oracle	Management	Repository	(OMR),	420–421

Oracle	Management	Service	(OMS),	421

Oracle	module,	553

Oracle	Multitenant.	See	OM	entries

Oracle	Net	configuration,	163,	484–486

Oracle	Net	files,	341–344

Oracle	Net	Manager	utility,	343–344

Oracle	processes,	20–25.	See	also	processes

Oracle	RDBMS	software,	47

Oracle	Secure	Backup.	See	OSB

Oracle	support,	528

Oracle	Technology	Network	(OTN),	572

Oracle	Total	Recall,	475

ORACLE_HOME	directory

auxiliary	instance,	337

considerations,	52,	58,	141

running	RMAN	locally	from,	55–56

test	environment,	686

ORACLEPOOL	storage	pool,	651,	652

orasbt.dll	file,	555,	560

oratab	file,	47

Orion	tool,	400,	460

OS	authentication,	144–145,	664

OSB	(Oracle	Secure	Backup),	563–590.	See	also	media	management

administrative	data,	569

administrative	domain,	566–570

backup	encryption,	565

Backup	Storage	Selector	configuration,	577–580

classes,	570–571

command-line	interface,	566

components,	567–571

configuring	OEM	for,	578–581

database	backups,	582–586

described,	552,	564

features,	564–566

host	access	modes,	569

installing,	572–578

interfaces,	566–567

OEM	and,	565,	578–581

vs.	OSB	Express,	565

rights,	570–571

RMAN	integration,	565

submitting	backup	jobs	from	RMAN,	583,	589

users,	570–571

OSB	administrative	server,	566

OSB	classes,	570–571

OSB	Cloud	Module,	566,	591–601

OSB	daemons,	567

OSB	domains,	429

OSB	Express	tool,	565

OSB	home,	569

OSB	SBT	library,	565

OSB	servers,	580–581,	584

OSB	users,	570–571

OSB	Web	tool,	566,	569,	575

OTN	(Oracle	Technology	Network),	572

output	buffers,	61,	63–66,	72,	558,	559

P

PARALLEL_AUTOMATIC_TUNING	parameter,	66

parallelism,	150,	164,	199,	269–270

parameter	file	backups,	234

parameter	files,	18,	47

parentheses	(),	314

parms	parameter,	340–341

partial	keyword,	409

partial	parameter,	208

partition	recovery,	317–322

password	files,	342,	648

password	mode	encryption,	160

passwords

backup,	159–162

considerations,	173

encrypted,	160

NDMP	host,	570

OSB	users,	570

setting	up,	145–146

standby	database,	483

TDPO,	648

user	accounts,	173

PDB	users,	88–89

PDBs	(pluggable	databases),	87–97.	See	also	CDBs;	OM	entries

administration,	99–105

alter	system	command,	104

architecture,	83,	93–95

automated	startup,	103–104

backing	up,	223–225

cloning,	105–106

connecting	to,	89–92,	102

considerations,	220–221

constraints,	95

control	files,	79,	84

creating,	78,	88,	172–174

data	dictionary,	97–99,	100

datafiles,	300–302

described,	78,	82–83

determining	ID,	92–93

dropping,	105

example,	79

instances,	77

logging,	232

memory,	77,	95,	96

naming,	88,	271

offline	backups,	216–219

online	redo	log	groups,	79

opening,	100–102

overview,	82–84

performance,	95

plugging/unplugging,	105–106

recovery	catalog	creation,	172–176

recovery	of,	296–302,	306–312

resource	management,	95–97

restoring	tables/partitions,	319

starting/shutting	down,	100–104

storage	limits,	104

tablespaces,	299–300,	307

users,	88–89

views,	105

PDB$SEED	container,	78,	94

performance

backup	command	and,	199

baseline,	400

block-level	backups,	63

compression	and,	605

considerations,	400–406,	460

control	files,	410

goals,	401

large	datafiles	and,	201

memory	and,	404–405

memory	buffers,	410

multiplexing	and,	405,	407–409

multisection	backups	and,	201

PDBs,	95

recovery	catalog,	410

test	environment	and,	685

performance	tests,	400

performance	tuning,	399–418

environment,	405

I/O,	405

memory,	404–405

RMAN	settings,	406–409

tracing	RMAN	sessions,	416–417

views,	410–416

persistent	storage,	14–15

PFILEs,	260

PGA	(Private	Global	Area),	24,	26,	61,	63,	66

physical	backup/recovery,	42–46

physical	standby	database,	478

PITR.	See	point-in-time	recovery

pluggable	databases.	See	PDBs

plug-ins

EM12c,	422

Fusion	Applications,	422

Fusion	Middleware,	422

Oracle	Database,	422

plus	archivelog	command,	204

PMON	(process	monitor)	process,	20

point-in-time	recovery	(PITR)

basics,	302–305

change-based	recoveries,	305,	312

considerations,	251

database,	45–46,	302–312

described,	251,	302

with	EM12c,	427,	443–444

entire	CDBs,	302–306

non-CDB,	302–306

partitions,	317–322

PDBs,	306–312

recovery	target,	304–305

restore	point–based	recoveries,	306,	312

SCN-based	recoveries,	305,	310–312

tables,	317–322

tablespaces,	299–300,	322–326,	464

point-of-backup	recovery,	251

point-of-failure	database	recovery,	251,	274–281

policies

archive	log	deletion,	162–163,	364–366

backup/recovery,	17

CommVault	Simpana,	660–661,	665–669,	673

protection,	520–521,	522

retention.	See	retention	policies

schedule,	661,	665–666,	668–669

storage,	660–661,	665,	673

Veritas	NetBackup,	611–617

policy	domain,	642,	643

policy	sets,	642,	644

pools,	66,	403,	651–653.	See	also	memory

precompression	block	processing,	205–206

primary	access	mode,	569

primary	database,	482–483

primary	server,	485–486

print	script	command,	185

printing	stored	scripts,	185,	376

Private	Global	Area	(PGA),	24,	26,	61,	63,	66

privileges.	See	also	authentication

CDBs/PDBs,	85–90,	101–104

common	users,	85–87

connection,	138–139

insufficient,	53

overview,	52–53

PDB	users,	88,	89

recovery	catalog,	171–172

SYSBACKUP,	138–139

SYSDBA,	52–53,	138,	174,	182

Process	Spawner	Process	(PSP),	25

processes

ARCH,	28,	32,	34,	112

ARCHn,	23–24

best	practices,	459–460

channel,	59

CKPT,	23

DBWn,	21–22

described,	19

LGWR,	22–23,	28,	31,	32

LREG,	20–21

MMNL,	23

MMON,	23

Oracle,	20–25

PMON,	20

RECO,	23

relationships,	37,	38

server,	24,	58–59

SMON,	20

Un,	25

user,	24

processor	speed,	685

production	environment,	127,	328,	363,	556,	685

progress	logs,	620

protection	policy,	520–521,	522

PSP	(Process	Spawner	Process),	25

purge	command,	471

Q

queries,	465–468

quick-start	guide,	3–8

R

RAC.	See	Real	Application	Clusters

rate	parameter,	150,	409

RC_RMAN_OUTPUT	view,	152

RC_*views,	68,	189–196

RDBMS	software,	47

read	consistency,	39

read	consistent	images,	39

READ	ONLY	mode,	29

read-consistent	image,	465

reader	class,	571

read-only	datafiles,	210–211

read-only	tablespace	recovery,	313

readrate	parameter,	409

Real	Application	Clusters	(RAC),	497–512

advanced	topics,	505–512

backups,	498–503

CommVault	support	for,	671–673

considerations,	405,	451

overview,	498

restores/recoveries,	503–505

real-time	redo	transport,	516–517

RECO	(recoverer)	process,	23

records

control	files,	56–57,	263–264

how	long	to	keep,	146–147

redo,	19

removing	from	recovery	catalog,	188–189,	372

reusing,	56–57

recover	command,	242,	250–251,	280,	284

recover	copy	of	database	command,	243

recover	database	command,	7,	262–263,	266,	270–273

recover	tablespace	command,	283

recover.bsq	file,	52

recoverer	(RECO)	process,	23

recovery.	See	database	recovery

recovery	catalog,	167–196

adding	completed	backups	to,	178

advantages	of,	168,	169–170

backup	files	in,	194

backups,	178,	189,	358–359

cloned	databases	and,	328–329

considerations,	54,	57,	169,	252,	461

creating,	176–177

creating	schemas	(Multitenant),	172–176

creating	schemas	(nonmultitenant),	170–172

vs.	database	control	file,	168

databases	registered	in,	193

dropping,	178

importance	of,	54

maintaining,	186–189,	358,	370,	375–377

manually	resynchronizing,	188

merging	multiple,	182–183

not	using,	168

overview,	67–68,	168–170

privileges,	171–172

RC_*	views,	189–196

recovering	control	files,	262,	263

recovering	from	complete	database	loss,	529–537

recovering	SPFILE,	253–261

recovering	to	previous	incarnation,	315–317

registering	database	in,	177–178

removing	records	from,	188–189,	372

resynchronizing,	67,	188

standby	database,	488,	494

statistics,	405

stored	scripts	in,	183–186,	374–377

tablespaces	registered	in,	193

unregistering	database	from,	179,	186–187

using,	67–68,	226

views,	189–196

Virtual	Private	Catalog,	179–182,	461

recovery	catalog	database,	170,	410,	626,	640,	686

recovery	catalog	issues,	410

recovery	catalog	PDB,	172–176

recovery	catalog	user,	169,	170–172

recovery	files,	73

recovery	logs,	334

Recovery	Manager.	See	RMAN

recovery	point	objective	(RPO),	15,	16,	97

recovery	target,	304–305

recovery	time	objective	(RTO),	15,	16,	97

recovery	window–based	retention	policies,	157–159,	364

recovery-point	objective,	454–455

recovery-time	objective,	454–455

Recycle	Bin,	470–472

redo	log	buffer,	37

redo	log	files,	30–34.	See	also	archived	redo	logs

log	sequence	number,	19

online	redo	logs,	19,	28,	31,	539–541

overview,	30–31

status,	31

switching,	687

redo	records,	19

redo	transport	technology,	516–517

redundancy-based	retention	policies,	159

registering	database,	177–178

remote	procedure	calls	(RPCs),	50,	52

remote	server	duplication,	347–350

remote	servers,	337–341,	347–350

repair	actions

automated	repair	options,	291–292

blocks,	212,	314

considerations,	297

repair	failure	command,	288,	292–293

replace	script	command,	184

replication,	518

report	command,	393–396

reporting	features

data	dictionary	views,	396–398

list	command,	380–393

report	command,	393–396

reports

backup,	439–440

backup	redundancy,	394

backups	eligible	for	recovery,	385–386

data	dictionary	views,	396–398

database	schema,	395

datafile	backups,	393–394

list	command,	380–393

obsolete	backups,	395–396

report	command,	393–396

repositories,	56,	420–421

reset	catalog	command,	187–188

reset	database	command,	188

resetlogs	command

data	incarnations	and,	187–188

incomplete	recoveries	and,	303–304

log	sequence	number,	32–33

opening	database	with,	541–542,	546–547

point-of-failure	recovery	and,	275

recovering	with,	380,	541–542

resetting	database	incarnation,	187–188

restore	command

control	file	restores,	259–260

datafile	restores,	313

incremental	backups,	284

overview,	250–251

vs.	recover	command,	250–251

restore	database	command,	7,	303,	406

restore	database	preview	command,	361–362

restore	database	validate	check	logical	command,	362–363

restore	database	validate	command,	362

restore	from	datafilecopy	command,	313–314

restore	operations.	See	also	database	recovery

archived	redo	logs,	32–33,	313,	362

in	ARCHIVELOG	mode,	274–284

Automatic	Diagnostic	Repository,	288

basic	steps	overview,	7

basics,	250–251

CommVault	Simpana,	670

control	files,	262–265,	638–639

with	Data	Protector,	637–640

Data	Recovery	Advisor,	288–294

databases,	495

datafile	copy,	313–314

datafiles,	495

to	different	locations,	270–272,	333–334

media	management	and,	503–504

memory	buffers	and,	65

memory	utilization	during,	65

in	NOARCHIVALOG	mode,	266–273

objects,	639–640

online	redo	log	loss,	284–288

to	original	location,	545–546

OSB	Web	tool,	566,	569,	575

partitions,	317–322

preparing	for,	252,	266–270

RAC,	503–505

vs.	recoveries,	250

SPFILE,	253–261

staging	backup	sets	for,	253–265

from	standby	database,	495

tablespaces,	317–322,	495

RESTORE	OPTIMIZATION	option,	351

restore	point–based	recoveries,	306,	312

restore	points

creating,	207,	306

EM12c	recovery,	440–441,	442

guaranteed,	207

listing,	392

overview,	207

restore	preview	command,	362

restoring	from	tape,	558–559

resync	catalog	command,	188

resync	command,	67,	189

resync	operation,	67

retention	definitions,	661

retention	policies,	364–368.	See	also	data	retention

archive	logs,	364–368

backups,	156–159,	364,	366–368

configuring,	156–159

considerations,	460

default,	156–159

described,	364

disabling,	159

Flash	Recovery	Area	and,	366–368

recovery	window–based,	157–159,	364

retention,	undo,	467

reuse	parameter,	201

revoke	catalog	command,	180,	181

RMAN	(Recovery	Manager)

architecture.	See	RMAN	architecture

backup	operation	example,	70–73

backups.	See	backups

best	practices.	See	best	practices

case	studies.	See	case	studies

command	line	interface,	136–142,	566–567

compatibility	issues,	69–70

configuration	task	summary,	163–165

configuring.	See	configuration

connecting	to	database,	136–141,	144,	145

controlling	overall	impact,	409

deleting	expired	backups	with,	617–618

error	messages,	140

identifying	database-related	issues,	410–416

maintaining.	See	maintenance

media	manager	and,	553–557

multiplexing	and,	405,	407–409

Oracle	memory	and,	25–27

OSB	integration,	565

overview,	50–53

performance.	See	performance

preliminary	steps,	4

privileges,	52–53

quick-start	guide,	3–8

recovery.	See	database	recovery

running	locally,	55–56

running	remotely,	53,	54

sample	scripts,	618–619,	679–681

scale	and,	53–54

settings,	406–409

standby	database	creation,	479–494

starting,	136–139

suppressing	output,	227

test	environment,	683–688

tuning,	406–410

versions,	51,	69–70,	71

RMAN	architecture,	9–74

ARCHIVELOG	vs.	NOARCHIVELOG,	34

backup/recovery	essentials,	13–17

CDBs,	77–80,	83

introduction	to,	49–74

logical	structures,	34–35

Oracle	Database	architecture,	19–34

PDBs,	83,	93–95

pre-Multitenant,	19–35

speeds/feeds	of,	460

terminology,	17–19

Zero	Data	Loss	Recovery	Appliance,	514–515

RMAN	backups.	See	backups

RMAN	client,	140–142

RMAN	commands.	See	also	specific	commands

help	feature,	139–140

parameters,	136

RMAN	connection	privileges,	138–139

RMAN	duplication.	See	duplication

RMAN	executable,	52,	70

RMAN	file	handle,	554

RMAN	logging,	152

RMAN	packages,	50,	52,	59–60

RMAN	scripts.	See	scripts

RMAN	server	processes,	58–59

RMAN	sessions,	416–417

RMAN	utility,	50–53

rman-20002	error,	329

rman-20011	error,	329

robotic	interface,	554

roles,	173,	174

rollback	segments,	37,	39,	465.	See	also	undo	segments

root	containers

CDB,	81–82

considerations,	79,	98,	99

described,	78

recovering,	296–297

RPCs	(remote	procedure	calls),	50,	52

RPM	files,	424

RPO	(recovery	point	objective),	15,	16,	97

RTO	(recovery	time	objective),	15,	16,	97

run	blocks,	227–229

run	keyword,	227

S

S3	(Simple	Storage	Service),	593–597,	598

SAME	(Stripe	and	Mirror	Everything),	404

SBT	(System	Backup	to	Tape),	555–560,	565

SBT	API,	557–558

SBT	channels,	597

SBT	devices,	405

SBT	interface,	555–560,	674

SBT	vendors,	402

sbttest	utility,	559–560,	648

scale,	53–54,	450,	514,	515,	524

scale-out	hardware,	524

scaling	problems,	450–451

schedule	policies,	661,	665–669

scheduling	best	practices,	454

schema,	database,	395

schemas

catalog,	70,	76

creating	for	recovery	catalog	(Multitenant),	172–176

creating	for	recovery	catalog	(nonmultitenant),	170–172

described,	19

reporting	on,	395

SCN	(System	Change	Number)

considerations,	23,	33

database	opens	and,	36

described,	19,	36

recovering	database	with,	45,	46,	305,	310–312

SCN	qualifier,	467

SCN-based	recoveries,	45,	46,	305,	310–312

scripts

considerations,	626

defining,	626,	632–633

editing,	635

example,	635

FRA	and,	680

local,	183,	187

running,	636–637

sample,	618–619,	679–681

stored,	183–186,	374–377

for	Unix	systems,	681

for	Windows	systems,	680–681

section	size	parameter,	202,	461

security.	See	also	passwords

Advanced	Security	Option,	565

best	practices,	453,	620–621

data	governance	and,	453

database,	144–146

NetBackup	for	Oracle,	620–621

OS	authentication,	144–145,	664

passwords.	See	passwords

setting	up,	144–146

user	accounts,	144–146

seed	container

backups,	225–226

recovering,	297–299

seed	PDB,	78

serialization,	201

server	processes,	24,	58–59

server	system	objects,	642–645

server-managed	recovery	(SMR),	50

servers

administrative,	566,	567–570,	575

client,	606

duplicating	to,	336–341

duplicating	to	same	server,	344–347

master,	606

media,	553–557,	567–568,	606

MTS,	54–55,	163

Multi-Threaded	Server,	163

OSB,	580–581,	584

primary,	485–486

remote,	337–341,	347–350

Shared	Servers,	54–55,	163

standby,	484–485

TSM,	642–645

service	names,	89–93,	102

service	requests	(SRs),	131

service-level	agreements	(SLAs),	454–459

services	menu,	455–458

session	identifier	(SID),	221–222

set	archivelog	destination	command,	214

set	backup	copies	command,	214

set	command,	159–162,	213–214

set	command	id	setting,	214

set	container	privilege,	86

set	dbid	command,	213

set	echo	command,	213

set	encryption	on	command,	161

set	incarnation	command,	214

set	maxcorrupt	for	datafile	command,	214

set	newname	command,	213–214

777	permissions,	619,	620

SGA	(System	Global	Area)

considerations,	26

described,	19

large	pool	in,	66

memory,	77

memory	allocations,	25–26

memory	models,	26

overview,	25–26

vs.	PGA,	66

transient	storage,	14

SGA	granule	units,	18

Shared	Servers,	54–55,	163

shipped	option,	365–366

show	command,	499

show	con_name	command,	87,	92

show	parameter,	417

shutdown	abort	command,	15,	36–37,	41,	215,	286

shutdown	command,	14–15,	36–37,	41,	215,	227

shutdown	immediate	command,	14–15,	41

shutdown	transactional	command,	14–15,	41,	215

shutting	down	database

CDBs,	85

PDBs,	103

with	shutdown	command,	36–37

SID	(session	identifier),	221–222

Simpana.	See	CommVault	Simpana

Simple	Storage	Service	(Amazon	S3),	566,	593–597,	598

since	time	option,	211

single-node	database,	505–511

skip	parameter,	210–211

skip	readonly	parameter,	211

SLAs	(service-level	agreements),	454–459

Smart	Flash	Cache,	26

SMON	(system	monitor)	process,	20

SMR	(server-managed	recovery),	50

snapshot	control	file,	57–58,	499

snapshot	control	file	settings,	153

snapshots,	57–58,	658

space	management,	521

space	quotas,	126

space	reservation,	521

SPFILEs

automated	backups,	155–156,	226,	255–261

backing	up,	389

considerations,	253,	255

converting	to	PFILEs,	260

crosschecking	backups,	359

destination	directories,	111

name	of,	261

restoring,	253–261

SQL

Flashback	Query,	465–468

Flashback	Table	operation,	469

Flashback	Versions	Query,	467–468

tuning,	405

SQL	commands

considerations,	283

executing	from	RMAN	client,	141–142

SQL	Test	Case	Builder,	131

SQL*Plus	Oracle	utility

database	shutdown,	36–37,	41

database	startup,	35–36,	40–41

opening	database,	36

SRs	(service	requests),	131

stakeholders,	15,	16

standards,	459–460

standby	control	file,	494

standby	database,	477–496

archive	logs,	496

ARCHIVELOG	mode,	480–481

backups	from,	494

configuring,	481–483,	484

creating,	479–494

logical,	478–479

naming	conventions,	480,	481

Oracle	Net	configuration,	484–486

password	file,	483

physical,	478

recovery	catalog	and,	488,	494

restores	from,	495

resynchronizing,	495

service	name,	484

single-node,	508–511

standby	server,	484–485

STANDBY_FILE_MANAGMENT	parameter,	483

start	with	syntax,	264

startup

CDBs,	85

PDBs,	100–104

startup	command,	35–36,	40–41

startup	force	command,	41

startup	mount	command,	35–36,	41,	215,	227,	266

startup	no	mount	command,	273

startup	nomount	command,	20,	35,	40–41

startup	read	only	command,	41

startup	restrict	command,	40

STB	channels,	597

storage	location,	78,	521–522,	523,	661

storage	policy,	660–661,	665,	673

storage	pools,	651–653

stored	scripts,	183–186,	374–377

Stripe	and	Mirror	Everything	(SAME),	404

stub	database,	317

subclient	configuration,	665–667

support,	528

supported	technologies,	459

switch	command,	270

symbolic	links,	648

synchronization

with	Data	Protector,	640

datafiles,	285

recovery	catalog,	67,	188

standby	database,	495

synchronous	devices,	402

SYS	packages,	59–60

SYSAUX	tablespace,	79

SYSBACKUP	privileges,	53,	138–139,	141,	142,	664

SYSDBA	privileges,	52–53,	138,	174,	182

SYS.DBMS_BACKUP_RESTORE	package,	60

SYS.DBMS_RCVMAN	package,	60

System	Backup	to	Tape.	See	SBT

System	Change	Number.	See	SCN

System	Global	Area.	See	SGA

system	outages,	16

SYSTEM	tablespace,	79,	538

T

tables

base,	68,	189,	190–195

dropped,	315

Flashback	Table,	465,	468–469

point-in-time	recovery,	317–322

recovery	catalog,	67

SYS.DBMS_RCVMAN,	60

truncated,	531

tablespace	parameter,	231–232

tablespace	point-in-time	recovery	(TSPITR),	299–300,	322–326,	464

tablespace	recovery

ARCHIVELOG	mode,	45–46,	282–283

considerations,	302–303

examples,	282–283,	538–539

multiple	tablespaces,	283

overview,	282–283

PDBs,	299–300,	307

point-in-time,	299–300,	322–326,	464

read-only,	313

recover	tablespace	command,	283

recovering	online,	538–539

SYSTEM	tablespace,	538

tablespaces

backups,	43,	231–232,	359,	386–387

BIGFILE,	353

creating,	171,	173

described,	19,	29

duplicating,	353

encryption,	161–162,	461

image	copies,	237

naming,	271

read-only,	313

recoveries.	See	tablespace	recovery

restoring,	495

status,	29

SYSAUX,	79

SYSTEM,	79,	538

temporary,	79

UNDO,	79

viewing	registered,	193

tag	parameter,	206–207

tags,	backup,	206–207

tape	backups

autonomous	tape	archival,	518–520

vs.	disk	backups,	552–553

EM12c	environment,	429–430

output	buffers	and,	65

overview,	552–553

procedure	for,	558

reasons	for,	552–553

remote	server	duplication,	340–341

retention	policies,	159

Zero	Data	Loss	Recovery	Appliance,	515

tape	buffer	size,	402

tape	channels,	59,	555–556

tape	I/O	slaves,	59,	66

tape	libraries,	594

tape	operations

duplication	from	tape,	331,	332,	340–341,	347

memory	buffers,	407

multiplexing	and,	407,	408

restoring	from	tape,	558–559

target	database

cloning.	See	database	cloning

connecting	to,	136–138

considerations,	60

creating	backup,	6–7

creating	RMAN	backup	account,	143–144

described,	50–51

historical	subset	of,	543–544

running	RMAN	locally	from,	55–56

standby	databases	and,	494

versions,	70,	71

target	parameter,	6–7

Target-Less	duplication,	350–352

targets

discovering	(EM12c),	424–426

information	about,	421

monitoring,	421

passwords,	426

TDE	(transparent	mode	encryption),	160,	162

TDE	tablespace	encryption,	461

TDPO.	See	Tivoli	Data	Protection	for	Oracle

tdpo	password	file,	648

tdpoconf	utility,	647,	648

TDPO_NAME,	653

TDPO_NODE,	653

technology	menu,	455,	458–459

temporary	files,	29,	79,	271,	639

temporary	tablespaces,	79

terminology,	17–19

test	box,	685–686

test	environment,	683–688

threads.	See	multithreaded	processes

time-based	recovery,	309

Tivoli	Data	Protection	for	Oracle	(TDPO)

configuring,	645–649

connectivity,	647,	648,	655,	656

described,	642

installing,	645

performing	RMAN	backup	with,	649–654

tdpo	password	file,	648

tdpoconf	utility,	648

Tivoli	Storage	Manager	(TSM),	641–656

administrative	account,	646

backup	objects,	645,	647

default	channels,	653–654

deleting	database	backups,	654

node	names/roles,	642,	643

overview,	642–648

server	system	objects,	642–645

storage	pools,	651–653

troubleshooting,	654–656

TSM	client,	642,	644,	645–648

TSM	servers,	642–645

tnsnames.ora	file,	54,	55,	485

Total	Recall,	475

Trace	directory,	135

trace	files,	19,	131,	416,	417

tracing	RMAN	sessions,	416–417

transactions,	Flashback	technology,	464,	465–466,	468,	470

transient	storage,	14–15

transparent	mode	encryption.	See	TDE

transport	set,	323–324

troubleshooting.	See	also	corruption;	errors

CommVault	Simpana,	674–676

media	management,	560–561

NetBackup,	619–620

system	hangs,	560–561

TSM	backup	scenarios,	654–656

truncate	table	operation,	469

TSM.	See	Tivoli	Storage	Manager

tsnames.ora	file,	55

TSPITR	(tablespace	point-in-time	recovery),	299–300,	322–326,	464

tuning.	See	performance	tuning

U

Un	processes,	25

UNAVAILABLE	status,	368

undo	extents,	466

undo	levels,	206

undo	operation,	37

undo	retention,	467

undo	segments,	132,	465–468.	See	also	rollback	segments

UNDO	tablespace,	79

UNDO_RETENTION	parameter,	466,	467

UNDO_TABLESPACE	parameter,	466

undropping	objects,	470

Unix	systems,	145,	153,	570,	681

Unix	user	account,	145

unrecoverable	option,	394–395

unregister	database	command,	179,	186–187

until	clause,	214,	243–244,	344,	387

until	time	parameter,	233,	304–305

until	time	string	option,	209

update	command,	37

upgrade	catalog	command,	182,	187

upgrade	issues,	187

user	accounts

common	users,	85–87,	175–176

installation	of,	659

Oracle-supplied,	85–86

passwords,	173

privileged	OS,	144

recovery	catalog,	171–172

security,	144–146

setting	up,	142–144

Unix,	145

user	class,	571

user	errors,	464

user	processes,	24

users

backup	requirements	for,	15–16

CDB,	85–87

common,	85–87,	175–176

creating,	86–87,	143,	174–175

database	setup	for,	142–144

described,	15

local,	174–175

logon	triggers,	141–143

OSB,	570–571

PDB,	88–89

privileges,	52–53

recovery	requirements	for,	15–16

removing,	87

V

V$	views,	189–190,	225

V$ACTIVE_SESSION_HISTORY	view,	412–413

validate	command,	363

validate	run,	213

validation,	358,	362–363,	520

V$BACKUP_ASYNC_IO	view,	413–416

V$BACKUP_SYNC_IO	views,	413–416

V$CONTAINERS	view,	94,	105

V$CORRUPT_XID_LIST	view,	132

V$DATABASE_BLOCK_CORRUPTION	view,	132

V$DIAG_CRITICAL_ERROR	view,	132

V$DIAG_INFO	view,	132,	135

Veritas	NetBackup.	See	NetBackup	for	Oracle

V$FLASHBACK	_DATABASE	_LOG	view,	474–475

V$FLASHBACK_DATABASE_STAT	view,	475

V$HM_*	views,	132

V$HM_RUN	view,	132

views.	See	also	specific	views

archived	redo	logs,	192

base	table,	189–195

data	dictionary.	See	data	dictionary	views

FRA,	123–125

OEM,	195–196

PDBs,	105

RC_*,	68,	189–196

recovery	catalog,	189–196

tuning,	410–416

V$,	189–190

Virtual	Keeper	of	Time	(VKTM)	process,	25

Virtual	Private	Catalog,	179–182,	461

Virtual	Private	Database	(VPD),	181

VKTM	(Virtual	Keeper	of	Time)	process,	25

VPD	(Virtual	Private	Database),	181

V$PDBS	view,	94,	105

V$RECOVERY_AREA_USAGE	view,	124

V$RECOVERY_FILE_DEST	view,	114–115,	123–124

V$RMAN_BACKUP_JOB_DETAILS	view,	411

V$RMAN_OUTPUT	view,	152,	195

V$SESSION	view,	411–412

V$SESSION_LONGOPS	view,	411–412

W

Web	tool,	566,	569,	575

whitespace	compression,	62,	71

Windows	systems

disk	space	issues,	406

OS	accounts,	570

password	file,	145

policies,	612–613

RMAN	scripts	for,	680–681

Z

Zero	Data	Loss	Recovery	Appliance,	513–524

zero	data	loss	solution,	15

zerodbid	procedure,	334–335

	Cover
	Title Page
	Copyright Page
	Dedication
	About the Authors
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	PART I Getting Started with RMAN in Oracle Database 12c
	1 Quick-Start Guide for RMAN and Oracle Database 12c
	Preliminary Steps
	Configuring the Database for RMAN Operations
	Determine Where the FRA Should Be Located and Create It
	Log Into the Database and Configure It to Use the FRA
	Put the Database in ARCHIVELOG Mode

	Backing Up the Database
	Restoring the Database
	Summary

	2 Oracle Database 12c Backup and Recovery Architecture Tour
	What This Book Is About
	I’m Already an RMAN Expert—Why Do I Need This Book or This Chapter?
	Let’s Kick Off the Tour
	Backup and Recovery Essentials
	High Availability
	Backup and Recovery

	A Few Oracle Terms to Know
	Oracle Database Architecture in the Pre-Multitenant Age
	The Oracle Processes
	Oracle Memory and RMAN
	The Oracle Database
	More About the Oracle Redo Logs
	ARCHIVELOG Mode vs. NOARCHIVELOG Mode
	Oracle Logical Structures

	The Combined Picture
	Startup and Shutdown of the Database

	More Oracle Database Internals
	Controlling the Database Software
	Oracle Backup and Recovery Primer
	Logical Backup and Recovery
	Oracle Physical Backup and Recovery
	Backing Up Other Oracle Components

	Summary

	3 Introduction to the RMAN Architecture
	Server-Managed Recovery
	The RMAN Utility
	RMAN and Database Privileges

	The Network Topology of RMAN Backups
	RMAN and Scale
	RMAN and Shared Servers
	Running RMAN Locally from the Target Database’s ORACLE_HOME

	The Database Control File
	Record Reuse in the Control File
	The Snapshot Control File
	Rebuilding the Control File

	The RMAN Server Processes
	RMAN Channel Processes

	The SYS Packages Used by RMAN
	SYS.DBMS_RCVMAN
	SYS.DBMS_BACKUP_RESTORE

	Backing Up the Data Block
	The Data Block Backup Overview
	The Benefits of Block-Level Backups

	RMAN in Memory
	Input Memory Buffers
	RMAN Memory Utilization: PGA vs. SGA

	The Recovery Catalog
	The Auxiliary Database
	Compatibility Issues
	The RMAN General Compatibility Rules

	The RMAN Process: From Start to Finish
	The Fast Recovery Area
	Summary

	4 Oracle Database 12c Multitenant
	Introducing Oracle Multitenant
	The CDB
	Pluggable Databases
	How Does Oracle Multitenant Impact RMAN Backup and Recovery?

	Administering Container Databases
	Starting and Stopping the CDB
	Common Users

	The Pluggable Database
	The PDB Name
	Creating a PDB
	PDB Users
	Connecting to a PDB
	Asking for Directions: Determining Which PDB You Are In
	Architecture of a Pluggable Database
	PDB Constraints
	PDB Performance
	PDB Resource Management

	CDBs and PDBs and the Data Dictionary
	The Multitenant Database Data Dictionary
	PDB Administration

	Other CDB-Related Topics
	Dropping a CDB
	Dropping a PDB
	PDB Cloning and Plugging and Unplugging PDBs

	Summary

	PART II RMAN Configuration, Backup, and Recovery Essentials
	5 RMAN Setup and Configuration
	Configuring Your Database to Run in ARCHIVELOG Mode
	ARCHIVELOG Destination Directories
	The Fast Recovery Area
	Should You Use the FRA?
	Switching Between ARCHIVELOG Modes
	If You Created Your Database with the Oracle Database Configuration Assistant
	RMAN Workshop: Put the Database in ARCHIVELOG Mode

	The Oracle Database Fault Diagnosability Infrastructure
	The ADR and Related Fault Diagnosability Infrastructure Components
	Configuring the Fault Diagnosability Infrastructure

	The RMAN Command Line
	Connecting via the RMAN Command Line
	Exiting the RMAN Client

	Configuring the Database for RMAN Operations
	Setting Up the Database User
	RMAN Workshop: Create the Target Database RMAN Backup Account
	Setting Up Database Security
	Setting the CONTROL_FILE_RECORD_KEEP_TIME Parameter

	Configuring RMAN Default Settings
	Introducing the configure Command
	Configuring Various RMAN Default Settings
	Examples of Using the configure Command
	If You Are Using Shared Servers

	Summary of RMAN Configuration Tasks
	Other Backup and Recovery Setup and Configuration Considerations
	Summary

	6 The RMAN Recovery Catalog
	What Is the Recovery Catalog?
	Creating the Recovery Catalog Owning Schema in a Nonmultitenant Database
	RMAN Workshop: Create the Recovery Catalog User Account
	Creating the Recovery Catalog–Owning Schema in a Multitenant Database
	Creating the Recovery Catalog Schema Objects
	RMAN Workshop: Create the Recovery Catalog
	RMAN Workshop: Register Your Database in the Recovery Catalog
	Utilizing an RMAN Virtual Private Catalog
	RMAN Workshop: Create a Virtual Private Catalog for Oracle 12.1.0.1 and Earlier Databases

	Merging Multiple Recovery Catalogs
	RMAN Workshop: Merge Two Recovery Catalogs

	RMAN Stored Scripts
	Creating Stored Scripts
	Querying the Recovery Catalog for Stored Script Information
	Changing Stored Scripts
	Deleting Stored Scripts
	Using Stored Scripts
	Printing Stored Scripts
	RMAN Workshop: Using RMAN Stored Scripts

	Recovery Catalog Maintenance
	Unregistering a Database in RMAN
	Database Migration/Upgrade Issues
	Manually Resetting the Database Incarnation (reset catalog)
	Manually Resynchronizing the Recovery Catalog (resync catalog)
	Purging Recovery Catalog Records

	Backing Up the Recovery Catalog
	Recovery Catalog Views
	The Purpose of the Recovery Catalog Views and the Database Data Dictionary Views
	The Recovery Catalog Base Tables, Views, and Database Data Dictionary Views
	Examples of Using the Recovery Catalog Base Tables and Views
	Catalog Views Intended for Use by Oracle Enterprise Manager

	Summary

	7 RMAN Backups
	Using the RMAN Backup Command
	The Backup Command
	The Backup Command, Channels, and Performance

	RMAN Backup Command Options
	Backing Up to a Specific Device Type
	Controlling Attributes of Backup Sets and Backup Set Pieces
	Multisection Backups
	RMAN Compression
	Tags
	Restore Points
	The duration Command: Putting Limits on Backups
	Archival Backups
	Overriding the Configure Exclude Command
	Skipping Offline, Inaccessible, or Read-Only Datafiles
	Override Backup Optimization
	Backing Up Datafiles Based on Their Last Backup Time
	Checking for Logical Corruption during a Backup
	Making Copies of Backups on Your RMAN Copier
	Capturing the Elusive Control File

	Using the RMAN Set Command
	Offline RMAN Database Backups
	Offline Backups Using Configured Settings
	RMAN Workshop: Perform an Offline Backup
	Breaking Down the Workshop Output
	Offline Backups without Using Configured Defaults

	Online RMAN Database Backups
	Online Database Backups
	RMAN Workshop: Perform an Online Backup

	Variations on a Theme: Other Types of RMAN Online Backups
	Tablespace Backups
	Datafile Backups
	Archived Redo Log Backups
	Control File and Parameter File Backups
	Backup Set Backups
	Fast Recovery Area Backups

	Copies
	Image Copies
	Database, Tablespace, and Datafile Image Copies
	Control File Copies
	ARCHIVELOG Image Copies

	Incremental RMAN Backups
	The Block Change Tracking File
	The Base Backup
	Differential vs. Cumulative Incremental Backups

	Incrementally Updated Backups
	RMAN Workshop: Perform an Incremental Backup

	Getting Started
	RMAN Workshop: Get Your Database Backed Up!

	RMAN Best Practices Introduced in This Chapter
	Summary

	8 RMAN Restore and Recovery
	RMAN Restore and Recovery Basics
	Types of Oracle Database Recoveries
	About Restoring Multitenant Databases
	Preparing for an RMAN Restore
	Staging RMAN Backup Set Pieces for Restores
	Restoring the SPFILE
	RMAN Workshop: Recover Your SPFILE
	Restoring the Control File
	RMAN Workshop: Recover Your Control File

	Restore and Recover the Database in NOARCHIVELOG Mode
	Preparing for the Restore
	Restoring to a Different Location
	RMAN Workshop: Recover Your NOARCHIVELOG Mode Database

	Database Recoveries in ARCHIVELOG Mode
	Point-of-Failure Database Recoveries
	RMAN Workshop: Complete Recovery of Your ARCHIVELOG Mode Database
	Tablespace Recoveries
	Datafile Recoveries
	What If I Use Incremental Backups?

	Recovering from Online Redo Log Loss
	Loss of an Inactive Online Redo Log Group Member
	Loss of an Inactive Online Redo Log Group
	Loss of an Active but Not Current Online Redo Log Group
	Loss of the Current Online Redo Log Group

	The Data Recovery Advisor
	Using the Data Recovery Advisor Through RMAN
	Data Recovery Advisor Data Dictionary Views

	Summary

	9 Advanced RMAN Recovery Topics
	Recovery of Pluggable Databases
	Recovering the Root Container
	Recovering the Seed Container
	Recovering PDBs

	Incomplete Database Recoveries on Non-CDB and Entire CDB Databases
	What Is an Incomplete Recovery?
	Incomplete Recovery: How Does It Work?
	Establishing a Point to Recover To
	Time-Based Recoveries
	SCN-Based Recoveries
	Change-Based Recoveries
	Restore Point–Based Recoveries

	Performing Incomplete Recoveries of Pluggable Databases (PDB)
	About PDB Point-in-Time Recoveries
	Restrictions and Requirements Associated with PDB Point-in-time Recoveries
	PDB Time-Based Recovery
	PDB SCN-Based Recovery
	PDB Change-Based Recovery
	Recovering Based on a Restore Point

	Other RMAN Recovery Topics
	Read-Only Tablespace Recovery Considerations
	Archived Redo Log Restores
	Datafile Copy Restores
	Recovering Corrupted Data Blocks
	Recovering to a Previous Incarnation

	Table and Partition Point-in-Time Recovery
	Prerequisites for Restoring and Recovering Database Tables and Partitions
	Restrictions on Restoring and Recovering Database Tables and Partitions
	Options to Consider when Restoring Tables and Partitions
	How RMAN Implements the Restore and Recovery of Tables and Partitions
	Restoring Tables and Partitions from PDBs
	Using RMAN to Restore and Recover a Database Table: An Example

	Tablespace Point-in-Time Recovery
	Preparing for the TSPITR
	Performing the Actual TSPITR
	Customized Automated TSPITR with an Automatic Instance

	Summary

	10 Duplication: Cloning the Target Database
	RMAN Duplication: A Primer
	Why Use RMAN Duplication?
	Different Types of RMAN Duplication
	The Duplication Architecture

	Duplication: Location Considerations
	Duplication to the Same Server: An Overview
	Duplication to the Same Server, Different ORACLE_HOME
	Duplication to a Remote Server: An Overview
	Duplication and the Network
	RMAN Workshop: Build a Password File

	Duplication to the Same Server
	RMAN Workshop: Duplication to the Same Server Using Disk Backups
	Using Tape Backups

	Duplication to a Remote Server
	RMAN Workshop: Duplication to a Remote Server Using Disk Backups
	Using Tape Backups for Remote Server Duplication

	Targetless Duplication in 12c
	Incomplete Duplication: Using the DBNEWID Utility

	New RMAN Cloning Features for 12c
	Using Compression
	Duplicating Large Tablespaces

	Summary

	PART III RMAN Maintenance and Administration
	11 Maintaining RMAN
	RMAN Maintenance
	Crosschecking RMAN Backups
	RMAN Workshop: Using the Crosscheck Command

	Verifying Your Backups
	The Restore…Preview Command
	Using the Restore…Validate and Check Logical Commands
	Using the validate Command
	Backup Retention Policies
	Archive Log Retention Policies
	The Change Command
	RMAN Workshop: Using the Change Command
	The Delete Command
	RMAN Workshop: Using the Delete Command
	Cataloging Other Backups in RMAN

	RMAN Stored Scripts
	Creating Stored Scripts
	Querying the Recovery Catalog for Stored Script Information
	Changing Stored Scripts
	Deleting Stored Scripts
	Using Stored Scripts
	Printing Stored Scripts
	RMAN Workshop: Using RMAN Stored Scripts

	When You Just Can’t Take It Anymore
	Summary

	12 Monitoring and Reporting in RMAN
	The RMAN List Command
	Listing Incarnations
	Listing Backups
	Listing Image Copies
	Listing Restore Points
	Listing the DB_UNIQUE_NAME

	The RMAN Report Command
	Reporting on Datafiles that Have Not Been Backed Up Recently
	Reporting on Backup Redundancy or Recovery Window
	Reporting on Unrecoverable Operations on Datafiles
	Reporting on the Database Schema
	Reporting on Obsolete Backups

	Data Dictionary Views for Reporting
	Summary

	13 Performance Tuning RMAN Backup and Recovery Operations
	Before You Tune RMAN
	RMAN Performance: What Can Be Achieved?
	Have the Right Hardware in Place
	Use the Correct Backup Strategy
	Tune the Database

	Tuning RMAN
	Tuning RMAN Settings
	Tuning the MML Layer
	Identifying Database-Related RMAN Issues

	Tracing RMAN Sessions
	Summary

	14 Using Oracle Cloud Control for Backup and Recovery
	EM12c Architecture
	Oracle Management Repository
	Oracle Management Service
	Oracle Management Agents
	The Cloud Control Console
	Plug-Ins

	Installing and Configuring Enterprise Manager Cloud Control 12c for Database Backups
	Installing an Enterprise Manager Agent
	Discovering Targets

	Configuring Backup and Recovery Settings with EM12c
	Backing Up a Database with EM12c
	Schedule Oracle-Suggested Backup
	Schedule Customized Backup
	Backing Up Multiple Databases at Once

	Managing Backups
	Backup Reports
	Using EM12c for Recovery
	Restore Points
	Performing Recovery

	Summary

	PART IV RMAN in a Highly Available Architecture
	15 RMAN Best Practices
	Data Protection
	Enterprise Architecture
	Backup and Recovery
	High Availability
	Disaster Recovery
	Data Governance and Security
	Monitoring and Scheduling

	Best Practices
	Service-Level Agreements
	Standards and Processes

	RMAN Best Practices
	Summary

	16 Surviving User Errors: Flashback Technologies
	Prepared for the Inevitable: Flashback Technology
	Flashback and the Undo Segment: A Love Story
	Flashback Query
	Flashback Versions Query
	Flashback Table
	Performing the Flashback Table Operation from SQL
	Flashback Table with Oracle Enterprise Manager

	Flashback Transaction
	Flashback Drop
	The Recycle Bin

	Flashback Database
	Flashback Logs
	Flashback Retention Target
	RMAN Workshop: Configure for Flashback Database
	Flashback Database: Tuning and Tweaking

	Flashback Data Archive (Total Recall)
	Summary

	17 RMAN and Data Guard
	Types of Standby Databases
	Physical Standby Database
	Logical Standby Database

	Using RMAN to Create Standby Databases
	Preparing to Create a Standby Database
	Establishing a Naming Convention
	Putting the Database in ARCHIVELOG Mode and Forced Logging Mode
	Setting Database Parameters
	Creating the Auxiliary Database Password File
	Configuring the Oracle Network
	Preparing and Starting the Auxiliary Instance
	Starting RMAN
	Creating the Standby Database

	After the Standby Is Created
	RMAN Workshop: Create a Standby Database Using RMAN

	Taking Backups from the Standby Database
	Other RMAN and Data Guard Topics
	Restoring a Lost Datafile, Tablespace, or Database from a Standby Database with RMAN
	Resynchronizing the Standby Database

	Archive Log Backups from the Standby Database
	Summary

	18 RMAN and Real Application Clusters
	Real Application Clusters: Unique Backup Challenges
	Datafile Backups
	Archive Log Backups

	RAC Recovery Challenges
	Restore Operations
	Media Management Considerations During a Restore
	Recovery Considerations After a Restore

	Advanced RMAN/RAC Topics
	Duplication to a Single-Node System
	RMAN Workshop: Duplicating a RAC Database to a Single-Node Database
	The Single-Node Standby Database
	RMAN Workshop: Creating a Single-Node Standby Database from a RAC Database
	Backing Up the Multinode RAC Database

	Summary

	19 Zero Data Loss Recovery Appliance: Evolution of RMAN to Enterprise-wide Database Protection Solution
	The Zero Data Loss Recovery Appliance: An Overview
	Architecture
	Protected Databases
	Delta Push
	Delta Store
	Replication
	Autonomous Tape Archival
	Backup Validation

	Protection Policy
	Cooperative Space Management
	Monitoring and Administration
	Scale-out Hardware
	Summary

	20 RMAN in the Workplace: Case Studies
	Before the Recovery
	What Is the Exact Nature of the Failure?
	What Recovery Options Are Available?
	Might Oracle Support Be Needed?
	Who Can Act as a Second Pair of Eyes During Recovery?

	Recovery Case Studies
	Case #1: Recovering from Complete Database Loss (NOARCHIVELOG Mode) with a Recovery Catalog
	Case #2: Recovering from Complete Database Loss (NOARCHIVELOG Mode) Without a Recovery Catalog
	Case #3: Recovering from Complete Database Loss (ARCHIVELOG Mode) Without a Recovery Catalog
	Case #4: Recovering from Complete Database Loss (ARCHIVELOG Mode) with a Recovery Catalog
	Case #5: Recovering from the Loss of the SYSTEM Tablespace
	Case #6: Recovering Online from the Loss of a Datafile or Tablespace
	Case #7: Recovering from Loss of an Unarchived Online Redo Log
	Case #8: Recovering Through resetlogs
	Case #9: Completing a Failed Duplication Manually
	Case #10: Using RMAN Duplication to Create a Historical Subset of the Target Database
	Case #11: Recovering from a Lost Datafile (ARCHIVELOG Mode) Using an Image Copy in the Fast Recovery Area
	Case #12: Recovering from Running the Production Datafile Out of the Fast Recovery Area
	Case #13: Using Flashback Database and Media Recovery to Pinpoint the Exact Moment to Open the Database with resetlogs

	Summary

	PART V RMAN Media Management
	21 Media Management Considerations
	Tape Backups in a Disk Backup World
	RMAN and the Media Manager: An Overview
	The Media Manager Catalog
	The Media Manager: Other Software Components
	Media Management Library
	RMAN Workshop: Test Tape Channels with the Oracle Default SBT Interface
	Interfacing with the MML

	The SBT API
	Back Up to Tape: From Start to Finish
	Restore from Tape: From Start to Finish
	Using sbttest and loadsbt.exe
	Media Management Errors
	Summary

	22 Oracle Secure Backup
	Features of Oracle Secure Backup
	Oracle Secure Backup and Recovery Manager
	Differences Between OSB and OSB Express
	Backup Encryption
	Fast Database Backup Compression
	Oracle Secure Backup Cloud Module

	Oracle Secure Backup Interfaces
	Oracle Secure Backup Components
	Oracle Secure Backup Daemons
	Host Access Modes
	Administrative Data
	Oracle Secure Backup Users and Classes
	Operating System Accounts
	NDMP Hosts
	Oracle Secure Backup Rights and Classes

	Installing and Configuring Oracle Secure Backup
	RMAN Workshop: Install and Configure Oracle Secure Backup

	Oracle Database and File System Data Backup Using Oracle Secure Backup
	RMAN Workshop: Schedule Oracle Database and File System Data Backups

	Oracle Database Backup Using Oracle Secure Backup Cloud Module
	RMAN Workshop: Installing OSB Cloud Module and Using It for OSB Backups

	Summary

	23 Backing Up to Amazon Web Services Using the Oracle Secure Backup Cloud Module
	Conventional Backups: Assumptions and Limitations
	The Oracle Secure Backup Cloud Module
	What Is Cloud Computing?
	Oracle and the Amazon Cloud
	Elastic Compute Cloud (EC2) and Elastic Block Store (EBS)
	Simple Storage Service (S3): Oracle’s Cloud Backup Solution
	RMAN Backup to S3: The Oracle Secure Backup Cloud Module
	S3 Backup over the Internet or from Amazon EC2

	Oracle Cloud Backup Advantages
	RMAN Workshop: Deploying RMAN Backups to Amazon S3

	Performing Backups by Using the OSB Cloud Module
	To Persistently Store S3 as the Default SBT Channel
	To Specify the OSB Cloud Module Each Time You Allocate a Channel

	Listing RMAN Backups and Backup Sets Stored on S3
	Optimizing Backups and Recoveries over the Internet Using the OSB Cloud Module and Amazon S3
	Example with Multiple Channels and Compressed Backup Sets

	Licensing Considerations
	Summary

	24 Enhancing RMAN with Veritas NetBackup for Oracle
	Key Features
	Necessary Components
	Storage/Media Device Configuration
	NetBackup Installation
	Pre-Installation Tasks for NetBackup for Oracle Agent
	NetBackup for Oracle Agent Installation Steps

	How to Link Oracle to NetBackup Media Manager
	Automatic Link Method
	Manual Link Method

	Architecture
	Configuring NetBackup Policies
	Adding New Policies
	Defining Schedules
	Defining a Backup Selection
	Defining Policy Clients

	Managing Expired Backup Images
	Delete Expired Backups Using NetBackup Repository
	Delete Expired Backups Using RMAN

	RMAN Sample Scripts
	Troubleshooting
	Use NetBackup Logs
	Determine Which Library Is in Use

	Security Best Practices
	Cost Justification
	Summary

	25 Configuring HP Data Protector for Oracle
	Integration of Oracle and Data Protector
	Support Matrix
	Integration Components
	Integration Restrictions
	RMAN Workshop: Integration Configuration

	RMAN Backup Configuration on Data Protector
	RMAN WORKSHOP: Backup Configuration
	Editing the RMAN Script

	Running an RMAN Backup
	Backup Methods
	Backup Procedure

	Restoring Oracle Using the Data Protector GUI
	Restoring the Control File
	Restoring Oracle Database Objects

	Oracle RMAN Metadata and Data Protector Media Management Database Synchronization
	Summary

	26 RMAN and Tivoli Storage Manager
	Overview of Tivoli Storage Manager
	TSM Server System Objects
	TSM Client
	RMAN Workshop: Configuring TDPO for Oracle

	Performing an RMAN Backup Using TDPO
	Default Channels

	Deleting Database Backups
	Troubleshooting Common Backup Scenarios
	Additional Troubleshooting

	Summary

	27 RMAN and CommVault Simpana
	Simpana Overview
	Installation
	Data Retention
	Schedule Policies

	CommVault Oracle iDA: What Is It?
	Configure an Oracle Instance
	Configure the Subclient

	Initiate a Backup
	Restore
	Advanced Configurations
	RMAN Interface
	Troubleshooting
	Summary

	PART VI Appendixes
	A RMAN Scripting Examples
	RMAN Scripts for Windows
	Creating a Windows Script to Schedule Backups
	Scheduling the Backup

	RMAN Scripts for Unix

	B Setting Up an RMAN Test Environment
	The Test Box
	Match Your Production Environment
	Go Cheap—At a Price

	The Oracle Configuration
	Multiple Homes
	Creating Databases

	The RMAN Configuration

	Index

